首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
2.
The clinical use of all-ceramic crowns and fixed partial dentures has seen widespread adoption over the past few years due to their increasing durability and longevity. However, the application of inlays as an abutment design has not been as readily embraced because of their relatively high failure rates. With the use of an idealized inlay preparation design and prosthesis form which better distributes the tensile stresses, it is possible to utilize the inlay as support for an all-ceramic fixed partial denture. Utilizing a three-dimensional finite element analysis, a direct comparison of the inlay supported all-ceramic bridge against the traditional full crown supported all-ceramic bridge is made. The results demonstrate that peak stresses in the inlay bridge are around 20% higher than in the full crown supported bridge with von Mises peaking at about 730 MPa when subjected to theoretical average maximum bite force in the molar region of 700 N, which is similar to the ultimate tensile strengths of current zirconia based ceramics.  相似文献   

3.
In a previous study, the authors used a finite element analysis (FEA) to evaluate the stresses developed during the loading of an all-ceramic, inlay supported fixed partial denture and compared it with the more traditional full crown supported prosthesis. To date there has been little research into correlating the responses of the numerical model against physical mechanical tests; such validation analysis is crucial if the results from the FEA are to be confidently relied upon. This study reports on the experimental methods used to compare with the FEA and thereby to validate the predictive fracture behaviour of the numerical model. This study also outlines the methods for manufacture and testing of the ceramic structure along with observations of the fracture tests. In addition the procedure used for developing the FEA model for the test system is outlined.  相似文献   

4.
The effect of cavity design is a controversial and underrated factor in the clinical success of ceramic inlays and inlay supported prosthesis. Many articles and studies have been conducted into the advantages and disadvantages of isolated aspects of preparation design, but lacking is a review of the most relevant papers which bring together a consensus on all the critical features. Hence, a review and analysis of cavity depth, width, preparation taper and internal line angles is warranted in our attempts to formulate preparation guidelines that will lead to clinically successful, all‐ceramic inlay restorations and ceramic inlay supported prosthesis.  相似文献   

5.
6.
7.
8.
The purpose of this study was to examine the stress distribution in distal cantilevered fixed partial dentures (FPDs) that are designed with different cantilever morphology and made from different restorative materials. The finite element (FE) method was used to create models of two restoration types; metal-ceramic and an all-ceramic FPDs. Both models were designed with distal cantilevers involving the first and second premolars as abutments and cantilever extension involving at the premolar or molar. The width of connector between the cantilever and the primary abutment restoration was 2.25 mm. The load applied during the FE analysis was positioned at the cusp tips of all teeth. The FE analysis of the models revealed that Von Mises stress values with maximum stress concentrations were observed on connectors of distal cantilevers. Stress concentration sites were also observed at the distal cervical area of the second premolar tooth. Models with premolar cantilever extensions restored with all-ceramic induced lower Von Mises stress values than metal-ceramic restorations, however models with molar cantilever extensions restored with all-ceramic restorations induced higher Von Misses stress values than metal-ceramic restorations. If the distal cantilever length and restorative material is appropriately chosen, the failure frequency may be reduced. All ceramic can be used as restorative material, when the cantilevers length is not more than the mesiodistal dimension of a premolar tooth and metal-ceramic restorations can be used in longer situations.  相似文献   

9.
Implant‐supported fixed partial denture with cantilever extension can transfer the excessive load to the bone around implants and stress/strain concentration potentially leading to bone resorption. This study investigated the effects of implant configurations supporting three‐unit fixed partial denture (FPD) on the stress and strain distribution in the peri‐implant bone by combining clinically measured time‐dependent loading data and finite element (FE) analysis. A 3‐dimensional mandibular model was constructed based on computed tomography (CT) images. Four different configurations of implants supporting 3‐unit FPDs, namely three implant‐supported FPD, conventional three‐unit bridge FPD, distal cantilever FPD and mesial cantilever FPD, were modelled. The FPDs were virtually inserted to the molar area in the mandibular FE models. The FPDs were loaded according to time‐dependent in vivo‐measured 3‐dimensional loading data during chewing. The von Mises stress (VMS) and equivalent strain (EQS) in peri‐implant bone regions were evaluated as mechanical stimuli. During the chewing cycles, the regions near implant necks and bottom apexes experienced high VMS and EQS than the middle regions in all implant‐supported FPD configurations. Higher VMS and EQS values were also observed at the implant neck region adjacent to the cantilever extension in the cantilevered configurations. The patient‐specific dynamic loading data and CT‐based reconstruction of full 3D mandibular allowed us to model the biomechanical responses more realistically. The results provided data for clinical assessment of implant configuration to improve longevity and reliability of the implant‐supported FPD restoration.  相似文献   

10.
11.
12.
13.
Summary In this study, the distraction length of distraction implant was set as input variable which ranged from 2 to 10 mm. The effect of distraction length on the maximum Von Mises stress in the jaw bones and the implant were evaluated by a finite element method. The results showed that under axial load, the maximum equivalent stresses in cortical bone, cancellous bone, and distraction screw decreased by 5·8%, 8·6%, and 11·0%, respectively, with the changing of distraction length, and under buccolingual load those decreased by 0·3%, 18·0%, and 13·0%, respectively. The data indicate that cancellous bone is more sensitive to distraction length than the cortical bone. Under both loads, the central distraction screw was subjected to the stress concentration and more easily damaged by buccolingual force than by axial force. Distraction implant with distraction length exceeding 8 mm showed relatively better biomechanical behaviour.  相似文献   

14.
15.
16.
Minimally invasive endodontics emphasizes preservation of a maximal amount of healthy tooth tissue. However, whether the tooth structure preserved by minimally invasive endodontics can maintain higher fracture resistance is unclear. This study aimed to compare the biomechanics on teeth after minimally invasive (MI) preparation and straight‐line (SL) preparation using finite element analysis. Six finite element analysis models of a mandibular first molar were constructed and divided into two groups (MI and SL). Two loads of 250 N, one vertically stimulating the vertical masticatory force and the other given 45° to the longitudinal axis of the tooth, were applied. Stresses in the teeth were calculated and analyzed. Under both vertical and 45° loads, the greatest stresses were located at the margin of the cavities on the occlusal surfaces. The stress concentration areas of teeth with minimally invasive access cavities were smaller than those of teeth prepared with straight‐line opening in coronal and cervical areas. The stress concentration points in the cervical areas increased with the increase of canal taper in the coronal third. Minimally invasive access preparation reduced the stress distribution in crown and cervical regions. A smaller taper cervical enlargement caused lower stress in the cervical region.  相似文献   

17.
18.
Accurate, rapid and economical fungal species identification has been a major aim in mycology. In this study, our goal was to examine the feasibility of a high‐resolution melting curve analysis (HRMA) of internal transcribed regions ITS1 and ITS2 in ribosomal DNA (rDNA) for a rapid, simple and inexpensive differentiation of eight clinically relevant Candida species (Candida albicans, Candida glabrata, Candida parapsilosis, Candida krusei, Candida tropicalis, Candida guilliermondii, Candida dubliniensis and Candida lusitaniae). In addition, for the first time, we tested the applicability of HRMA to classify C. albicans strains into four previously described genotypes (A, B, C and D) using a primer set that spans the transposable intron region of 25S of rDNA. Type and unknown clinical oral isolates were used in this study and the melting curve analysis was compared with both amplicons' sequencing and agarose gel electrophoresis analysis. Real‐time PCR and subsequent HRMA of the two described rDNA regions generated distinct melting curve profiles that were in accord with sequencing and gel electrophoresis analysis, highly reproducible, and characteristic of each of the eight Candida species and C. albicans genotypes. Moreover, results were obtained in 4 h and without the need for any post‐amplification handling, so reducing time and cost. Owing to its simplicity and speed, this technique is a good fit for genotypic analysis of hundreds of clinical strains in large epidemiological settings.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号