首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopamine-containing neurons, but the molecular pathways underlying its pathogenesis remain uncertain. Here, we show that by eliminating c-Jun N-terminal kinases (JNKs) we can prevent neurodegeneration and improve motor function in an animal model of PD. First, we found that c-Jun is activated in dopaminergic neurons from PD patients and in the 1-methyl-4-phenyl-1,2,4,6-tetrahydropyridine (MPTP) mouse model of PD. Examination of various JNK-deficient mice shows that both JNK2 and JNK3, but not JNK1, are required for MPTP-induced c-Jun activation and dopaminergic cell demise. Furthermore, we have identified cyclooxygenase (COX) 2 as a molecular target of JNK activation and demonstrated that COX-2 is indispensable for MPTP-induced dopaminergic cell death. Our data revealed that JNK2- and JNK3-induced COX-2 may be a principle pathway responsible for neurodegeneration in PD.  相似文献   

2.
AIM:To determine the role of c-Jun N-terminal kinase(JNK)activity in ethanol-induced apoptosis and themodulation of this signaling cascade by S-Adenosyl-methionine(AdoMet).METHODS:Primary hepatocyte cultures werepretreated with 100 μmol/L SP600125,a selective JNKinhibitor,1 mL/L DMSO or 4 mmol/L AdoMet and thenexposed to 100 mmo/L ethanol.Hepatocyte apoptosiswas determined by the TUNEL and DNA ladder assays.JNK activity and its inhibition by SP600125 and AdoMetwere determined by Western blot analysis of c-junphosphorylation and Bid fragmentation.SP600125 andAdoMet effects on the apoptotic signaling pathway weredetermined by Western blot analysis of cytochrome crelease and pro-caspase 3 fragmentation.The AdoMeteffect on glutathione levels was measured by Ellman'smethod and reactive oxygen species(ROS)generationby cell cytometry.RESULTS:The exposure of hepatocytes to ethanolinduced JNK activation,c-jun phosphorylation,Bidfragmentation,cytochrome c release and pro-caspase 3cleavage;these effects were diminished by SP600125,and caused a significant decrease in ethanol-inducedapoptosis(P<0.05).AdoMet exerted an antioxidanteffect maintaining glutathione levels and decreasing ROSgeneration,without a significant effect on JNK activity,and prevented cytochrome c release and pro-caspase 3cleavage. CONCLUSION:The JNK signaling cascade is a keycomponent of the proapoptotic signaling pathwayinduced by ethanol.JNK activation may be independentfrom ROS generation,since AdoMet which exertedantioxidant properties did not have a significant effect onJNK activity.JNK pathway modulator agents and AdoMetmay be components of promising therapies for alcoholicliver disease(ALD)treatment.  相似文献   

3.
Transforming growth factor (TGF) beta1 is a potent inducer of apoptosis in the liver. During TGF-beta1-induced apoptosis, 3 mitogen-activated protein (MAP) kinases (extracellular signal-regulated kinase [ERK], c-Jun N-terminal kinase [JNK], and p38 kinase) showed simultaneously sustained activation in FaO rat hepatoma cells. TGF-beta1-induced apoptosis was markedly enhanced when ERK activation was selectively inhibited by the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD98059. In contrast, both interfering with p38 activity by overexpression of the dominant negative (DN) MKK6 mutant and inhibition of the JNK pathway by overexpression of the DN SEK1 mutant resulted in suppression of mitochondrial cytochrome c release, abrogating TGF-beta1-induced apoptosis. In addition, antiapoptotic Bcl-2 blocked mitochondrial cytochrome c release, suppressing TGF-beta1-induced activation of JNK and p38. Inhibition of ERK activity enhanced TGF-beta1-induced p38 and JNK activation. However, inhibition of the JNK pathway suppressed p38 but induced transient ERK activation. Similarly, interfering with the p38 pathway also attenuated JNK activation but generated transient ERK activation in response to TGF-beta1. These results indicate that disrupting one MAP kinase pathway affects the TGF-beta1-induced activation of other MAP kinases, suggesting cross-talk among MAP kinase pathways. In conclusion, we propose that the balance and integration of MAP kinase signaling may regulate commitment to TGF-beta1-induced apoptosis modulating the release of cytochrome c from mitochondria.  相似文献   

4.
The c-Jun NH2-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases is activated by phosphorylation on Thr and Tyr. Here we report the molecular cloning of a new member of the mammalian MAP kinase kinase group (MKK7) that functions as an activator of JNK. In vitro protein kinase assays demonstrate that MKK7 phosphorylates and activates JNK, but not the p38 or extracellular signal-regulated kinase groups of MAP kinase. Expression of MKK7 in cultured cells causes activation of the JNK signal transduction pathway. MKK7 is therefore established to be a novel component of the JNK signal transduction pathway.  相似文献   

5.
Cross-linking of the high-affinity IgE receptor (FcepsilonRI) on mast cells with IgE and multivalent antigen triggers mitogen-activated protein (MAP) kinase activation and cytokine gene expression. We report here that MAP kinase kinase 4 (MKK4) gene disruption does not affect either MAP kinase activation or cytokine gene expression in response to cross-linking of FcepsilonRI in embryonic stem cell-derived mast cells. MKK7 is activated in response to cross-linking of FcepsilonRI, and this activation is inhibited by MAP/ERK kinase (MEK) kinase 2 (MEKK2) gene disruption. In addition, expression of kinase-inactive MKK7 in the murine mast cell line MC/9 inhibits c-Jun NH(2)-terminal kinase (JNK) activation in response to cross-linking of FcepsilonRI, whereas expression of kinase-inactive MKK4 does not affect JNK activation by this stimulus. However, FcepsilonRI-induced activation of the tumor necrosis factor-alpha (TNF-alpha) gene promoter is not affected by expression of kinase-inactive MKK7. We describe an alternative pathway by which MEKK2 activates MEK5 and big MAP kinase1/extracellular signal-regulated kinase 5 in addition to MKK7 and JNK, and interruption of this pathway inhibits TNF-alpha promoter activation. These findings suggest that JNK activation by antigen cross-linking is dependent on the MEKK2-MKK7 pathway, and cytokine production in mast cells is regulated in part by the signaling complex MEKK2-MEK5-ERK5.  相似文献   

6.
Parkin, an E3 ubiquitin ligase, has been found to be responsible for autosomal recessive juvenile parkinsonism characterized primarily by selective loss of dopaminergic neurons with subsequent defects in movements. However, the molecular mechanisms underlying this neuron loss remain elusive. Here, we characterized Drosophila parkin loss-of-function mutants, which exhibit shrinkage of dopaminergic neurons with decreased tyrosine hydroxylase level and impaired locomotion. The behavioral defect of parkin mutant flies was partially restored by administering L-DOPA, and the dopamine level in the brains of parkin mutant flies was highly decreased. Intriguingly, we found that c-Jun N-terminal kinase (JNK) is strongly activated in the dopaminergic neurons of parkin mutants and that impaired dopaminergic neuron phenotypes are dependent on the activation of the JNK signaling pathway. In consistent with this, our epistatic analysis and mammalian cell studies showed that Parkin inhibits the JNK signaling pathway in an E3 activity-dependent manner. These results suggest that loss of Parkin function up-regulates the JNK signaling pathway, which may contribute to the vulnerability of dopaminergic neurons in Drosophila parkin mutants and perhaps autosomal recessive juvenile parkinsonism patients.  相似文献   

7.
Platelet hyperactivity associated with hyperlipidemia may contribute to development of a prothrombotic state. We previously showed that oxidized low-density lipoprotein (oxLDL) formed in the setting of hyperlipidemia and atherosclerosis activated platelets in a CD36-dependent manner. We now show that mitogen-activated protein kinase c-Jun N-terminal kinase (JNK)2 and its upstream activator MKK4 were phosphorylated in platelets exposed to oxLDL. Using apoE(-/-) mice as a model of hyperlipidemia, we showed that JNK was constitutively phosphorylated in platelets in a CD36-dependent manner. Inhibition of src kinase activity reduced JNK phosphorylation by oxLDL. Immunoprecipitations revealed that active phosphorylated forms of src kinases Fyn and Lyn were recruited to CD36 in platelets exposed to oxLDL. Pharmacological inhibition of the mitogen-activated protein kinase JNK or src family kinases abolished platelet activation by oxLDL in vitro. Using a murine carotid artery thrombosis model we demonstrated CD36-dependent phosphorylation of platelet JNK within thrombi. Furthermore, pharmacological inhibition of JNK prolonged thrombosis times in wild-type but not cd36-null mice in vivo. These findings suggest that a specific CD36-dependent signaling pathway is required for platelet activation by oxLDL and may provide insights related to development of novel antiplatelet therapies more relevant to atherothrombosis than to normal hemostasis.  相似文献   

8.
9.
Neurodegenerative diseases such as Parkinson's disease are illnesses associated with high morbidity and mortality with few, or no effective, options available for their treatment. In addition, the direct cause of selective dopaminergic cell loss in Parkinson's disease has not been clearly understood. Taken together, several studies have demonstrated that melatonin has a neuroprotective effect both in vivo and in vitro. Accordingly, the effects of melatonin on 1-methyl, 4-phenyl, pyridinium ion (MPP(+))-treated cultured human neuroblastoma SK-N-SH cell lines were investigated in the present study. The results showed that MPP(+) significantly decreased cell viability. By contrast, an induction of phosphorylation of c-Jun, activation of caspase-3 enzyme activity, cleavage of DNA fragmentation factors 45 and DNA fragmentation were observed in MPP(+)-treated cells. These changes were diminished by melatonin. These results demonstrate the cellular mechanisms of neuronal cell degeneration induced via c-Jun-N-terminal kinases and caspase-dependent signaling, and the potential role of melatonin on protection of neuronal cell death induced by this neurotoxin.  相似文献   

10.
Role of astrocytes in reproduction and neuroprotection   总被引:7,自引:0,他引:7  
Hypothalamic astrocytes secrete TGF-beta and 3 alpha,5 alpha-tetrahydro progesterone (3 alpha,5 alpha-THP) in culture. When the astrocyte-conditioned medium (ACM) was incubated with the hypothalamic cell line GT1-7, it resulted in the secretion of GnRH. Immunoneutralization with TGF-beta antibody or ultra-filteration with a 10 kDa cut off filter resulted in attenuation of the GnRH releasing ability of ACM, indicating that TGF-beta was a major factor involved with GnRH release. Treatment with estrogens increases TGF-beta secretion. These observations indicate a significant role of astrocytes in GnRH secretion. Serum-deprivation results in the death of GT1-7 neurons in culture and addition of ACM or TGF-beta to the culture, attenuates cell death. The mechanism of protection from cell death appears to involve phosphorylation of MKK4, JNK, c-Jun(Ser63), and enhancement of AP-1 binding. Co-administration of JNK inhibitors, but not MEK inhibitors attenuated ACM or TGF-beta-induced c-Jun(Ser63) phosphorylation and their neuroprotective effects. These studies suggest that astrocytes can protect neurons, at least in part, by the release of TGF-beta and activation of a c-Jun/AP-1 protective pathway.  相似文献   

11.
12.
Activation of the recently identified c-Jun N-terminal kinases (JNKs) typically results in programmed cell death (apoptosis) in neurons and other cell types grown in culture. However, the effects of JNK activation in the central nervous system in vivo are unknown. At baseline, JNK activity in mice was on average 17-fold higher in brain than in peripheral organs, whereas JNK protein levels were similar. In brain, JNK was expressed primarily in neurons. Restraining mice or allowing them to explore a novel environment rapidly increased JNK activity 3- to 15-fold in various brain regions, but these manipulations did not increase brain activity of the extracellular signal-regulated kinase. Because noninvasive environmental stimuli that do not induce neurodegeneration elicited prominent increases in JNK activity in the brain, we conclude that acute activation of the JNK cascade in central nervous system neurons does not induce neuronal apoptosis in vivo. In contrast, the high baseline activity of JNK in the brain and the activation of the JNK cascade by environmental stimuli suggest that this kinase may play an important physiological role in neuronal function.  相似文献   

13.

Aims/hypothesis

The mechanisms of the protective effects of exendin-4 on NEFA-induced beta cell apoptosis were investigated.

Methods

The effects of exendin-4 and palmitate were evaluated in human and murine islets, rat insulin-secreting INS-1E cells and murine glucagon-secreting alpha-TC1-6 cells. mRNA and protein expression/phosphorylation were measured by real-time RT-PCR and immunoblotting or immunofluorescence, respectively. Small interfering (si)RNAs for Ib1 and Gpr40 were used. Cell apoptosis was quantified by two independent assays. Insulin release was assessed with an insulin ELISA.

Results

Exposure of human and murine primary islets and INS-1E cells, but not alpha-TC1-6 cells, to exendin-4 inhibited phosphorylation of the stress kinases, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), and prevented apoptosis in response to palmitate. Exendin-4 increased the protein content of islet-brain 1 (IB1), an endogenous JNK blocker; however, siRNA-mediated reduction of IB1 did not impair the ability of exendin-4 to inhibit JNK and prevent apoptosis. Exendin-4 reduced G-protein-coupled receptor 40 (GPR40) expression and inhibited palmitate-induced phosphorylation of mitogen-activated kinase kinase (MKK)4 and MKK7. The effects of exendin-4 were abrogated in the presence of the protein kinase A (PKA) inhibitors, H89 and KT5720. Knockdown of GPR40, as well as use of a specific GPR40 antagonist, resulted in diminished palmitate-induced JNK and p38 MAPK phosphorylation and apoptosis. Furthermore, inhibition of JNK and p38 MAPK activity prevented palmitate-induced apoptosis.

Conclusions/interpretation

Exendin-4 counteracts the proapoptotic effects of palmitate in beta cells by reducing GPR40 expression and inhibiting MKK7- and MKK4-dependent phosphorylation of the stress kinases, JNK and p38 MAPK, in a PKA-dependent manner.  相似文献   

14.
Neural tube defects (NTDs) are prevalent human birth defects. Mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinase (JNK), are implicated in facilitating neural tube closure, yet upstream regulators remain to be identified. Here, we show that MAP kinase kinase kinase 4 (MEKK4) is strongly expressed in the developing neuroepithelium. Mice deficient in MEKK4 develop highly penetrant NTDs that cannot be rescued by supplementation with folic acid or inositol. Unlike most mouse models of NTDs, MEKK4 mutant embryos display genetically co-segregated exencephaly and spina bifida, recapitulating the phenotypes observed in human patients. To identify downstream targets of MEKK4 during neural tube development, we examined the activity of MAP kinase kinase 4 (MKK4), a signaling intermediate between MAP kinase kinase kinase and JNK/p38. We found a significant reduction in MKK4 activity in MEKK4-deficient neuroepithelium at sites of neural tube closure. MAPK pathways are key regulators of cell apoptosis and proliferation. Analyses of the neuroepithelium in MEKK4-deficient embryos showed massively elevated apoptosis before and during neural tube closure, suggesting an antiapoptotic role for MEKK4 during development. In contrast, proliferation of MEKK4-deficient neuroepithelial cells appeared to be largely unaffected. MEKK4 therefore plays a critical role in regulating MKK4 activity and apoptotic cell death during neural tube development. Disruption of this signaling pathway may be clinically relevant to folate-resistant human NTDs.  相似文献   

15.
Parkinson's disease is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. We now report that minocycline, a semisynthetic tetracycline, recently shown to have neuroprotective effects in animal models of stroke/ischemic injury and Huntington's disease, prevents nigrostriatal dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Minocycline treatment also blocked dopamine depletion in the striatum as well as in the nucleus accumbens after MPTP administration. The neuroprotective effect of minocycline is associated with marked reductions in inducible NO synthase (iNOS) and caspase 1 expression. In vitro studies using primary cultures of mesencephalic and cerebellar granule neurons (CGN) and/or glia demonstrate that minocycline inhibits both 1-methyl-4-phenylpyridinium (MPP(+))-mediated iNOS expression and NO-induced neurotoxicity, but MPP(+)-induced neurotoxicity is inhibited only in the presence of glia. Further, minocycline also inhibits NO-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) in CGN and the p38 MAPK inhibitor, SB203580, blocks NO toxicity of CGN. Our results suggest that minocycline blocks MPTP neurotoxicity in vivo by indirectly inhibiting MPTP/MPP(+)-induced glial iNOS expression and/or directly inhibiting NO-induced neurotoxicity, most likely by inhibiting the phosphorylation of p38 MAPK. Thus, NO appears to play an important role in MPTP neurotoxicity. Neuroprotective tetracyclines may be effective in preventing or slowing the progression of Parkinson's and other neurodegenerative diseases.  相似文献   

16.
17.
The role of JNK2 in toxic liver injury   总被引:4,自引:0,他引:4  
Tumor necrosis factor-induced toxic liver injury results from JNK2-dependent activation of caspase-8 and the mitochondrial death pathway. Wang Y, Singh R, Lefkowitch JH, Rigoli RM, Czaja MJ. In vitro studies of hepatocytes have implicated over-activation of c-Jun N-terminal kinase (JNK) signaling as a mechanism of tumor necrosis factor-alpha (TNF)-induced apoptosis. However, the functional significance of JNK activation and the role of specific JNK isoforms in TNF-induced hepatic apoptosis in vivo remain unclear. JNK1 and JNK2 function was, therefore, investigated in the TNF-dependent, galactosamine/lipopolysaccharide (GalN/LPS) model of liver injury. The toxin GalN converted LPS-induced JNK signaling from a transient to prolonged activation. Liver injury and mortality from GalN/LPS was equivalent in wild-type and jnk1-/- mice but markedly decreased in jnk2-/- mice. This effect was not secondary to down-regulation of TNF receptor 1 expression or TNF production. In the absence of jnk2, the caspase-dependent, TNF death pathway was blocked, as reflected by the failure of caspase-3 and -7 and poly(ADP-ribose) polymerase cleavage to occur. JNK2 was critical for activation of the mitochondrial death pathway, as in jnk2-/- mice Bid cleavage and mitochondrial translocation and cytochrome c release were markedly decreased. This effect was secondary to the failure of jnk2-/- mice to activate caspase-8. Liver injury and caspase activation were similarly decreased in jnk2 null mice after GalN/TNF treatment. Ablation of jnk2 did not inhibit GalN/LPS-induced c-Jun kinase activity, although activity was completely blocked in jnk1-/- mice. Toxic liver injury is, therefore, associated with JNK over-activation and mediated by JNK2 promotion of caspase-8 activation and the TNF mitochondrial death pathway through a mechanism independent of c-Jun kinase activity. [Abstract reproduced by permission of J Biol Chem 2006;281:15258-67].  相似文献   

18.
We wanted to determine via immunohistochemistry, whether or not c-Jun NH2-terminal kinase (JNK) cascade is activated in labial salivary infiltrating T cells in patients with Sjögren’s syndrome (SS). Six patients with primary SS were selected for this study. Phosphorylation of mitogen-activated protein kinase (MAPK) kinase 4 (MKK4) (SEK1), JNK, and c-Jun in salivary infiltrating T cells was studied using immunohistochemistry assay, including mirror section technique. Phosphorylated forms of MKK4, JNK, and c-Jun were detected in salivary infiltrating mononuclear cells. Expression of phosphorylated JNK was found in both CD4+ T cells and CD8+ T cells. Moreover, co-expression of phosphorylated JNK and c-Jun was demonstrated in the mirror sections. The results of this study suggest that the JNK cascade is activated in salivary infiltrating CD4+ T cells and CD8+ T cells in SS patients, which appears to contribute to the inflammatory salivary microenvironment of SS.  相似文献   

19.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration has been used, in various mammalian species, as an experimental model of Parkinson's disease. The pathogenesis for such pharmacologically induced Parkinson's disease involves 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. This metabolite produces rapid degeneration of nigrostriatal dopaminergic neurons, which causes the parkinsonian syndrome. In this work, we show that injection of MPP+ into the presynaptic terminal of the squid giant synapse blocks synaptic transmission without affecting the presynaptic action potential or the presynaptic calcium currents. These effects of MPP+ were mimicked by the injection of an active form of caspase-3 and prevented by inhibitors of caspase-3 and protein kinase C delta. Ultrastructurally, MPP+-injected synapses showed a dramatic reduction in the number of neurotransmitter vesicles at the presynaptic active zone, as compared with control synapses. Otherwise, normal docking and clathrin-coated vesicles were observed, albeit at much reduced numbers. These results indicate that MPP+ acutely reduces presynaptic vesicular availability, not release, and that MPP+-induced pathogenesis results from presynaptic dysfunction that leads, secondarily, to dying-back neuropathy in affected neurons.  相似文献   

20.
BackgroundThe epithelial-mesenchymal transition (EMT) in cancer cells has been shown to closely associate with the survival and drug resistance of cancer cells. We recently provided evidence that Wnt signal activator leucine-rich repeat in flightless-1-interacting protein 1 (LRRFIP1) regulates EMT in pancreatic cancer. LRRFIP1 silencing inhibits the translocation of β-catenin to the nucleus, which led to reverse EMT in cancer cells. It was suggested that LRRFIP1 was implicated in gemcitabine sensitivity by regulating EMT signaling.MethodsGemcitabine chemosensitivity was investigated in LRRFIP1-knockdown pancreatic cancer cells (PANC-1 and MIA Paca-2). In addition, the effects of LRRFIP1 knockdown on JNK/SAPK (stress activated-protein kinase) signaling and apoptosis were evaluated.ResultsLRRFIP1 silencing accelerates gemcitabine-induced caspase activity and cell death in pancreatic cancer cells. It was also revealed that gemcitabine-induced phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun were increased in LRRFIP1 knockdown cells. The activation of JNK/c-Jun in LRRFIP1-knockdown cells was significantly diminished by the inhibition of Rac activity. It was confirmed that the acquisition of gemcitabine sensitivity by LRRFIP1 silencing largely depends on the stimulation of JNK/SAPK (stress activated-protein kinase) signaling.ConclusionsOur findings suggest that reversing EMT and transient activation of JNK might be essential for the gemcitabine sensitivity in LRRFIP1 knockdown pancreatic cancer cells. Our discoveries highlight the potential role of LRRFIP1 in the chemosensitivity related to the regulation of EMT signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号