首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTS: We hoped to itemize the clinical and neuroradiological features of six neonates with mitochondrial disorders. METHODS: We examined a case series of six neonates. The diagnosis of mitochondrial cytopathy was made on the basis of spectrophotometric measurements of respiratory chain enzyme activities in skeletal muscle biopsy specimens. Magnetic resonance (MR) imaging was performed in all cases. CONCLUSIONS: The antenatal onset in five cases and the lack of any symptom-free interval are suggestive of fetal expression of the disease. No specific symptoms were found: arthrogryposis congenita multiplex in one, progressive hepatocellular dysfunction in three, encephalomyelopathy and cardiomyopathy in four. Complex I deficiency was found in three patients, while one patients had a defect of complex IV and the last a combined defect of complexes I and IV. Neuroradiological findings were either cerebral atrophy or white matter abnormalities of the brain stem in all cases but one and gave additional information, because clinical symptoms are not quite specific. The combination of clinical and MRI findings in neonatal cases can rule out hypoxic ischemic encephalopathy, which suggests an additional screening method to look for mitochondrial disorder.  相似文献   

2.
Biochemical defects in the respiratory chain are mostly associated with deficiencies in Complexes I, III and IV, caused by nuclear or mitochondrial DNA mutations. Combined defects including Complex II have been reported very rarely and have muscular symptoms as the main manifestation, including muscle weakness, exercise intolerance and myoglobinuria. We report a patient with a fatal progressive myopathy and muscle biopsy showing diffuse reduction in succinate dehydrogenase activity, ragged red fibers and intense lipid accumulation. Cytochrome c oxidase (COX) histochemistry demonstrated 30% of fibers with increased subsarcolemmal staining while 27% were COX negative. Western blotting analysis showed reduction in the expression of the 39 kDa subunit of Complex I, subunit II of Complex IV and the 70 kDa subunit of Complex II. Our findings suggest that the patient had a complex pattern of mitochondrial dysfunction affecting multiple respiratory chain complexes (I, II and IV) and fatty acid metabolism. This report adds a new histological pattern associated to combined deficiencies of respiratory chain with involvement of Complex II and shows that this disease may be fatal with a rapid progression.  相似文献   

3.
We report on 2 adult patients presenting with choreic movements as the main clinical feature of mitochondrial cytopathy. One patient exhibited a sensory neuronopathy and ophthalmoplegia. The other had ptosis, a proximal myopathy, and a sensory neuropathy. The diagnosis of mitochondrial cytopathy was established by the presence of ragged red fibers, cytochrome C oxydase-negative fibers, and a defect of the complex IV of the respiratory chain in muscle biopsy. No mutations in mitochondrial DNA were detected. The choreic movements observed in juvenile forms of mitochondrial cytopathy are rarely observed in adults. Although striatal vulnerability is commonly reported in patients with mitochondrial disorders, the mechanism by which the mitochondrial dysfunction leads to chorea is not known.  相似文献   

4.
G. R. Campbell, A. Reeve, I. Ziabreva, T. M. Polvikoski, R. W. Taylor, R. Reynolds, D. M. Turnbull and D. J. Mahad (2013) Neuropathology and Applied Neurobiology 39, 377–389 Mitochondrial DNA deletions and depletion within paraspinal muscles Aims: Although mitochondrial abnormalities have been reported within paraspinal muscles in patients with axial weakness and neuromuscular disease as well as with ageing, the basis of respiratory deficiency in paraspinal muscles is not known. This study aimed to determine the extent and basis of respiratory deficiency in paraspinal muscles from cases undergoing surgery for degenerative spinal disease and post mortem cases without a history of spinal disease, where age‐related histopathological changes were previously reported. Methods: Cervical and lumbar paraspinal muscles were obtained peri‐operatively from 13 patients and from six post mortem control cases (age range 18–82 years) without a neurological disease. Sequential COX/SDH (mitochondrial respiratory chain complex IV/complex II) histochemistry was performed to identify respiratory‐deficient muscle fibres (lacking complex IV with intact complex II activity). Real‐time polymerase chain reaction, long‐range polymerase chain reaction and sequencing were used to identify and characterize mitochondrial DNA (mtDNA) deletions and determine mtDNA copy number status. Mitochondrial respiratory chain complex subunits were detected by immunohistochemistry. Results: The density of respiratory‐deficient fibres increased with age. On average, 3.96% of fibres in paraspinal muscles were respiratory‐deficient (range 0–10.26). Respiratory deficiency in 36.8% of paraspinal muscle fibres was due to clonally expanded mtDNA deletions. MtDNA depletion accounted for further 13.5% of respiratory deficiency. The profile of immunohistochemically detected subunits of complexes was similar in respiratory‐deficient fibres with and without mtDNA deletions or mtDNA depletion. Conclusions: Paraspinal muscles appeared to be particularly susceptible to age‐related mitochondrial respiratory chain defects. Clonally expanded mtDNA deletions and focal mtDNA depletion may contribute towards the development of age‐related postural abnormalities.  相似文献   

5.
Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD   总被引:11,自引:0,他引:11  
OBJECTIVE: To determine whether hippocampal neurons and choroidal epithelial cells demonstrate a mitochondrial enzyme deficiency in AD more frequently than in normal aging. BACKGROUND: High levels of mutant mitochondrial DNA (mtDNA) cause a deficiency in cytochrome c oxidase (COX) (complex IV activity) because three of its 13 subunits are encoded for by mtDNA. In contrast, succinate dehydrogenase (SDH) (complex II activity) remains intact because all of its subunits are nuclear encoded. The histologic hallmark of cells containing high levels of mtDNA mutation in both primary mtDNA disorders and normal aging muscle is the presence of COX-deficient SDH-positive cells. METHODS: The authors applied a sequential histochemical method for COX and SDH to hippocampal sections in 17 AD and 17 age-matched control brains. This confers the advantages of both looking at individual cells in situ and measuring the actual mitochondrial complex activity rather than simply the complex quantity. RESULTS: COX-deficient SDH-positive hippocampal neurons and choroidal epithelial cells are more prevalent in patients with AD than in controls. In addition the COX-deficient SDH-positive choroidal cells are associated with an enlargement in size. CONCLUSION: This increase in number of COX-deficient SDH-positive hippocampal pyramidal neurons and choroid epithelial cells provides strong evidence that a substantial mitochondrial enzyme activity defect occurs in individual cells more frequently in AD than in normal aging and that mitochondria may play a significant role in the pathogenesis of AD.  相似文献   

6.
A 16-year-old girl presented with early-onset cerebellar ataxia, myoclonus, elevated lactic acidosis and hypogonadotropic hypogonadism. Muscle biopsy specimens revealed fibres with a ragged appearance with increased mitochondria and lipid droplets. Biochemical investigation revealed a deficiency of complexbc 1 (complex III) of the mitochondrial respiratory chain. Genetic analysis did not show either deletions or known mutations of mitochondrial DNA (mtDNA). Phosphorus magnetic resonance spectroscopy (31P-MRS) showed defective energy metabolism in brain and gastrocnemius muscle. A decreased phosphocreatine (PCr) content was found in the occipital lobes accompanied by normal inorganic phosphate (Pi) and cytosolic pH. These findings represented evidence of a high cytosolic adenosine diphosphate concentration and a relatively high rate of metabolism accompanied by a low phosphorylation potential. Muscle31P-MRS showed a high Pi content at rest, abnormal exercise transfer pattern and a low rate of PCr post-exercise recovery. These findings suggested a deficit of mitochondrial function. Therapy with vitamins K3 and C normalized brain31P-MRS indices, whereas it did not affect muscle bioenergetic metabolism. In this patient, the endocrinological disorder is putatively due to a mitochondrial cytopathy. Although an unknown mtDNA mutation cannot be ruled out, the genetic defect may lie in the nuclear genome.  相似文献   

7.
An important diagnostic muscle biopsy finding in patients with mitochondrial DNA disease is the presence of respiratory-chain deficient fibres. These fibres are detected as cytochrome c oxidase-deficient following a sequential cytochrome c oxidase-succinate dehydrogenase reaction, often in a mosaic pattern within a population of cytochrome c oxidase-normal fibres. Detailed analysis of muscle biopsies from patients with various mitochondrial DNA defects shows that a spectrum of deficiency exists, as there are a large number of fibres which do not correspond to being either completely cytochrome c oxidase-normal (brown staining) or cytochrome c oxidase-deficient (blue staining). We have used a combination of histochemical and immunocytochemical techniques to show that a population of cytochrome c oxidase-intermediate reacting fibres are a gradation between normal and deficient fibres. We show that cytochrome c oxidase-intermediate fibres also have different genetic characteristics in terms of amount of mutated and wild-type mtDNA, and as such, may represent an important transition between respiratory normal and deficient fibres. Assessing changes in intermediate fibres will be crucial to evaluating the responses to treatment and in particular to exercise training regimes in patients with mitochondrial DNA disease.  相似文献   

8.
Although the Huntington's disease (HD) gene defect has been identified, the structure and function of the abnormal gene product and the pathogenetic mechanisms involved in producing death of selective neuronal populations are not understood. Indirect evidence from several sources indicates that a defect of energy metabolism and consequent excitotoxicity are involved in HD. Toxin models of HD may be induced by 3-nitropropionic acid or malonate, both inhibitors of succinate dehydrogenase, complex II of the mitochondrial respiratory chain. We analyzed mitochondrial respiratory chain function in the caudate nucleus (n = 10) and platelets (n = 11) from patients with HD. In the caudate nucleus, severe defects of complexes II and III (53–59%, p < 0.0005) and a 32–38% (p < 0.01) deficiency of complex IV activity were demonstrated. No deficiencies were found in platelet mitochondrial function. The mitochondrial defect identified in HD caudate parallels that induced by HD neurotoxin models and further supports the role of abnormal energy metabolism in HD. The relationship of the mitochondrial defect to the role of huntingtin is not known.  相似文献   

9.
We report a patient with mitochondrial DNA depletion, partial complex II and IV deficiencies, and 3-methylglutaconic aciduria. Complex II deficiency has not been previously observed in mitochondrial DNA depletion syndromes. The observation of 3-methylglutaconic and 3-methylglutaric acidurias may be a useful indicator of a defect in respiratory chain function caused by mitochondrial DNA depletion.  相似文献   

10.
Deletions of the mitochondrial genome were identified in 21 out of 58 patients (36 percent) with mitochondrial myopathies, 47 of whom had defects in the mitochondrial respiratory chain. In cases with Complex I defects, the deleted regions of mtDNA, were confined to structural genes encoding Complex I subunits but additionally involved the intervening tRNA genes and in one case included the large and small rRNA genes. In cases with more extensive loss of respiratory chain function, the deletions eliminated genes encoding subunits of Complexes I, IV and V, as well as several tRNAs. Complex I and Complex IV polypeptides were usually normal in deleted cases. This was in contrast to 7 out of 22 patients without detectable mtDNA deletions, who showed specific deficiencies of subunits encoded by nuclear genes. Further studies in one of these cases pointed to defective translocation of the Rieske precursor from the cytosol into the mitochondria. The genetic basis of the disease in 15 cases without detectable deletions or specific subunit deficiencies, remains unknown. The multiple biochemical abnormalities encountered in these cases would be consistent with more subtle alterations of the mitochondrial genome.  相似文献   

11.
In this study we comparatively analysed deltoid histochemistry, biochemistry and mitochondrial DNA (mtDNA) in two groups of ten sporadic ocular mitochondrial myopathies (OMM), respectively with and without ragged red fibres (RRF). (1) All but one RRF − patients presented the mild form of OMM with blepharoptosis but without ophthalmoplegia; (2) the occurrence of cytochrome c oxidase deficient (COX −) fibres was significantly higher in the RRF + group, but four RRF − cases also showed COX − fibres; (3) no difference was observed in biochemical findings between the groups; (4) two RRF − patients without COX − fibres showed mtDNA heteroplasmy; (5) in two RRF − patients without deltoid mtDNA deletion, biopsy of an eyelid muscle showed significant mitochondrial alterations. These results suggest that the expression of a mitochondrial defect can vary and that the absence of RRF in a skeletal muscle biopsy does not necessarily rule out the diagnosis of OMM, if other data support that.  相似文献   

12.
Electron microscopy (EM) is a reliable method for diagnosing mitochondrial diseases in striated muscle biopsy in infancy. Ultrastructural alterations in mitochondria of myofibers are well documented, but there are few studies of endothelial involvement in intramuscular capillaries. Quadriceps femoris biopsies of five representative infants and toddlers, ages neonate to 3.5 years, were performed because of clinical and laboratory data consistent with mitochondrial disease without mitochondrial DNA (mtDNA) mutations and likely with nuclear DNA mutations. Pathological studies included histochemistry, EM, respiratory chain enzymatic assay and mtDNA sequencing and deletion/duplication analysis. EM demonstrated frequent and severe alterations of mitochondria in capillary endothelium. The most constant changes included: either too few or fragmented cristae; stacked and whorled cristae; paracrystallin structures that often were large and spheroid with stress fractures; closely apposed membranes of granular endoplasmic reticulum surrounding mitochondria with loss of the normal intervening layer of cytoplasm; long narrow, thin looped microvilli extending into the lumen; and thick microvilli containing large, abnormal mitochondria. We conclude that mitochondrial cytopathies in early life exhibit more severe ultrastructural alterations in the endothelium than in myofibers and that paracrystallin body structure differs, perhaps due to less rigid surrounding structures. This distribution may explain the frequent lack of prominent histochemical and biochemical abnormalities in muscle biopsies of young patients. Endothelial changes do not distinguish the genetic defects. Vascular involvement in brain contributes to cerebral lesions and neuronal death by impairment of molecular and nutrient transport and ischemia; endothelium in muscle may reflect similar changes.  相似文献   

13.
We reported a 6-year-old girl with mitochondrial cytopathy with lactic acidosis. The patient developed hypotonia, hearing loss, mental retardation, short stature, cataracta, hypoparathyroidism, DeToni-Fanconi-Debré syndrome and carnitine deficiency. Histological examination disclosed ragged red fibers and moderate lipid storage in skeletal muscle tissue and several structural abnormalities of mitochondria both in muscle tissue and proximal renal tubules. Biochemical examination of muscle tissue revealed a partial deficiency of pyruvate dehydrogenase complex and normal activities of cytochrome c oxidase, succinate cytochrome c reductase and NADH cytochrome c reductase. This is the first report of mitochondrial cytopathy representing DeToni-Fanconi-Debré syndrome associated with partial deficiency of pyruvate dehydrogenase complex and normal cytochrome c oxidase activity.  相似文献   

14.
15.
16.
Several groups have identified mitochondrial complex I deficiency in Parkinson's disease (PD) substantia nigra and in platelets. A search for any mitochondrial DNA (mtDNA) mutation underlying this defect has not yet produced any consistent result. We have made use of a mtDNA-less (μo) cell line to determine if the complex I deficiency follows the genomic transplantation of platelet mtDNA. From a preselected group of PD patients with low platelet complex I activity, 7 patients were used for detailed study. All 7 patients were used for mixed cybrid analysis and demonstrated a selective 25% deficiency of complex I activity. Individual clonal analysis of A549 μO/PD platelet fusion cybrids from 1 of the patients expressed combined complex I and IV deficiencies with 25% and 20% decreased activities in the PD clones, respectively. Histocytochemical, immunocytochemical, and cellular functional imaging studies of these clones showed the cells within the clones were heterogeneous with respect to cytochrome c oxidase (COX) function, COX I content, and mitochondrial respiratory chain activity. These results are in agreement with a previous study and support the proposition that an mtDNA abnormality may underlie the mitochondrial defect in at least a proportion of PD patients. This μo technology may serve as a means to identify the subgroup of PD patients in whom an mtDNA defect may contribute to development of the disease.  相似文献   

17.
Chronic Progressive External Ophthalmoplegia (CPEO) is characterized by ptosis and ophthalmoplegia and is usually caused by mitochondrial DNA (mtDNA) deletions or mt-tRNA mutations. The aim of the present work was to clarify the genetic defect in a patient presenting with CPEO and elucidate the underlying pathogenic mechanism. This 62-year-old female first developed ptosis of the right eye at the age of 12 and subsequently the left eye at 45 years, and was found to have external ophthalmoplegia at the age of 55 years. Histopathological abnormalities were detected in the patient's muscle, including ragged-red fibres, a mosaic pattern of COX-deficient muscle fibres and combined deficiency of respiratory chain complexes I and IV. Genetic investigation revealed the “common deletion” in the patient's muscle and fibroblasts. Moreover, a novel, heteroplasmic mt-tRNASer(UCN) variant (m.7486G>A) in the anticodon loop was detected in muscle homogenate (50%), fibroblasts (11%) and blood (4%). Single-fibre analysis showed segregation with COX-deficient fibres for both genetic alterations. Assembly defects of mtDNA-encoded complexes were demonstrated in fibroblasts. Functional analyses showed significant bioenergetic dysfunction, reduction in respiration rate and ATP production and mitochondrial depolarization. Multilamellar bodies were detected by electron microscopy, suggesting disturbance in autophagy. In conclusion, we report a CPEO patient with two possible genetic origins, both segregating with biochemical and histochemical defect. The “common mtDNA deletion” is the most likely cause, yet the potential pathogenic effect of a novel mt-tRNASer(UCN) variant cannot be fully excluded.  相似文献   

18.
A male infant, born from consanguineous parents, suffered from birth with a progressive neuromuscular disorder characterized by psychomotor delay, hypotonia, muscle weakness and wasting, deep-tendon areflexia and spastic posture. High levels of lactic acid in blood and cerebrospinal fluid suggested a mitochondrial respiratory chain defect. Muscle biopsy revealed raggedred and cytochromec oxidase-negative fibres, lipid accumulation and dystrophic changes. Multiple defects of respiratory complexes were detected in muscle homogenate, but cultured fibroblasts, myoblasts and myotubes were normal. Southern blot analysis showed markedly reduced levels of mitochondrial DNA (mtDNA) in muscle, while lymphocytes, fibroblasts and muscle precursor cells were normal. Neither depletion of mtDNA nor abnormalities of the respiratory complexes were observed in innervated muscle fibres cultured for as long as 4 months. No mutations were observed in two candidate nuclear genes,mtTFA andmtSSB, retro-transcribed, amplified and sequenced from the proband's mRNA. Sequence analysis of the mtDNA D-loop and of the origin of replication of the mtDNA light strand failed to identify potentially pathogenic mutations of these replicative elements in the proband's muscle mtDNA. Our findings indicate that mtDNA depletion is due to a nuclear encoded gene and suggest that the abnormality underlying defective mtDNA propagation must occur after muscle differentiation in vivo.  相似文献   

19.
We describe a 53-year-old patient with a progressive mitochondrial myopathy of late-onset, restricted to skeletal muscle only without external ophthalmoplegia. The myopathy developed at the age of 46 years initially with exercise intolerance and subsequently progressive permanent muscle weakness. Muscle biopsy revealed severe myopathic changes, ragged red fibers, and a marked multifocal cytochrome-c-oxidase deficiency. Biochemical analysis showed a deficiency of complexes I and IV of the mitochondrial respiratory chain. Genetic analysis of mitochondrial DNA revealed no deletions. Mitochondrial myopathies restricted to skeletal muscle have to be considered in the differential diagnosis of late-onset progressive myopathies.  相似文献   

20.
Objective: To investigate respiratory chain complex II deficiency resulted from mutation in succinate dehydrogenase gene (SDH) encoding complex II subunits in China. Methods: An 11-year-old boy was admitted to our hospital. He had a history of progressive psychomotor regression and weakness since the age of 4 years. His cranial magnetic resonance imaging revealed focal, bilaterally symmetrical lesions in the basal ganglia and thalamus, indicating mitochondrial encephalopathy. The activities of mitochondrial respiratory chain enzymes I−V in peripheral leukocytes were determined via spectrophotometry. Mitochondrial DNA and the succinate dehydrogenase A (SDHA) gene were analyzed by direct sequencing. Results: Complex II activity in the leukocytes had decreased to 33.07 nmol/min/mg mitochondrial protein (normal control 71.8 ± 12.9); the activities of complexes I, III, IV and V were normal. The entire sequence of the mitochondrial DNA was normal. The SDHA gene showed two heterozygous frame-shift mutations: c.G117G/del in exon 2 and c.T220T/insT in exon 3, which resulted in stop codons at residues 56 and 81, respectively. Conclusions: We have described the first Chinese case of mitochondrial respiratory chain complex II deficiency, which was diagnosed using enzyme assays and gene analysis. Two novel, compound, frame-shift mutations, c.G117G/del in exon 2 and c.T220T/insT in exon 3 of the SDHA gene, were found in our patient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号