首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Brains from human neurofibromatosis type 1 (NF1) patients show increased expression of glial fibrillary acidic protein (GFAP), consistent with activation of astrocytes (M.L. Nordlund, T.A. Rizvi, C.I. Brannan, N. Ratner, Neurofibromin expression and astrogliosis in neurofibromatosis (type 1) brains, J. Neuropathol. Exp. Neurology 54 (1995) 588–600). We analyzed brains from transgenic mice in which the Nf1 gene was targeted by homologous recombination. We show here that, in all heterozygous mice analyzed, there are increased numbers of astrocytes expressing high levels of GFAP in medial regions of the periaqueductal gray and in the nucleus accumbens. More subtle, but significant, changes in the number of GFAP positive astrocytes were observed in the hippocampus in 60% of mutant mice analyzed. Astrocytes with elevated GFAP were present at 1 month, 2 months, 6 months and 12 months after birth. Most brain regions, including the cerebellum, basal ganglia, cerebral cortex, hypothalamus, thalamus, cortical amygdaloid area, and white matter tracts did not show any gliotic changes. No evidence of degenerating neurons was found using de Olmos' cupric silver stain. We conclude that Nf1/nf1 mice provide a model to study astrogliosis associated with neurofibromatosis type 1.  相似文献   

2.
3.
Individuals with neurofibromatosis 1 (NF1) develop low-grade astrocytomas at an increased frequency. To gain insight into the function of the Nf1 gene product as a growth regulator for astrocytes, we examined mice heterozygous for a targeted Nf1 mutation. In our previous studies, we demonstrated increased numbers of proliferating astrocytes in Nf1 heterozygote (Nf1+/-) mice in vivo. We now show that cultured Nf1+/- astrocytes exhibit a cell-autonomous growth advantage in vitro associated with increased p21-ras pathway activation. Furthermore, we demonstrate that Nf1+/-;wild-type N-ras mice have a similar astrocyte growth advantage in vitro and in vivo as either oncogenic N-ras or Nf1+/-; oncogenic N-ras mice. Lastly, mice heterozygous for targeted defects in both Nf1 and p53 as well as Nf1 and Rb exhibit 3- and 2.5-fold increases in astrocyte proliferation in vivo, respectively, suggesting that abnormalities in Nf1- and p53/Rb-regulated pathways cooperate in the heterozygous state to confer a growth advantage for brain astrocytes. Collectively, these results provide evidence for a cell-autonomous growth advantage in Nf1+/- astrocytes and suggest that some of the brain pathology in individuals with NF1 might result from reduced, but not absent, NF1 gene function.  相似文献   

4.
Children with the neurofibromatosis-1 (NF1) cancer predisposition syndrome exhibit numerous clinical problems that reflect defective central nervous system (CNS) neuronal function, including learning disabilities, attention deficit disorder, and seizures. These clinical features result from reduced NF1 protein (neurofibromin) expression in NF1+/− (NF1 heterozygosity) brain neurons. Previous studies have shown that mouse CNS neurons are sensitive to the effects of reduced Nf1 expression and exhibit shorter neurite lengths, smaller growth cone areas, and attenuated survival, reflecting attenuated neurofibromin cAMP regulation. In striking contrast, Nf1+/− peripheral nervous system (PNS) neurons are nearly indistinguishable from their wild-type counterparts, and complete neurofibromin loss leads to increased neurite lengths and survival in a RAS/Akt-dependent fashion. To gain insights into the differential responses of CNS and PNS neurons to reduced neurofibromin function, we designed a series of experiments to define the molecular mechanism(s) underlying the unique CNS neuronal sensitivity to Nf1 heterozygosity. First, Nf1 heterozygosity decreases cAMP levels in CNS, but not in PNS, neurons. Second, CNS neurons exhibit Nf1 gene-dependent increases in RAS pathway signaling, but no further decreases in cAMP levels were observed in Nf1−/− CNS neurons relative to their Nf1+/− counterparts. Third, neurofibromin regulates CNS neurite length and growth cone areas in a cAMP/PKA/Rho/ROCK-dependent manner in vitro and in vivo. Collectively, these findings establish cAMP/PKA/Rho/ROCK signaling as the responsible axis underlying abnormal Nf1+/− CNS neuronal morphology with important implications for future preclinical and clinical studies aimed at improving cognitive and behavioral deficits in mice and children with reduced brain neuronal NF1 gene expression.  相似文献   

5.
Jansen LA  Uhlmann EJ  Crino PB  Gutmann DH  Wong M 《Epilepsia》2005,46(12):1871-1880
PURPOSE: Individuals with tuberous sclerosis complex (TSC) frequently have intractable epilepsy. To gain insights into mechanisms of epileptogenesis in TSC, we previously developed a mouse model of TSC with conditional inactivation of the Tsc1 gene in glia (Tsc1(GFAP)CKO mice). These mice develop progressive seizures, suggesting that glial dysfunction may be involved in epileptogenesis in TSC. Here, we investigated the hypothesis that impairment of potassium uptake through astrocyte inward rectifier potassium (Kir) channels may contribute to epileptogenesis in Tsc1(GFAP)CKO mice. METHODS: Kir channel function and expression were examined in cultured Tsc1-deficient astrocytes. Kir mRNA expression was analyzed in astrocytes microdissected from neocortical sections of Tsc1(GFAP)CKO mice. Physiological assays of astrocyte Kir currents and susceptibility to epileptiform activity induced by increased extracellular potassium were further studied in situ in hippocampal slices. RESULTS: Cultured Tsc1-deficient astrocytes exhibited reduced Kir currents and decreased expression of specific Kir channel protein subunits, Kir2.1 and Kir6.1. mRNA expression of the same Kir subunits also was reduced in astrocytes from neocortex of Tsc1(GFAP)CKO mice. By using pharmacologic modulators of signalling pathways implicated in TSC, we showed that the impairment in Kir channel function was not affected by rapamycin inhibition of the mTOR/S6K pathway, but was reversed by decreasing CDK2 activity with roscovitine or retinoic acid. Last, hippocampal slices from Tsc1(GFAP)CKO mice exhibited decreased astrocytic Kir currents, as well as increased susceptibility to potassium-induced epileptiform activity. CONCLUSIONS: Impaired extracellular potassium uptake by astrocytes through Kir channels may contribute to neuronal hyperexcitability and epileptogenesis in a mouse model of TSC.  相似文献   

6.
During the development of the CNS, astrocytes play a key role as a substrate for neuronal migration and axonal growth. These neuron-astrocyte interactions could be regulated, in part, by the astrocytic cytoskeleton. Nestin, vimentin, and glial fibrillary acidic protein (GFAP) are the three identified proteins constitutive of intermediate filaments present in astrocytes. In the present study, we used mice deficient in GFAP to define the influence of the major protein of the astrocytic cytoskeleton on neuron survival and axonal growth in a model of neuron-astrocyte coculture. We observed that GFAP null astrocytes are a better substrate for neuronal survival and neurite outgrowth than wild-type astrocytes. This may be correlated with the relatively late occurrence of GFAP expression in astrocyte maturation when the early steps of neurogenesis are completed.  相似文献   

7.
We have found recently that white matter astrocytes in the spinal cord constitutively express immunoreactivity for Mts1 (S100A4) protein and that this expression is up-regulated ipsilaterally after sciatic nerve or dorsal root injury. Here, we have studied the expression pattern of Mts1 throughout the rat central nervous system (CNS). We found Mts1 immunoreactivity in myelinated tracts such as the olfactory tract, optic nerve, corpus callosum, internal capsule, fimbria, and spinal cord funiculi but not in cerebellar white matter. Mts1-immunoreactive (IR) cells were consistently astrocytic (glial fibrillary acidic protein positive). In addition to myelinated tracts, Mts1 immunoreactivity was also present in a few nonmyelinated or poorly myelinated areas, such as pituitary gland, olfactory bulb, and around the lateral ventricle. Based on location, three Mts1-IR astrocyte groups were distinguished: 1) astrocytes at the surfaces of the CNS, i.e., adjacent to the cerebrospinal fluid, organized perpendicularly to the bundles of axonal tracts; 2) astrocytes located in parallel to, and inserted between, axonal bundles; and 3) clusters of astrocytes around the lateral ventricle and in the olfactory bulb. We further analyzed the relationship between Mts1 immunoreactivity and the development of CNS fiber tracts by combining staining for Mts1 and myelin basic protein (MBP). Mts1 immunoreactivity appeared postnatally in recently myelinated areas. During the development of corpus callosum and the optic tract, Mts1 immunoreactivity was concentrated at the frontier of myelination. The developmental expression pattern suggests a role of Mts1-IR astrocytes in the maturation of myelinated fiber tracts. The preferential localization of Mts1 to the subpial region in the mature CNS suggests that Mts1 participates in astrocyte-mediated CNS-cerebrospinal fluid exchange.  相似文献   

8.
Mice that are homozygous for the autosomal recessive motheaten allele (me/me) lack the protein tyrosine phosphatase SHP-1. Loss of SHP-1 leads to many hematopoietic abnormalities, as well as defects such as infertility and low body weight. However, little is known regarding the role SHP-1 plays in the development of the central nervous system (CNS). To define the role of SHP-1 in CNS development and differentiation, we examined the brains of me/me mice at various times after birth for neuronal and glial abnormalities. Although the brains of me/me mice are slightly smaller than age-matched wild-type littermates, both me/me and wild-type brains are similar in weight, possess an intact blood-brain barrier, and have largely normal neuronal architecture. Significantly, the current study reveals that me/me brain shows decreases in the number of glial fibriallary acidic protein (GFAP)+ astrocytes and F480+ microglia compared with wild-type mice. In addition, decreased immunostaining for the myelin-synthesizing enzyme CNPase was observed in me/me mice, confirming the loss of myelin in these animals, as reported (Massa et al. [2000] Glia 29:376-385). It is particularly significant that there is a decreased number of immunolabeled glia of all subtypes and that this deficit in glial number is not restricted to a particular class of glia. This suggests that SHP-1 is necessary for the normal differentiation and distribution of astrocytes, microglia, and oligendrocytes within the murine CNS.  相似文献   

9.
Lee Y  Messing A  Su M  Brenner M 《Glia》2008,56(5):481-493
  相似文献   

10.
11.
The close homolog of the adhesion molecule L1 (CHL1) is important during CNS development, but a study with CHL1 knockout mice showed greater functional recovery after spinal cord injury (SCI) in its absence. We investigated CHL1 expression from 1 to 28 days after clinically relevant contusive SCI in Sprague-Dawley rats. Western blot analysis showed that CHL1 expression was significantly up-regulated at day 1 and further increased over 4 weeks after SCI. Immunohistochemistry of tissue sections showed that CHL1 in the intact spinal cord was expressed at low levels. By 1 day and through 4 weeks after SCI, CHL1 became highly expressed in NG2(+) cells. Hypertrophic GFAP(+) astrocytes also expressed CHL1 by 1 week after injury. The increase in CHL1 protein paralleled that of NG2 in the first week and GFAP between 1 and 4 weeks after injury. At 4 weeks, NG2(+) /CHL1(+) cells and GFAP(+) /CHL1(+) astrocytes were concentrated at the boundary between residual spinal cord tissue and the central lesion. NF200(+) spinal cord axons approached but did not penetrate this boundary. In contrast, CHL1(+) cells in the central lesion at 1 week and later colabeled with p75 and NG2 and were chronically associated with many NF200(+) axons, presumably axons that had sprouted in association with CHL1(+) Schwann cells infiltrating the cord after contusion. Thus, our study demonstrates up-regulation of CHL1 in multiple cell types and locations in a rat model of contusion injury and suggests that this molecule may be involved both in inhibition of axonal regeneration and in recovery processes after SCI.  相似文献   

12.
Neurofibromatosis type 1 (NF1) is a common cancer predisposition syndrome caused by mutations in the NF1 gene. The NF1-encoded protein (neurofibromin) is an inhibitor of the oncoprotein RAS and controls cell growth and survival. Individuals with NF1 are prone to developing low-grade tumors of the optic nerves, chiasm, tracts, and radiations, termed optic pathway gliomas (OPGs), which can cause vision loss. A paucity of surgical tumor specimens and of patient-derived xenografts for investigative studies has limited our understanding of human NF1-associated OPG (NF1-OPG). However, mice genetically engineered to harbor Nf1 gene mutations develop optic gliomas that share many features of their human counterparts. These genetically engineered mouse (GEM) strains have provided important insights into the cellular and molecular determinants that underlie mouse Nf1 optic glioma development, maintenance, and associated vision loss, with relevance by extension to human NF1-OPG disease. Herein, we review our current understanding of NF1-OPG pathobiology and describe the mechanisms responsible for tumor initiation, growth, and associated vision loss in Nf1 GEM models. We also discuss how Nf1 GEM and other preclinical models can be deployed to identify and evaluate molecularly targeted therapies for OPG, particularly as they pertain to future strategies aimed at preventing or improving tumor-associated vision loss in children with NF1.  相似文献   

13.
The functional role of astrocytes exerted via their intermediate protein glial fibrillary acidic protein (GFAP) in CNS infections was studied in Staphylococcus aureus-induced brain abscess. Compared to wild type (WT) mice, GFAP(0/0) mice developed larger and more poorly demarcated inflammatory lesions paralleled by a significantly increased intracerebral bacterial load, a diffuse leukocytic infiltration of the contralateral hemisphere, purulent ventriculitis, vasculitis, and severe brain edema. These observations were correlated with the lack of a bordering function of activated astrocytes that strongly upregulated their GFAP expression in the abscess surrounding of WT mice. Clinically important, this lack of restriction of inflammation markedly aggravated the course of disease with manifestation of seizures and a severe weight loss in GFAP(0/0) mice. These data were paralleled by observations in the model of Toxoplasma encephalitis (TE) during which the intracerebral parasitic load was significantly increased. Moreover, tachyzoite-induced tissue necrosis was exclusively found in the brains of GFAP(0/0) mice in chronic TE. Collectively, these findings delineate a host defense function of astrocytes via restricting pathogenic spread and multiplication within the CNS, thereby contributing to the protection of the highly vulnerable brain parenchyma.  相似文献   

14.
In this study, we demonstrate for the first time the immunohistochemical expression of citrullinated proteins in the central nervous system (CNS) of mice with myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). By using an established monoclonal antibody (F95) against natural and synthetic citrullinated proteins (Nicholas and Whitaker [2002] Glia 37:328-336), numerous, small, previously unrecognized "patches" of citrullinated proteins were discovered throughout EAE brains, whereas EAE spinal cords showed similar but much larger lesions. On dual color immunofluorescence, these lesions were found to contain citrullinated myelin basic protein (MBP) and were surrounded by astrocytes immunoreactive for both glial fibrillary acidic protein (GFAP) and F95. These lesions became evident about the time when EAE mice became symptomatic and increased in size and number with increasing disease severity. In some sections of spinal cord but not brains of severely debilitated EAE mice, a widespread gliotic response was seen, with astrocytes containing citrullinated GFAP spread throughout the gray and white matter. Western blot analysis of acidic proteins from the brains and spinal cords of EAE mice had higher levels of multiple citrullinated GFAP isoforms compared with controls, with more F95-positive bands in the EAE brains vs. spinal cords. These results raise the possibility that citrullination of both GFAP and MBP may contribute to the pathophysiology of EAE and that the brains of EAE mice may contain more pathology than previously realized.  相似文献   

15.
Harmonious functioning of the nervous system depends on neuron-glia interactions, particularly between the axons and their myelinating cells, i.e., oligodendrocytes (OL) in the central nervous system (CNS). In human demyelinating diseases such as multiple sclerosis (MS), demyelination may be associated with axonal damage, but alterations of the axonal cytoskeleton, which is composed mainly of neurofilaments (NF) and microtubules, are largely unknown, as are the consequences on remyelination. In a model of demyelination induced by lysophosphatidylcholine (LPC), we have shown that demyelination was correlated with a decrease in NF immunolabelling, and that these axonal abnormalities were reduced by platelet-derived growth factor (PDGF)-enhanced remyelination in adult rats. We have analysed the spontaneous remyelination after LPC stereotaxic injection in the CNS of transgenic NFH-lacZ mice, which present axonal atrophy caused by abnormal distribution of NF, associated with hypermyelination in the PNS, and normal myelin thickness in the CNS. Axonal atrophy in the CNS of NFH-lacZ mice was confirmed, but it was not worsened by demyelination. On the contrary, demyelination induced axonal atrophy in wild-type mice, demonstrating that NF are essential for axonal calibre determination. Moreover, an efficient spontaneous remyelination occurred in NFH-lacZ as well as in wild-type mice, indicating that the NF are not necessary for CNS remyelination. These findings point out that NF modifications observed in MS may not be responsible for the lack of remyelination in this disease.  相似文献   

16.
Li Guo  Chandra Moon  Yi Zheng  Nancy Ratner 《Glia》2013,61(11):1906-1921
The Rho family GTPase Cdc42 has been implicated in developmental Schwann cell (SC) proliferation, providing sufficient SCs for radial sorting of axons preceding SC differentiation in the peripheral nervous system. We generated Cdc42 conditional knockout (Cdc42‐CKO) mice and confirmed aberrant axon sorting in Cdc42‐CKO nerves. In adult Cdc42‐CKO nerves, blood vessels were enlarged, and mature Remak bundles containing small axons were absent. Abnormal infoldings and outfoldings of myelin sheaths developed in Cdc42‐CKO nerves, mimicking pathological features of Charcot‐Marie‐Tooth (CMT) disease. The NF2/merlin tumor suppressor has been implicated up‐ and down‐stream of Cdc42. In Cdc42‐CKO;NF2‐del double mutant mice, radial sorting defects seen in Cdc42‐CKO nerves were rescued, while changes in myelin sheaths in Cdc42‐CKO nerves were not. Phosphorylation of Focal adhesion kinase (FAK) and P‐GSK3β, as well as expression of β‐catenin were decreased in Cdc42‐CKO nerves, and these changes were rescued by NF2/merlin mutation in Cdc42‐CKO;NF2‐del double mutant mice. Thus, Cdc42 regulates SC radial sorting in vivo through NF2/merlin dependent signaling pathways, while Cdc42 modulation of myelin sheath folding is NF2/merlin independent. GLIA 2013;61:1906–1921  相似文献   

17.
α-Synuclein is a key player in the pathogenesis of Parkinson disease (PD). Expression of human heme oxygenase-1 (HO-1) in astrocytes of GFAP.HMOX1 transgenic (TG) mice between 8.5 and 19 months of age results in a parkinsonian phenotype characterized by neural oxidative stress, nigrostriatal hypodopaminergia associated with locomotor incoordination, and overproduction of α-synuclein. We identified two microRNAs (miR-), miR-153 and miR-223, that negatively regulate α-synuclein in the basal ganglia of male and female GFAP.HMOX1 mice. Serum concentrations of both miRNAs progressively declined in the wild-type (WT) and GFAP.HMOX1 mice between 11 and 19 months of age. Moreover, at each time point surveyed, circulating levels of miR-153 were significantly lower in the TG animals compared to WT controls, while α-synuclein protein concentrations were elevated in erythrocytes of the GFAP.HMOX1 mice at 19 months of age relative to WT values. Primary WT neurons co-cultured with GFAP.HMOX1 astrocytes exhibited enhanced protein oxidation, mitophagy and apoptosis, aberrant expression of genes regulating the dopaminergic phenotype, and an imbalance in gene expression profiles governing mitochondrial fission and fusion. Many, but not all, of these neuronal abnormalities were abrogated by small interfering RNA (siRNA) knockdown of α-synuclein, implicating α-synuclein as a potent, albeit partial, mediator of HO-1's neurodystrophic effects in these parkinsonian mice. Overexpression of HO-1 in stressed astroglia has previously been documented in the substantia nigra of idiopathic PD and may promote α-synuclein production and toxicity by downmodulating miR-153 and/or miR-223 both within the CNS and in peripheral tissues.  相似文献   

18.
19.
We have examined the regeneration of corticospinal tract fibers and expression of various extracellular matrix (ECM) molecules and intermediate filaments [vimentin and glial fibrillary acidic protein (GFAP)] after dorsal hemisection of the spinal cord of adult GFAP-null and wild-type littermate control mice. The expression of these molecules was also examined in the uninjured spinal cord. There was no increase in axon sprouting or long distance regeneration in GFAP−/− mice compared to the wild type. In the uninjured spinal cord (i) GFAP was expressed in the wild type but not the mutant mice, while vimentin was expressed in astrocytes in the white matter of both types of mice; (ii) laminin and fibronectin immunoreactivity was localized to blood vessels and meninges; (iii) tenascin and chondroitin sulfate proteoglycan (CSPG) labeling was detected in astrocytes and the nodes of Ranvier in the white matter; and (iv) in addition, CSPG labeling which was generally less intense in the gray matter of mutant mice. Ten days after hemisection there was a large increase in vimentin+cells at the lesion site in both groups of mice. These include astrocytes as well as meningeal cells that migrate into the wound. The center of these lesions was filled by laminin+/fibronectin+cells. Discrete strands of tenascin-like immunoreactivity were seen in the core of the lesion and lining its walls. Marked increases in CSPG labeling was observed in the CNS parenchyma on either side of the lesion. These results indicate that the absence of GFAP in reactive astrocytes does not alter axonal sprouting or regeneration. In addition, except for CSPG, the expression of various ECM molecules appears unaltered in GFAP−/− mice.  相似文献   

20.
Erbayat-Altay E  Zeng LH  Xu L  Gutmann DH  Wong M 《Epilepsia》2007,48(8):1470-1476
PURPOSE: Patients with tuberous sclerosis complex (TSC) often have severe epilepsy that is intractable to available therapies. The development of novel treatments for epilepsy in TSC would benefit greatly from a suitable animal model, but most animal models of TSC to date have few reported neurological abnormalities, such as epilepsy. We previously described a novel model of TSC, due to conditional inactivation of the Tsc1 gene in glia (Tsc1(GFAP)CKO mice), in which mice develop epilepsy and premature death. Here, we characterize the natural history of the epilepsy in Tsc1(GFAP)CKO mice in more detail and report acute effects of treatment with standard antiepileptic drugs on seizures in these mice. METHODS: Video-EEG recordings were obtained from Tsc1(GFAP)CKO mice on a weekly basis, starting at 4 weeks of age until death, to monitor progression of interictal EEG abnormalities and seizures. In separate experiments, Tsc1(GFAP)CKO mice were monitored for interictal EEG abnormalities and seizures before and during treatment with phenobarbital, phenytoin, or saline. RESULTS: Tsc1(GFAP)CKO mice developed seizures around 4-6 weeks of age and subsequently had progressive worsening of the interictal EEG background and seizure frequency over a month, culminating in death. Treatment with phenobarbital or phenytoin caused a reduction in seizure frequency, but did not improve EEG background or prevent death. CONCLUSIONS: Tsc1(GFAP)CKO mice develop progressive epilepsy. Acute treatment with standard antiepileptic drugs suppresses seizures in these mice, but does not affect long-term prognosis. Tsc1(GFAP)CKO mice represent a good model to test other drugs that may have true antiepileptogenic actions in TSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号