首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term potentiation (LTP) of synaptic transmission is a favored neural model for learning and memory. In isolated slices of rat prelimbic cortex, glutamatergic activation of metabotropic receptors (mGluRs) is required for the production of LTP at synapses on layer V neurons. Group I mGluRs are found in neocortex, and in prelimbic cortex they have been located on layer V neurons. We have now investigated whether application of the selective group I mGluR agonist, (S)-3,5-dihydroxyphenylglycine (DHPG) facilitates the induction of LTP. We recorded field potentials in layer V in response to test shocks applied to layer II and measured the population spike peak amplitude and slope. Intracellular recording was used to examine the correspondence between excitatory postsynaptic potentials (EPSPs) and action potentials with components of the field potential, and to further investigate the action of DHPG. Repetitive bursts of stimulation at theta frequencies (TBS) did not consistently alter the magnitude or slope of the population spike (mean response 105+/-4%, mean+/-SE of control at 30 min after TBS ended, n = 9 slices, no significant difference). When DHPG was added to the bathing medium for 10 min during continued test stimulation, the slope and amplitude of the population spike were significantly reduced, but 30 min after wash out of the DHPG, they recovered (mean response 89+/-10% of control, n = 6 slices, no significant difference). However, when TBS was administered in conjunction with bath application of DHPG, LTP of the population spike was induced (mean response 147+/-12% of control at 30 min after TBS ended, P = 0.004, paired t-test, n = 9 slices). We conclude that co-application of DHPG with TBS facilitates the induction of LTP of the population spike, which supports a role for group I mGluRs in the activity-dependent induction of LTP in the prelimbic cortex.  相似文献   

2.
长时程增强(LTP)是突触效能的重要表现形式,是研究学习与记忆突触机制的客观指标.近年来随着脑片技术的发展,很多关于LTP的实验研究都在脑片水平上进行.介绍了海马脑片CA1区LTP的调节表达机制的研究,海马脑片上诱导产生的LTP的特征和脑片条件的关系,多巴胺转运蛋白阻断剂通过活化D3多巴胺受体增强海马脑片CA1区LTP,以及激活大鼠海马脑片CA1区突触β-肾上腺素能受体增强联合LTP的研究,综述了在脑片水平上研究LTP的诱导表达维持及调节等方面的研究动态和进展.  相似文献   

3.
Gonadal steroid hormones influence CNS functioning through a variety of different mechanisms. To test the hypothesis that estrogen modulates synaptic plasticity in the hippocampus, in vitro hippocampal slices from 2-mo-old Sprague-Dawley male rats were used to determine the effect of 17beta-estradiol on both N-methyl-D-aspartate (NMDA) receptor-mediated excitatory postsynaptic potentials (EPSPs) through intracellular recordings and long-term potentiation (LTP) through extracellular recordings. Intracellular EPSPs and extracellular field EPSPs (fEPSPs) were recorded from CA1 pyramidal cells by stimulating Schaffer collateral fibers. In intracellular experiments, slices were perfused with medium containing bicuculline (5 microM) and low Mg2+ (0.1 mM) to enhance the NMDA receptor-mediated currents and 6, 7-dinitroquinoxaline-2,3-dione (DNQX) (10 microM) to block the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprianate (AMPA) receptor-mediated component. The effects of 17beta-estradiol on NMDA receptor-mediated activity were excitatory; concentrations >10 nM induced seizure activity, and lower concentrations (1 nM) markedly increased the amplitude of NMDA-mediated EPSPs (both the first and second responses increased during paired pulse stimulation by 180 and 197%, respectively). In extracellular experiments, slices perfused with 17beta-estradiol (100 pM) exhibited a pronounced, persisting, and significant enhancement of LTP of both the fEPSP slope (192%) and fEPSP amplitude (177%) compared with control slices (fEPSP slope = 155%; fEPSP amplitude = 156%) 30 min after high-frequency stimulation. These data demonstrate that estrogen enhances NMDA receptor-mediated currents and promotes an enhancement of LTP magnitude.  相似文献   

4.
The relevance of long-term potentiation (LTP) at excitatory synapses in CA3 circuits to generation of spontaneous epileptiform bursts in CA3 was investigated using rat hippocampal slices. CA3 pyramidal cells were antidromically stimulated through Schaffer collaterals. Evoked field potentials were extracellularly recorded from the stratum pyramidale and the stratum radiatum in CA3. Therefore, field potentials reflecting recurrent excitatory post-synaptic potentials (EPSPs) and inhibitory post-synaptic potentials (IPSPs) were positive at the stratum pyramidale and negative at the stratum radiatum. First, we tested how the amplitude of the evoked field potentials depends on a γ-aminobutyric acid (GABAA) antagonist. Both of the positive and negative field potential peaks reduced in the medium containing penicillin (2 mM) or bicuculline (20 μM). This suggests that unmasked EPSPs due to suppression of IPSPs do not result in an increase in the evoked potentials. Second, CA3 pyramidal cells were antidromically stimulated by tetanic stimulation of Schaffer collaterals in order to induce LTP at synapses in CA3 circuits. Both of the positive and negative field potentials increased, suggesting that recurrent EPSPs were enhanced by tetanic stimulation. Induction of LTP at recurrent excitatory synapses was followed by spontaneous epileptiform bursts which persisted throughout experiments (1.5 h), while LTP of afferent synaptic potential evoked by hilar test stimulation was not induced. These results suggest that LTP at the afferent synapses is not necessary to spontaneous epileptiform bursts in CA3, but LTP at excitatory synapses between CA3 pyramidal cells contribute to spontaneous epileptiform bursts.  相似文献   

5.
In supragranular layers of the rat auditory cortex, white matter stimulation produces antidromic and transsynaptic field potentials, of which only the latter shows long-term potentiation (LTP) following tetanic stimulation of the white matter. In this study, we investigated the cells responsible for the LTP. The transsynaptic field potentials, excitatory postsynaptic potentials (EPSPs), and orthodromic spikes were blocked by 6-cyano-7-nitroquinoxaline-2, 3-dione (10 M), but not by d-2-amino-5-phosphonovalerate (D-AP5, 50 M). The latency of EPSPs was constant, while that of transsynaptic field potentials and orthodromic spikes was shortened by the increase in stimulus intensity. Appearance of anti-dromic field potentials and antidromic spikes at strong stimulus intensities were accompanied by reduction in amplitude of transsynaptic field potentials and elimination of orthodromic spikes, respectively. Morphological identification of neurons showing antidromic spikes by intracellular injection of biocytin revealed that most of them were supragranular pyramidal cells. The effects of tetanic stimulation were studied by intracellular recording in seven neurons showing, antidromic spikes, and it was found that only two of them showed LTP of EPSP slope. However, in all of the other eight units showing antidromic spikes and recorded extracellularly, LTP was clearly observed in orthodromic firing probability. The LTP induction in the orthodromic firing probability was blocked by D-AP5. These findings indicate that the LTP in field potentials corresponds to LTP in supragranular pyramidal outputs, and the input-output relationship in neural networks of the adult rat auditory cortex is strongly modulated by LTP.  相似文献   

6.
The effect of 4-aminopyridine (4-AP) on long-term potentiation (LTP) was studied in the hippocampal slice preparation of the rat. Field excitatory postsynaptic potentials (EPSPs) were recorded and evoked in the stratum radiatum of the CA1. Both the low frequency EPSP and LTP of the EPSP were significantly increased by treatment with 4-AP. These effects were inhibited by increasing the magnesium concentration from 1 to 4 mM. Pretreatment with 20 microM DL-2-amino-5-phosphonovalerate antagonized only the increase in LTP produced by 4-AP. It is suggested that 4-AP enhances Ca influx either pre- or postsynaptically and thereby increases LTP.  相似文献   

7.
Long-term potentiation of Ca2+ signal in the rat auditory cortex.   总被引:3,自引:0,他引:3  
The Ca2+ signal in supragranular layers of the rat auditory cortex (AC) was studied in slice preparations using rhod-2, a Ca2+ indicator. White matter stimulation elicited an increase in the Ca2+ signal, which was maximal in the image taken 34 ms after stimulation. This peak time was the same as that of the Ca2+ signal in pyramidal neurons injected with rhod-2. The intensity of the Ca2+ signal was proportional to the amplitude of the field potentials in supragranular layers. The Ca2+ signal was inhibited almost completely by 200 microM Ni2+ , but only slightly by 50 microM D-2-amino-5-phosphonovalerate (APV), an NMDA-receptor antagonist. Tetanic stimulation of the white matter or supragranular layers elicited long-term potentiation (LTP) of the Ca2+ signal in AC slices, but the potentiation was not clear in slices of the visual cortex (VC). The induction of LTP of the field potentials in AC slices was blocked by 50 microM APV or 50 microM Ni2+. These results indicate that Ca2+ influx through Ni2+ -sensitive Ca2+ channels in pyramidal neurons is potentiated by tetanic stimulation in parallel with LTP of neural activities and might be important for the induction of LTP in AC slices.  相似文献   

8.
Coincident pre- and postsynaptic activity induces synaptic plasticity at the Schaffer collateral synapse onto CA1 pyramidal neurones. The precise timing, frequency and number of coincident action potentials required to induce synaptic plasticity is currently unknown. In this study we show that the postsynaptic activity required for the induction of long-term potentiation (LTP) changes with development. In acute slices from adult rats, coincident pre- and postsynaptic theta burst stimulation (TBS) induced LTP and we show that multiple high-frequency postsynaptic spikes are required. In contrast, in acute slices from juvenile (P14) rats, TBS failed to induce LTP unless the excitatory postsynaptic potentials (EPSPs) were of sufficient magnitude to initiate action potentials. We also show that coincident individual pre- and postsynaptic action potentials are only capable of inducing LTP in the juvenile when given at a frequency greater than 5 Hz and that the timing of individual pre- and postsynaptic action potentials relative to one another is not important. Finally, we show that local tetrodotoxin (TTX) application to the soma blocked LTP in adults, but not juveniles. These data demonstrate that somatic spiking is more important for LTP induction in the adult as opposed to juvenile rats and we hypothesize that the basis for this is the ability of action potentials in the postsynaptic CA1 pyramidal neurone to back-propagate into the dendrites. Therefore, the pre- and postsynaptic activity patterns required to induce LTP mature as the hippocampus develops.  相似文献   

9.
1. We tested several hypotheses related to the modulation of long-term potentiation (LTP) by norepinephrine (NE) at the mossy fiber synapses in the rat hippocampal slice preparation using extracellular and intracellular recording techniques. 2. NE exerted frequency-dependent effects on mossy fiber synaptic transmission. It had little effect on extracellular population excitatory postsynaptic potentials (pEPSPs) sampled during low-frequency stimulation, whereas it had marked effects on the duration, magnitude, and probability of induction of LTP at these synapses. 3. The beta-adrenoceptor agonist isoproterenol mimicked all of the effects of NE, whereas the beta-adrenoceptor antagonists propranolol and timolol reversibly blocked the induction of LTP, suggesting the effects of NE are mediated by a beta-adrenoceptor and that beta-adrenoceptor activation may be an important constituent for the expression of LTP at these synapses. 4. Frequency-dependent effects of NE and isoproterenol on mossy fiber pEPSPs were also observed in the presence of the gamma-aminobutyric acid (GABA) antagonist, picrotoxin, suggesting that NE can enhance LTP by a mechanism that does not depend on intact inhibition. However, propranolol did not block LTP in these disinhibited slices and did not affect LTP magnitude. 5. The adenylate cyclase activator forskolin augmented pEPSPs sampled during low-frequency stimulation in disinhibited slices and significantly enhanced LTP. Forskolin, however, did not produce LTP in the absence of tetanic stimulation. This supports the hypothesis that NE and isoproterenol augment features of LTP by stimulating adenosine 3',5'-cyclic monophosphate (cAMP) production and that cAMP plays a modulatory role in the induction of LTP. 6. The postsynaptic injection of the cAMP analogue 8-bromoadenosine 3',5'-cyclic monophosphate (8-bromo-cAMP) significantly increased the probability of induction of LTP measured intracellularly under voltage-clamp conditions with intact inhibition. An analysis of the inhibitory synaptic slope conductance during these experiments indicated that changes in this measure could neither account for the increase in mossy fiber synaptic slope conductance in those cells that displayed it nor account for the group differences in this variable. 7. The amplitude and duration of the postsynaptic depolarization during tetanic stimulation in the cells that displayed LTP in the 8-bromo-cAMP-injected group were significantly greater than in the cells that did not display LTP in the adenosine 5'-monophosphate-injected group.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Long-term potentiation (LTP) involves a prolonged increase in neuronal excitability following repeated afferent input. This phenomenon has been extensively studied in the hippocampus as a model of learning and memory. Similar long-term increases in neuronal responses have been reported in the dorsal horn of the spinal cord following intense primary afferent stimulation. In these studies, we utilized the spinal cord slice preparation to examine effects of the potently antinociceptive mu opioids in modulating primary afferent/dorsal horn neurotransmission as well as LTP of such transmission. Transverse slices were made from the lumbar spinal cord of 10- to 17-day-old rats, placed in a recording chamber, and perfused with artificial cerebrospinal fluid also containing bicuculline (10 microM) and strychnine (1 microM). Primary afferent activation was achieved in the spinal slice by electrical stimulation of the dorsal root (DR) or the tract of Lissauer (LT) which is known to contain a high percentage of small diameter fibers likely to transmit nociception. Consistent with this anatomy, response latencies of LT-evoked field potentials in the dorsal horn were considerably slower than the response latencies of DR-evoked potentials. Only LT-evoked field potentials were found to be reliably inhibited by the mu opioid receptor agonist [D-Ala(2), N-Me-Phe(4), Gly(5)] enkephalin-ol (DAMGO, 1 microM), although evoked potentials from both DR and LT were blocked by the AMPA/kainate glutamate receptor antagonist 6-cyano-7-nitroquinoxalene-2,3-dione. Moreover repeated stimulation of LT produced LTP of LT- but not DR-evoked potentials. In contrast, repeated stimulation of DR showed no reliable LTP. LTP of LT-evoked potentials depended on N-methyl-D-aspartate (NMDA) receptor activity, in that it was attenuated by the NMDA antagonist APV. Moreover, such LTP was inhibited by DAMGO interfering with LTP induction mechanisms. Finally, in whole cell voltage-clamp studies of Lamina I neurons, DAMGO inhibited excitatory postsynaptic current (EPSC) response amplitudes from LT stimulation-evoked excitatory amino acid release but not from glutamate puffed onto the cell and increased paired-pulse facilitation of EPSCs evoked by LT stimulation. These studies suggest that mu opioids exert their inhibitory effects presynaptically, likely through the inhibition of glutamate release from primary afferent terminals, and thereby inhibit the induction of LTP in the spinal dorsal horn.  相似文献   

11.
The nigrostriatal dopaminergic projection is crucial for the striatal processing of motor information received from the cortex. Lesion of this pathway in rats causes locomotor alterations that resemble some of the symptoms of Parkinson's disease and significantly alters the excitatory transmission in the striatum. We performed in vitro electrophysiological recordings to study the effects of unilateral striatal dopamine (DA) denervation obtained by omolateral nigral injection of 6-hydroxydopamine (6-OHDA) in the formation of corticostriatal long-term potentiation (LTP). Unilateral nigral lesion did not affect the intrinsic membrane properties of striatal spiny neurons. In fact, these cells showed similar pattern of firing discharge and current-voltage relationship in denervated striata and in naive controlateral striata. Moreover, excitatory postsynaptic potentials (EPSPs) evoked by stimulating corticostriatal fibers and recorded from DA-denervated slices showed a pharmacology similar to that observed in slices obtained from controlateral intact striata. Conversely, in magnesium-free medium, high-frequency stimulation (HFS) of corticostriatal fibers produced LTP in slices from nondenervated striata but not in slices from 6-OHDA-denervated rats. After denervation, in fact, no significant changes in the amplitude of extra- and intracellular synaptic potentials were recorded after the conditioning HFS. The absence of corticostriatal LTP in DA-denervated striata might represent the cellular substrate for some of the movement disorders observed in Parkinson's disease.  相似文献   

12.
The aim of this study was to investigate whether synaptic plasticity and metaplasticity in slice cultures of the young rat hippocampus were comparable to previously reported synaptic plasticity and metaplasticity in acute adult hippocampal slices. This is relevant since differences do exist between the preparations as a result of age and the ex vivo maintenance. We prepared and maintained slice cultures from 5- to 6-day-old rats according to the porous membrane method. After 12–16 days in vitro, extracellular low-frequency stimulation (LFS) and high-frequency stimulation (HFS) protocols were applied to the Schaffer collaterals, and extracellular field potentials were recorded in area CA1. LFS and HFS induced long-term depression (LTD) and long-term potentiation (LTP), respectively. LTP could be reversed by LFS, as could LTD by HFS 60 min after induction. Plotting the amount of LTD and LTP versus stimulation protocol demonstrated frequency-dependence of the sign and extent of plasticity. Priming activation of group 1 metabotropic glutamate receptors (mGluRs) with DHPG facilitated subsequent LTP, revealing a metaplastic effect similar to that observed in acute slices. Immunohistochemistry for group 1 mGluR subtypes mGluR1α and mGluR5 showed both receptors to be present in these cultures. We conclude that synaptic plasticity and mGluR-mediated metaplasticity are largely comparable to those effects found in acute in vitro techniques.  相似文献   

13.
1. The induction of long-term potentiation (LTP) at hippocampal mossy-fiber synapses requires an increase in postsynaptic [Ca2+]i but is independent of N-methyl-D-aspartate (NMDA) receptor activation. Voltage-gated Ca2+ channels have been proposed as one alternative source for raising [Ca2+]i during the induction of LTP. We tested the hypothesis that voltage-gated Ca2+ channel activation could mediate the induction of LTP by examining whether 1) the induction of mossy-fiber LTP was dependent on postsynaptic depolarization and 2) depolarization alone, of a magnitude presumably capable of activating Ca2+ channels, was sufficient to induce LTP. 2. Intracellular recordings were made from rat CA3 pyramidal cells in the hippocampal slice preparation under both current- and voltage-clamp conditions. Mossy-fiber postsynaptic potentials and currents were recorded before and after high-frequency stimulation (HFS) in the presence of 20-50 microM D-2-amino-5-phosphonovaleric acid (D-APV), an NMDA-receptor antagonist. 3. Voltage clamping of CA3 neurons between -80 and -100 mV during HFS reversibly blocked the induction of mossy-fiber LTP. Conversely, HFS paired with depolarizing-current steps under current clamp increased the magnitude of LTP compared with controls. These results indicate that mossy-fiber LTP is dependent on postsynaptic depolarization, and presynaptic activation alone was not sufficient to induce mossy-fiber LTP. 4. Depolarizing-current injections, which presumably depolarized CA3 cells to potentials sufficient to activate voltage-gated Ca2+ channels, had no effect on mossy-fiber synaptic responses. These results suggest that synaptic activation, in addition to postsynaptic depolarization, is required for the induction of mossy-fiber LTP. 5. Single mossy-fiber afferent volleys were also paired with depolarizing-current pulses. In the presence of APV, pairing of single-mossy-fiber excitatory postsynaptic potentials (EPSPs) with postsynaptic depolarization did not potentiate synaptic responses, suggesting that some form of HFS is also required for mossy-fiber LTP. In the absence of APV, however, the contamination of mossy-fiber synaptic responses by CA3-recurrent inputs resulted in some potentiation. 6. These results suggest that the induction of mossy-fiber LTP is dependent on both pre- and postsynaptic activity and thus follows a Hebbian rule for synaptic modification. In contrast to that demonstrated at Schaffer-collateral-commissural synapses, however, the induction of mossy-fiber LTP may require HFS in addition to postsynaptic depolarization.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Pro-inflammatory cytokines are known to be elevated in several neuropathological states that are associated with learning and memory impairments. We have previously demonstrated the inhibition of long-term potentiation (LTP), a recognised model for memory, in the dentate gyrus region of the rat hippocampus, by interleukin-18. We have also previously shown that the inhibitory effect of TNF-alpha on LTP can be attenuated by inhibitors of metabotropic glutamate receptors (mGluRs). We therefore went on to investigate the effects of the mGluR antagonists MPEP and MTPG on the effect of IL-18 on LTP in the rat dentate gyrus in vitro. Recordings of field excitatory post-synaptic potentials (EPSPs) were made from the medial perforant path of rat hippocampal slices. IL-18 (100 ng/ml) applied for 20 min before-HFS had no significant effect on baseline EPSPs but significantly impaired LTP (IL-18 LTP 116+/-9%, versus control LTP 163+/-6% 1h post-tetanus, P<0.001, n=5). Perfusion of the mGluR5 specific antagonist MPEP (5 microM) for 40 min prior to application of IL-18 had no significant effect on baseline EPSPs but significantly attenuated the inhibitory effect of IL-18 on LTP at 30 min but not 1h (177+/-2% and 138+/-8%, respectively, compared to controls; n=5). Perfusion of the group II mGluR antagonist MTPG (50 microM) for 40 min prior to application of IL-18 had no significant effect on baseline EPSPs but was found to significantly reverse the inhibitory effect of IL-18 on LTP at 1h (164+/-6% compared to IL-18 alone, n=5). This study provides novel evidence of the involvement of mGluRs in the IL-18 mediated inhibition of LTP.  相似文献   

15.
Slow excitatory postsynaptic potentials (EPSPs) were identified in rat neocortical slices. Such potentials, resistant to blockade of glutamate and gamma-aminobutyric acid-A (GABAA) receptors, were partially antagonized by muscarinic or beta-adrenergic antagonists separately, and completely blocked when these agents were added in combination. Slow EPSPs were enhanced by a cholinesterase inhibitor or catecholamine reuptake blockers. Spontaneous epileptic discharges induced by picrotoxin also triggered slow EPSPs. Such potentials were pharmacologically identical to those induced by electrical stimulation under normal conditions. A non-conventional mechanism for synaptic transmission is postulated to account for triggering of slow EPSPs by epileptic discharges.  相似文献   

16.
Idazoxan (IDA), an alpha 2 receptor antagonist which increases firing rate of noradrenergic neurons in the locus coeruleus (LC) and release of noradrenaline (NA) in target structures, was used to study the neuromodulatory effects of NA in the hippocampus in awake rats. After IDA the population spike in the dentate gyrus (DG), evoked by a single pulse to the perforant path, was greatly enhanced with no effect of the drug on excitatory postsynaptic potentials (EPSPs). Paired pulses with short interpulse intervals (25-30 ms) produced inhibition of the response to the second pulse which was increased by IDA. This drug effect was independent of its effect on the amplitude of the first spike, since the increase in inhibition was seen at stimulation intensities which did not increase the response amplitude to the initial pulse. Thus both excitability and inhibitory processes can be enhanced in the same population of neurons by an alpha 2 adrenoceptor antagonist.  相似文献   

17.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor mediated responses were investigated in rat hippocampal slices under 4h of long-term potentiation (LTP) expression. A modified medium containing the NMDA receptor antagonist AP5 and low concentration of Mg(2+) was used to monitor isolated AMPA responses. NMDA components were determined from composite excitatory postsynaptic potentials (EPSPs) under brief (15-20 min) wash-out of AP5. LTP was induced in a medium with low concentration of AP5, resulting in an about two-fold larger increase of the AMPA component than of the NMDA component at both 1h and 4h after induction. Similar results were obtained if LTP was induced in "normal Mg(2+)" and the NMDA components were assessed at the end of experiment, from either composite or isolated NMDA EPSPs, with or without blockade of GABAergic inhibition. It is generally believed that LTP undergoes biochemical and/or structural conversions during the first few hours. Our study, however, shows constant expression of LTP, at least in terms of AMPA versus NMDA components, during this time. The data support the notion that LTP initiates as a predominant amplification of AMPA receptors and remains so for at least 4h.  相似文献   

18.
Long-term potentiation of synaptic transmission (LTP), as documented by the enhancement of evoked field potentials in layer III following stimulation of the underlying white matter, has been studied in slices of motor cortex from adult cats. With a 1 M NaCl-filled recording electrode, LTP was induced only in one out of eight slices. When the recording electrode in addition contained 5 mM bicuculline metiodide, LTP was obtained with a much higher rate of success (15/19), suggesting that reduction of GABAA receptor-mediated inhibition facilitated the induction of LTP in the motor cortex. Bath application of dl-2-amino-5-phosphonovaleric acid (APV, 100 M) or Ni2+ (100 M) significantly reduced the success rate for LTP occurrence (6/16 and 5/16, respectively); but when LTP was induced, it did not show significant change in magnitude and time course. In slices perfused with APV (100 M) plus Ni2+ (100 M), LTP induction was completely blocked (0/12). These results suggest that two different mechanisms may subserve LTP induction in the cat motor cortex: one is mediated by N-methyl-d-aspartate receptors and can be blocked by APV; the other may be mediated by low-threshold calcium channels and can be blocked by Ni2+.  相似文献   

19.
The collision of pre- and postynaptic activity is known to provide a trigger for controlling the gain of synaptic transmission between neurons. Here, using in vivo intracellular recordings of rat striatal output neurons, we analyse the effect of a single action potential, generated by ongoing synaptic activity, on subsequent excitatory postsynaptic potentials (EPSPs) evoked by electrical stimulation of the cerebral cortex. This pairing induced a short-term increase in the probability that cortically evoked EPSPs caused striatal cells to fire. This enhanced EPSP-spike coupling was associated with a decrease in the voltage firing threshold with no apparent change in the synaptic strength itself. Antidromic action potentials in striatal cells were also able to induce the facilitation while subthreshold EPSPs were ineffective, indicating that the postsynaptic spike was necessary and sufficient for the induction of the plasticity. A prior spontaneous action potential also enhanced the probability with which directly applied current pulses elicited firing, suggesting that the facilitation originated from changes in the intrinsic electrical properties of the postsynaptic cell. Using whole-cell recordings in cortico-striatal slices, we found that the increase in membrane excitability as well as in EPSP-spike coupling was abolished by low concentration of 4-aminopyridine. This suggests that the intrinsic plasticity results from a time-dependent modulation of a striatal voltage-dependent potassium current available close to the firing threshold. Action potentials thus provide a postsynaptic signal, not only for associative synaptic plasticity but also for activity-dependent intrinsic plasticity, which directly controls the efficacy of coupling between pre- and postsynaptic neurons.  相似文献   

20.
The actions of noradrenaline and the beta-adrenergic agonist, isoproterenol, were studied on the dentate gyrus in hippocampal slices from rats using extra- and intracellular recording. These agents facilitated field EPSPs (excitatory postsynaptic potentials) and population spikes evoked by perforant path stimulation. Intracellular recording revealed an attenuation of the long lasting afterhyperpolarization (AHP) and the accommodation of cell discharge in response to depolarizing current injection. It is suggested that beta-receptor activation blocks a calcium-dependent potassium current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号