首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic adenosine monophosphate (cAMP) modulates various agent‐induced apoptosis. In this study, we observed that cAMP had a significantly protective effect on nitric oxide (NO)‐induced cytotoxicity in H9c2 cardiac muscle cells. Pretreatment with DBcAMP (cAMP analogue) or forskolin (adenylyl cyclase activator) also significantly prevented the SNP‐induced apoptosis in H9c2 cells. In contrast, H‐89 or KT5720 (PKA inhibitor) reversed the protective effects of DBcAMP. In this study, DBcAMP or forskolin reduced SNP‐induced JNK/SAPK activation to the basal level, but KT5720 reversed the inhibitory effects of these two agents. In contrast to JNK/SAPK activation, DBcAMP and forskolin significantly enhanced SNP‐activated p38 MAPK phosphorylation and did not affect SNP‐mediated ERK activation. KT5720 reversed the effects of DBcAMP and forskolin on p38 MAPK phosphorylation. The inhibition of the JNK pathway by transfection of a dominant negative mutant of JNK/SAPK markedly reduced the extent of SNP‐induced cell death. Taken together, we suggest that JNK/SAPK is related to cAMP‐protective effect in SNP‐induced apoptosis. In addition, c‐AMP relating agents protected SNP‐induced cell death in neonatal rat ventricular cardiomyocytes. The cAMP‐relating agent‐induced protective effect is not resricted in H9c2 cardiac muscle cells.  相似文献   

2.
To clarify activation mechanisms of stress-activated protein kinase/C-Jun N-terminal kinase (SAPK/JNK) during oxidative stress, the roles of phosphatidylinositol 3-kinase (PI 3-kinase), concentration of intracellular calcium ([Ca2+]i), and cyclic AMP-dependent kinase (PKA) in hydrogen peroxide (H2O2)-induced SAPK/JNK activation were examined in Chinese hamster V79 cells. SAPK/JNK was dose-dependently activated after H2O2 treatment (from 10 microM to 1 mM), and a PI 3-kinase inhibitor (wortmaninn), intracellular calcium chelator (BAPTA-AM), and PKA activator (dibutyl cyclic AMP and forskolin) inhibited this activation. An increase in [Ca2+], was observed after treatment with H2O2. Immunoprecipitation revealed that a PI 3-kinase regulatory subunit, p85alpha, was associated with insulin receptor substance 1 (IRS-1) phosphorylated by H2O2 treatment. Furthermore, the formation of this complex of p85alpha and phospho-IRS-1 was abolished by the presence of BAPTA-AM but not forskolin. These results indicated that the PI 3-kinase activated through phosphorylation of IRS-1 upstream of SAPK/JNK after H2O2 treatment of V79 cells and that [Ca2+]i was a regulation factor for phosphorylation of IRS-1.  相似文献   

3.
The mitogen-activated protein kinases (MAPK), including stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38, and extracellular signal-related kinase (ERK), are believed to be important biomolecules in cell proliferation, survival, and apoptosis induced by extracellular stimuli. In Chinese hamster V79 cells exposed to hydrogen peroxide (H2O2), we recently demonstrated that SAPK/JNK was activated by tyrosine kinase and intracellular Ca2+ ([Ca2+]i). In this study, we report that [Ca2+]i release from intracellular stores is important in the activation of SAPK/JNK but not p38 and ERK. H2O2-induced elevation of [Ca2+]i was observed in Ca2+-free medium. Pretreatment with thapsigargin, a Ca2+-ATPase inhibition of endoplasmic reticulum (ER), did not influence H2O2-induced elevation of [Ca2+]i in the absence of external Ca2+. An intracellular Ca2+ chelator (BAPTA-AM) inhibited H2O2-induced phosphorylation of SAPK/JNK, but an extracellular Ca2+ chelator (EDTA) or a Ca2+ entry blocker (NiCl2) did not. Activation of p38 and ERK in V79 cells exposed to H2O2 was observed in the presence of these inhibitors. These results suggest that [Ca2+]i release from intracellular stores such as mitochondria or nuclei but not ER, occurred after H2O2 treatment and Ca2+-dependent tyrosine kinase-induced activation of SAPK/JNK, although [Ca2+]i was unnecessary for the H2O2-induced activation of p38 and ERK.  相似文献   

4.
We have reported previously that interferon-alpha (IFN-alpha) induces apoptosis that is counteracted by an epidermal growth factor (EGF) --> Ras --> extracellular signal-regulated kinase (ERK)-dependent survival response in human epidermoid cancer KB cells. We have studied the effects of the cytokine on the cAMP-dependent pathway in these cells. A decrease in the intracellular cAMP levels was recorded in KB cells treated with IFN-alpha, whereas forskolin induced an increase in the production of cAMP that was reduced in the presence of IFN-alpha, suggesting a reduction in the activity of adenylate cyclase (AC) induced by IFN-alpha. These effects were paralleled by significant change in the expression of some AC catalytic subunit(s) and by reduction in the activity of protein kinase A (PKA). 8-Br-cAMP completely antagonized the reduction of PKA activity induced by IFN-alpha, whereas PKA inhibitor KT5720 enhanced the reduction of the enzyme activity induced by IFN-alpha. We have found that IFN-alpha induced a decrease in cAMP response element binding protein (CREB) phosphorylation without changes in its total expression. The concomitant treatment with IFN-alpha and 8-Br-cAMP potentiated and KT5720 counteracted apoptosis induced by IFN-alpha alone. In conclusion, these data suggest that the decrease in AC/cAMP pathway activity is a survival response to the apoptosis induced by IFN-alpha. Therefore, this pathway could represent a target to enhance the antitumor activity of IFN-alpha.  相似文献   

5.
Recently, it was demonstrated that the Varicella-zoster virus (VZV) infection led to an activation of MAP kinases. The viral protein encoded by ORF61 is a major effector of JNK/SAPK and p38/MAPK phosphorylation. ORF61 shows homology to HSV-1 ICP0, a multifunctional protein that influences the activity of c-Jun in infected cells. Stable expression of ORF61 in a MeWo derived cell line gave rise to two specific effects: (i) a major decrease of VZV replication and (ii) a strongly elevated basal JNK/SAPK phosphorylation but a reduced p38/MAPK phosphorylation, which were both altered following infection. A dose-dependent inhibition of JNK/SAPK in MeWo/61 cells resulted in a step-by-step increase of VZV replication. These findings indicate (i) that ORF61 is responsible for the elevated JNK/SAPK phosphorylation and (ii) that the VZV replication and the JNK/SAPK phosphorylation are related inversely. Compared to MeWo cells, the basal phosphorylation of downstream targets c-Jun and ATF-2 was reduced following ORF61 expression but restored after infection. Subsequent cascades to induce inflammatory responses were activated insignificantly; cascades to activate apoptotic events also remained silent. These data point towards an important role of ORF61 in the fine-regulation of activation of the MAPK pathways and their downstream targets to optimize the availability of cellular factors involved in VZV gene expression.  相似文献   

6.
目的 研究B细胞抗原受体(BCR)介导的细胞凋亡,探索其可能的信号传导通路。阐明B细胞凋亡的分子机制。方法 ^3H掺入法检测细胞生长,应用FACS方法分析细胞周期和细胞凋亡,Western blot检测anti-IgM刺激引起Daudi细胞信号分子的变化。结果 anti-IgM可导致人B淋巴瘤Daudi细胞发生凋亡。细胞凋亡的数量与anti-IgM浓度呈正相关,Western blot结果显示,anti-IgM刺激引起Daudi细胞内氨酸蛋白分子磷酸化水平的变化速度与浓度相关;但随时间的延长,变化状况趋于稳定;在48-72h,许多被激活的,呈现磷酸化的栈氨酸蛋白分子又回复到低磷酸化或去磷酸化的静止状态,另外,虽然JNK1和ERK2蛋白水平未发生明显改变,但JNK/SAPK的重要下游分子之一,c-Jun的蛋白表达水平及其63和73位点的丝氨酸磷酸化水平立即长高并维持在高水平状态。结论 anti-IgM刺激激活JNK/SAPK,JNK/SAPK通路可能参与了anti-IgM引起的Daudi细胞的凋亡过程。  相似文献   

7.
We reported previously that radiocontrast medium induces caspase-dependent apoptosis and that cAMP analogs inhibit cell injury in cultured renal tubular cells. In the present study, cellular mechanisms underlying the protective effects of cAMP were determined. Ioversol, a radiocontrast medium, caused cell injury accompanied by decreases in Bcl-2, increases in Bax, and caspase activation in LLC-PK1 cells. Both cell injury and cellular events induced by ioversol were inhibited by dibutyryl cAMP and the prostacyclin analog beraprost. Dibutyryl cAMP increased phosphorylation of Akt and CREB, both of which were reversed by H89, wortmannin and the Akt inhibitor SH-6. The protective effect of dibutyryl cAMP was also reversed by these kinase inhibitors. In dominant-negative CREB-transfected cells, dibutyryl cAMP no longer prevented cell injury or inhibited changes in mRNA expression of Bcl-2 and Bax. In mice with unilateral renal occlusion, ioversol increased urinary excretion of N-acetyl-beta-d-glucosaminidase with concomitant decreases in Bcl-2 mRNA, increases in Bax mRNA, activation of caspase-3, and induction of apoptosis in tubular and interstitial cells. Beraprost completely reversed these in vivo effects of ioversol. These findings suggest that elevation of endogenous cAMP effectively prevents radiocontrast nephropathy through activation of A kinase/PI 3-kinase/Akt followed by CREB phosphorylation and enhanced expression of Bcl-2.  相似文献   

8.
Yin S  Huo Y  Dong Y  Fan L  Yang H  Wang L  Ning Y  Hu H 《Virus research》2012,166(1-2):103-108
Apoptosis of host cells plays a critical role in pathogenesis of virus infection. MAPK kinases especially stress-activated protein kinases c-Jun NH(2)-terminal kinase (SAPK/JNK) and p38 are often involved in virus-mediated apoptosis. It has been shown that porcine reproductive and respiratory syndrome virus (PRRSV) infection resulted in apoptosis of the host cells both in vitro and in vivo. The current investigation was initiated to determine whether stress-activated protein kinases JNK and p38 play a role in apoptosis induction by PRRSV infection. We examined phosphorylation of JNK and p38, and found that JNK but not p38 was activated in response to PRRSV infection. We then examined effects of this kinase on apoptosis induction and virus replication by using specific inhibitor. We found that JNK inhibition by its inhibitor SP600125 led to the abolishment of PRRSV-mediated apoptosis, but did not suppress virus replication. Further studies demonstrated that ROS generation was involved in JNK activation, and Bcl-2 family anti-apoptotic proteins Mcl-1 and Bcl-xl were downstream targets of JNK to mediate apoptosis. We conclude that activation of JNK signaling pathway is essential for PRRSV-mediated apoptosis but not for virus replication.  相似文献   

9.
10.
Nitric oxide (NO) attenuates hydrogen peroxide (H2O2)-mediated injury to H9C2 cardiomyoblasts. To examine the role of nitric oxide, cultured H9C2 cardiomyoblasts were treated with H2O2 for 2 h in the presence or absence of the NO donor, diethylamine nitric oxide (DEANO). DEANO (30 μM) attenuated H2O2-induced apoptosis in H9C2 cells. H2O2-exposed H9C2 cells resulted in apoptosis in a time-dependent manner estimated by DNA fragmentation assay, nuclear morphology stained with fluorescent dye, Hoechst 33258 and Annexin V staining. Pretreatment with z-VAD-FMK, a pancaspase inhibitor, or z-DEVD-CHO, a specific caspase-3 inhibitor, completely suppressed the DNA ladder in response to H2O2. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase-1 activity (YVADase) was detected. Treatment of H9C2 cells with 100 μM H2O2, resulted in a strong activation of JNK/SAPK. However, the activation of JNK/SAPK was clearly attenuated by 30 μM DEANO. Furthermore, the dominant negative JNK and SEK1-expressing cells displayed a marked decrease in a number of apoptotic cells. This inhibition of JNK1 in the system is involved in the protection of H2O2-induced apoptosis in H9C2 cardiomyoblasts.  相似文献   

11.
ARV S1133 infection caused apoptosis in vivo and in vitro; however, the intracellular signaling pathways have not been fully delineated. We have previously demonstrated that ARV S1133 activates proapoptotic signaling from Src to p53, and further investigated how ARV S1133 modulates p53. We found that ARV S1133 forms syncytia and induces apoptosis in CEF, DF1 and Vero cells with different kinetics. Enhancement of p53 phosphorylation and DNA-binding capacity to bax and bad promoters was found in this study to increase bax and bad expression in ARV S1133-infected cells. ARV S1133 activates PKC δ and p38 and JNK/SAPK pathways, and inhibition of Ras, p38, JNK/SAPK and PKC δ works efficiently against apoptosis. Suppression of p38, JNK/SAPK and PKC δ selectively abolished ARV S1133-mediated p53 phosphorylation; moreover, inhibition of Src did not affect ARV S1133-induced p38 and JNK/SAPK activation, whereas blocking of Ras resulted in a reduction in the activities of p38 and JNK/SAPK.  相似文献   

12.
Using a metabolic inhibition buffer as an ischemic model, we show here that KR-31378, a cardioselective ATP-sensitive potassium channel opener, protects H9c2 cells from chemical hypoxia (CH)-induced cell death. Our previous study showed that CH downregulated caspase activities, but led to differential activation of mitogen-activated protein kinases (MAPKs) in H9c2 cells. The repression of CH-induced c-jun N-terminal kinase (JNK)/p38 MAPK activation resulted in partial protection against CH- induced cell death, implying JNK/p38 MAPK's causative role in CH-induced cell death. This study furthers that research and examines if KR-31378's protective effect came from modulating MAPK activity and/or caspase activity in H9c2 cells. Although KR-31378 did not restore downregulated caspase-3 activity, it did block the activation of JNK and p38 MAPK in a dose-dependent manner. Extracellular signal-regulated kinase activity was not recovered by KR-31378 treatment. CH-induced reactive oxygen species (ROS) generation was suppressed by KR-31378. Thus our results indicate that the cardioprotective effect of KR-31378 in CH is due, at least in part, to the differential inhibition of MAPKs.  相似文献   

13.
14.
目的研究脑缺血区周边组织一氧化氮合酶(NOS)的表达与应激活化蛋白激酶/c—Jun氨基末端激酶(SAPK/JNK)及p38MAP激酶(p38MAPK)激活的关系;探讨一氧化氮(NO)诱导脑缺血再灌注后神经元凋亡的可能机制。方法采用TUNEL染色法观察脑缺血再灌注不同时段模型鼠缺血区周边组织凋亡的阳性神经元数量;免疫组织化学、蛋白免疫印迹方法检测活化型Caspase-3、神经元型一氧化氮合酶(nNOS)、诱导型一氧化氮合酶(iNOS)和SAPK/JNK,p38MAPK及其磷酸化组分的表达。结果再灌注后1h、2h缺血区周边组织nNOS表达明显增强;自1h起iNOS开始表达,12h达到高峰。1hp-SAPK/JNK表达较强,以后逐渐减弱;p38MAPK各时段表达均明显增强,以6h为著,p-p38MAPK表达高峰亦在6h。6h活化型Caspase.3开始表达,12h达到高峰;12h开始出现TUNEL阳性神经元,24h达到高峰。结论缺血区周边组织NOS表达的增强可能通过激活SAPK/JNK及p38MAPK诱导脑缺血再灌注后神经元凋亡。  相似文献   

15.
16.
17.
To understand the molecular mechanism of ischemia-induced cardiac myocyte cell death, H9c2 cells were studied by chemical hypoxia (CH), using metabolic inhibition buffer. CH suppressed the activities of caspase-3, -8, and -9. c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) were activated, whereas extracellular regulated kinase (ERK) was inactivated. Only protein kinase Cepsilon (PKCepsilon) among PKC isotypes was translocated to the membrane fraction implying its activation. Moreover, the administration of PKCepsilon inhibitor suppressed the phosphorylations of JNK/p38 MAPK and reduced CH-induced cell death. An administration of JNK/p38 MAPK inhibitors also decreased CH-induced cell deaths, implying JNK/p38 MAPK's causative roles in the deaths. Collectively, this study identified a novel caspase-independent PKCepsilon-JNK/p38 MAPK signaling module induced by CH in cardiac myocytes. Our data show that the PKCepsilon-JNK/p38 MAPK signaling module contributes to CH-induced H9c2 cell death. This contrasts with previous notions, i.e., PKCepsilon's protective effect against ischemic death. Thus our data suggest that PKCepsilon can mediate alternative signals, i.e., beneficiary or deleterious signals, depending on the cell type, intensity, and/or type of injury.  相似文献   

18.
In the present study, we investigated the role of protein kinase C (PKC) isoforms during hypoxia in heart-derived H9c2 cells. Hypoxia caused a rapid translocation of PKC-delta from soluble to particulate fraction and a downregulation of PKC-epsilon and PKC-zeta, whereas PKC-alpha and PKC-beta I remained unaltered. When H9c2 cells were pretreated with PKC-delta inhibitor rottlerin (3 microM), hypoxia-induced apoptotic and necrotic cell death were significantly increased. Hypoxic insult also caused an activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK with no change in c-Jun NH(2)-terminal protein kinase (JNK) phosphorylation. Hypoxia-induced cell death was increased by treatment with ERK1/2 inhibitor U0126 (10 microM), but attenuated by p38 MAPK inhibitor SB202190 (10 microM). Treatment with rottlerin completely blocked the hypoxia-induced ERK phosphorylation, whereas it significantly increased p38 MAPK phosphorylation. The hypoxia-induced translocation of PKC-delta was not altered by U0126 and/or SB202190. From these results, it is suggested that hypoxia causes a rapid translocation of PKC-delta and subsequently ERK activation and p38 inactivation, rendering H9c2 cells resistant to hypoxia-induced cell death.  相似文献   

19.
MNNG对哺乳类细胞JNK/SAPK及p38MAPK作用及其信号源研究   总被引:2,自引:2,他引:2       下载免费PDF全文
目的:研究低浓度烷化剂N-甲基-N' -硝基-N-亚硝基胍(MNNG)对JNK/SAPK及p38 MAPK通路的作用及其信号源。方法: 分别测定完整Vero细胞和脱核Vero细胞的JNK/SAPK及p38 MAPK酶活性,并比较其结果。 结果:低浓度MNNG在完整Vero细胞和脱核Vero细胞中均抑制JNK/SAPK酶活性;在p38 MAPK通路中,完整Vero细胞表现酶活性升高,而脱核Vero细胞该激活作用消失。 结论: 低浓度MNNG抑制JNK/SAPK的作用不依赖于核内信号,而对p38 MAPK的激活作用依赖与于核内信号。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号