首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiogenesis is the hallmark of malignant gliomas positively correlated with the vascular endothelial growth factor (VEGF) expression. We previously reported that expression levels of Nodal, a member of transforming growth factor-β super family, correlate with the malignant invasive behavior of human glioma cells. In this study, we show that knockdown of Nodal suppresses glioma angiogenesis by inhibition of VEGF. In human primary glioma specimens, expression of Nodal positively correlates with WHO glioma tumor grades and expression of VEGF in the corresponding glioma specimens. In human U87MG glioma cells, knockdown of endogenous Nodal by RNA interference (RNAi) significantly decreases colony formation and secretion of VEGF. In vivo, cellular depletion of Nodal in U87MG inhibited brain glioma growth and prolonged the survival of mice with U87MG/shNodal glioma compared with controls. Inhibition of Nodal suppressed tumor vessel growth in U87MG gliomas. Using Nodal inhibitor (SB431542), silencing Nodal, or overexpressing Nodal in the U87MG, GBM8401, and GBM glioma cells, our further experiments revealed that Nodal-induced VEGF expression might, at least in part, mediate through the ERK1/2-HIF-1α-mediated signaling pathway. Taken together, our data revealed that alteration of Nodal expression in glioma cells resulted in changes to VEGF secretion, and subsequent colony formation, in vivo tumor growth, and angiogenesis, all of which are consistent with the regulation of VEGF through the ERK1/2-HIF-1α-mediated signaling, suggesting that Nodal may serve as a potential therapeutic target for the treatment of human gliomas.  相似文献   

2.
Mounting evidence suggests that lipoxygenase (LO)-catalyzed products may play a key role in the development and progression of human cancers. In this study, we analyzed the effects of a 5-LO inhibitor, which inhibits the conversion of arachidonic acid to leukotrienes, on cell proliferation and apoptosis in human malignant glioma cells, including 5-LO-expressing cells U-87MG, A172 and 5-LO non-expressing cell U373. Growth of U-87MG and A172 cells, but not that of U373 cells, was inhibited in a dose-dependent manner by treatment with MK886. Similarly, specific 5-LO silencing by small interfering RNA reduced the growth of U-87MG and A172 cells. MK886 treatment reduced 5-LO activity independently of 5-LO-activating protein (FLAP) in human malignant glioma cells. MK886 treatment also induced cell apoptosis, measured by DNA fragmentation and nuclear condensation, in U-87MG and A172 cells but there were no signs in U373 cells. Moreover, this treatment reduced ERKs phosphorylation and anti-apoptotic molecule Bcl-2 expression, and increased Bax expression in U-87MG and A172 cells. In summary, our results show there is a link between the 5-LO expression status and the extent of MK886-inhibited cell proliferation and apoptosis. Taken together, this study suggest that 5-LO is a possible target for treating patients with gliomas, and 5-LO inhibition might be potent therapy for patients with 5-LO-expressing malignant gliomas.  相似文献   

3.
Erucylphosphocholine (ErPC) is a promising antineoplastic drug for the treatment of malignant brain tumors. It exerts strong anticancer activity and induces apoptosis even in chemoresistant glioma cells. In the present study, A172 and U373MG glioma cells were treated with ErPC to explore the contribution of MAP kinase family members ERK, JNK and p38 kinase to ErPC-induced cell death. The exposure to ErPC led to activation of JNK and concurrent inhibition of ERK in both cell lines. Using specific MAP kinase inhibitors we confirmed that in U373MG cells ERK was blocked and JNK was activated upon ErPC treatment. Both effects were dependent on caspase activation. In A172 cells, ErPC treatment resulted in an activation of the JNK pathway, whereas the situation with respect to ERK signalling was more complex. We conclude that inhibition of the ERK pathway by ErPC may be related to antiproliferative effects, while activation of the JNK pathway may be responsible for its pro-apoptotic action.  相似文献   

4.
Park MJ  Kim MS  Park IC  Kang HS  Yoo H  Park SH  Rhee CH  Hong SI  Lee SH 《Cancer research》2002,62(21):6318-6322
Glioblastoma is a severe type of primary brain tumor and its invasion is strongly correlated with the secretion of matrix metalloproteinases (MMPs). To investigate a role of PTEN, a tumor suppressor gene, in the regulation of hyaluronic acid (HA)-induced invasion of glioma cells, we examined the secretion of MMP-9 in various glioma cells with or without a functional PTEN gene. The secretion of MMP-9 in glioma cells lacking functional PTEN (U87MG, U251MG, and U373MG) was induced by HA, although not in wildtype (wt)-PTEN-harboring cells (LN229, LN18, and LN428). In addition, stable expression of wt-PTEN into U87MG cells significantly decreased the secretion of HA-induced MMP-9 and basal levels of MMP-2, inhibiting the activation of focal adhesion kinase and extracellular signal-regulated kinase 1/2, whereas the secretion levels of the tissue inhibitor of metalloproteinase-1 and -2 were increased, finally resulting in the inhibition of invasion by HA in vitro. Ectopic expressions of adenoviral (Ad)-wt-PTEN and -lipid phosphatase-deficient (G129E)-PTEN, but not both protein and -lipid phosphatase-deficient (C124S)-PTEN, reduced MMP-9 secretion and invasion by HA. These results were also confirmed by expressions of Ad-wt-PTEN and Ad-G129E-PTEN in other glioblastoma cells lacking functional PTEN, U251MG, and U373MG. These findings strongly suggest the possibility that PTEN may block HA-induced MMP-9 secretion and invasion through its protein phosphatase activity.  相似文献   

5.
6.
The neuropeptide substance P (SP), by stimulating tachykinin NK1receptors (NK1R), triggers a number of biological responses in human glioma cells which are potentially relevant for tumour growth. First, radioligand binding studies demonstrated the presence of tachykinin NK1R on SNB-19, DBTRG-05 MG and U373 MG, but not on U138 MG and MOG-G-GCM human glioma cell lines. Second, application of SP or neurokinin A (NKA) to NK1R+glioma cell lines increased the secretion of interleukin 6 (IL-6) and potentiated IL-6 secretion induced by IL-1β. SP also up-regulated the release of transforming growth factor β1 (TGF-β1) by the U373 MG glioma cell line. Third, SP induced new DNA synthesis and enhanced the proliferation rate of NK1R+, but not of NK1Rglioma cell lines. Also, NKA stimulated the proliferation and cytokine secretion in NK1R+glioma cell lines. All the stimulant effects of SP/NKA on NK1R+glioma cell lines were completely blocked by a specific tachykinin NK1R antagonist, MEN 11467. These data support the potential use of tachykinin NK1R antagonist for controlling the proliferative rate of human gliomas. © 1999 Cancer Research Campaign  相似文献   

7.
Angiogenesis and antiangiogenic therapy for malignant gliomas   总被引:3,自引:0,他引:3  
Angiogenesis is crucial to the growth of malignant gliomas. Therefore, antiangiogenic therapy represents a new, promising therapeutic modality for malignant gliomas. This study was designed to define the malignant glioma cases most suitable for antiangiogenic therapy in humans and to demonstrate the efficacy of antiangiogenic therapy in animals. Protein expression of the most potent angiogenic factor, vascular endothelial growth factor (VEGF), and its specific natural inhibitor, soluble Flt-1, as well as vessel architecture, including vessel density, area, and diameter, was evaluated in human malignant glioma samples (24 glioblastomas, 13 anaplastic astrocytomas). Among these, VEGF >1000ng/ml, VEGF/soluble Fltl ratio >1, vessel density >30, and vessel area >7% were prognostic factors for malignant gliomas. Based on these results, we per formed three different antiangiogenic experiments targeted to inhibit VEGF expression in a human malignant glioma (U87) mouse model: anti-VEGF neutralized antibody intraperitoneal injection; interferon-beta intramusclar injection; and transfection of an endogenous nonspecific angiogenesis inhibitor, thrombospondin-1, into glioma cells caused inhibition of VEGF secretion and/or mRNA expression and resulted in glioma growth inhibition of 70%, 84%, and 50%, respectively, compared with control. We conclude that malignant gliomas with high degrees of VEGF expression and vessel areas are good candidates for antiangiogenic therapy, especially that designed to inhibit VEGF expression.  相似文献   

8.
The gene for the major angiogenic factor, vascular endothelial growth factor (VEGF), encodes several spliced isoforms. We reported previously that overexpression of two VEGF isoforms, VEGF(121) and VEGF(165), by human glioma U87 MG cells induced tumor-associated intracerebral hemorrhage, whereas expression of a third form, VEGF(189), did not cause vessel rupture. Here, we test whether these VEGF isoforms have distinct activities for enhancing vascularization and growth of gliomas in mice. U87 MG cells that overexpressed VEGF(165) or VEGF(189) grew more rapidly than the parental cells in both s.c. and intracranial (i.c.) locations. However, cells that overexpressed VEGF(121) only showed enhancement of i.c. tumor growth but had a minimal effect on s.c. glioma progression. At both anatomical sties, VEGF(165) and VEGF(189) strongly augmented neovascularization, whereas VEGF(121) only increased vessel density in brain tumors. In each type of glioma, expression of VEGF receptors -1 and -2 largely phenocopied the tumor vasculature, because increased VEGF/VEGF receptor-activated microvessel densities were strongly correlated with the angiogenicity and tumorigenicity elicited by the VEGF isoforms at both anatomical sites. One notable difference between the sites was the expression of vitronectin, a prototypic ligand of alpha(v)beta(3) and alpha(v)beta(5) integrins, detected in i.c. but not in s.c., gliomas. Endothelial cell migration stimulated by VEGF(121) was potentiated by vitronectin to a greater extent than that stimulated by VEGF(165). This data demonstrates that VEGF isoforms have distinct activities at different anatomical sites and suggest that the microenvironment of different tissues affects the function of VEGF isoforms.  相似文献   

9.
Temozolomide (TMZ) is a methylating agent with promising antitumor efficacy for the treatment of melanomas and intermediate-grade gliomas. Unfortunately, its use in the management of high-grade gliomas (glioblastomas) is limited by multifaceted resistance mechanisms. The aim of this study was to evaluate the possibility to improve the cytotoxic response of two human glioblastoma cell lines, U87MG and U373MG, to TMZ by the use of Tempol (TPL), a low molecular weight piperidine nitroxide that has been shown to inhibit in vitro and in vivo growth of murine glioma cells. To this purpose, we used two different schedules for the combined exposure to the two agents. Our data indicate that TPL synergizes with TMZ in both U87MG and U373MG cells for both schedules tested. This effect is accompanied by an increase in apoptotic cell death and by changes in the expression of genes involved in control of the apoptotic process. TPL was also observed to induce a cell-type specific decrease in GSH levels and in GSH-related enzyme activities that could contribute to its sensitizing effect.  相似文献   

10.
Fas transduces not only apoptotic signals through various pathways but also angiogenic and proinflammatory responses in vivo. Human glioma cells express Fas although sensitivity to Fas-mediated cell death is variable, suggesting that Fas may have functions other than apoptosis in these cells. In this study, we addressed alternative functions of Fas expressed on human gliomas by Fas ligation in three human glioma cell lines, CRT-MG, U373-MG, and U87-MG, and the in vivo expression of Fas and chemokines in human glioblastoma multiforme (GBM). Herein, we demonstrate that: (a) stimulation with agonistic anti-Fas monoclonal antibody CH-11 and human recombinant soluble Fas ligand induces expression of the CC chemokine MCP-1 and the CXC chemokine interleukin-8 by human glioma cell lines at the mRNA and protein levels in a dose- and time-dependent manner; (b) selective pharmacological inhibitors of MEK1 (U0126 and PD98059) and p38 mitogen-activated protein kinase (MAPK) (SB202190) suppress Fas-mediated chemokine expression in a dose-dependent manner; (c) Fas ligation on human glioma cells leads to activation of both extracellular signal-regulated kinases ERK1/ERK2 and p38 MAPK; and (d) GBM samples express higher levels of Fas compared with normal control brain, which correlates with increased interleukin 8 expression. These findings indicate that Fas ligation on human glioma cells leads to the selective induction of chemokine expression, which involves the ERK1/ERK2 and p38 MAPK signaling pathways. Therefore, the Fas-Fas ligand system in human brain tumors may be involved not only in apoptotic processes but also in the provocation of angiogenic and proinflammatory responses.  相似文献   

11.
Combined radiation and p53 gene therapy of malignant glioma cells   总被引:6,自引:0,他引:6  
More than half of malignant gliomas reportedly have alterations in the p53 tumor suppressor gene. Because p53 plays a key role in the cellular response to DNA-damaging agents, we investigated the role of p53 gene therapy before ionizing radiation in cultured human glioma cells containing normal or mutated p53. Three established human glioma cell lines expressing the wild-type (U87 MG, p53wt) or mutant (A172 and U373 MG, p53mut) p53 gene were transduced by recombinant adenoviral vectors bearing human p53 (Adp53) and Escherichia coli beta-galactosidase genes (AdLacZ, control virus) before radiation (0-20 Gy). Changes in p53, p21, and Bax expression were studied by Western immunoblotting, whereas cell cycle alterations and apoptosis were investigated by flow cytometry and nuclear staining. Survival was assessed by clonogenic assays. Within 48 hours of Adp53 exposure, all three cell lines demonstrated p53 expression at a viral multiplicity of infection of 100. p21, which is a p53-inducible downstream effector gene, was overexpressed, and cells were arrested in the G1 phase. Bax expression, which is thought to play a role in p53-induced apoptosis, did not change with either radiation or Adp53. Apoptosis and survival after p53 gene therapy varied. U87 MG (p53wt) cells showed minimal apoptosis after Adp53, irradiation, or combined treatments. U373 MG (p53mut) cells underwent massive apoptosis and died within 48 hours of Adp53 treatment, independent of irradiation. Surprisingly, A172 (p53mut) cells demonstrated minimal apoptosis after Adp53 exposure; however, unlike U373 MG cells, apoptosis increased with radiation dose. Survival of all three cell lines was reduced dramatically after >10 Gy. Although Adp53 transduction significantly reduced the survival of U373 MG cells and inhibited A172 growth, it had no effect on the U87 MG cell line. Transduction with AdLacZ did not affect apoptosis or cell cycle progression and only minimally affected survival in all cell lines. We conclude that responses to p53 gene therapy are variable among gliomas and most likely depend upon both cellular p53 status and as yet ill-defined downstream pathways involving activation of cell cycle regulatory and apoptotic genes.  相似文献   

12.
Regardless of their cell type of origin, all aggressive brain tumors, such as malignant gliomas and metastatic tumors produce brain edema, which is an important cause of patient morbidity and mortality. Caloric restriction (CR) has long been recognized as a natural therapy that improves health, promotes longevity, and significantly reduces both the incidence and growth of many tumor types. The aim of present work was to investigate the effect of CR on edema and survival in the mice implanted with U87 gliomas. We found that CR significantly inhibited the intracerebral tumor growth, attenuated brain edema, and ultimately prolonged survival of mice with U87 gliomas. Plasma corticosterone level was found higher and serum VEGF and IGF-1 levels were found lower in CR, when compared to AL group. CR upregulated tight junction proteins including claudin-1, claudin-5 and ZO-1, downregulated VEGF and VEGFR2, enhanced α-SMA expression, and reduced AQP1 expression in U87 gliomas. In addition, CR suppressed inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) formation in U87 gliomas. In conclusion, CR attenuated edema in U87 orthotopic mouse glioma model associated with elevation of corticosterone, suppression of VEGF/VEGFR2, improvement of tight junctions, and suppression of iNOS expression and NO formation. Our results suggested that CR might be an effective therapy for recurrent malignant brain cancers through alleviating associated edema.  相似文献   

13.
Human gliomas express very high levels of cell-surface alpha2,3-linked terminal sialic acids on glycoproteins bearing N-linked oligosaccharides, most notably on alpha3beta1 integrin, which is the predominant integrin found in these tumors. Alpha2,6-linked terminal sialic acids, however, are not expressed. Two stable transfectants were made using a tumorigenic human glioma cell line, U-373 MG. Galbeta1,4GlcNAc alpha2,6-sialyltransferase (ST6Gal I) transfectants were made to replace the endogenous alpha2,3-linked sialic acids with alpha2,6-linked sialic acids. And Galbeta1,3(4)GlcNAc alpha2,3-sialyltransferase (ST3Gal III) transfectants were made to increase further the expression of cell-surface, N-glycan, alpha2,3-linked sialic acids. Although ST3Gal III transfection resulted in increased invasivity when compared with parental U-373 MG and vector-transfected control cells in vitro, ST6Gal I transfection abolished invasion in vitro and induced alterations in both cell morphology, cell-spreading, and adhesion-mediated protein tyrosine phosphorylation. Furthermore, the ST6Gal I transfectants produced no intracranial tumors in severe combined immunodeficient mice, whereas parental U-373 MG cells, the vector-transfected control cells, and ST3Gal III-transfected U-373 MG cells did. These results suggest that both the linkage and expression levels of the terminal sialic acids of alpha3beta1 integrin N-glycans play an important role in glioma cell-extracellular matrix interactions. Thus, manipulating ST6Gal I gene expression may have therapeutic potential for the treatment of malignant gliomas.  相似文献   

14.
Thrombin is a key enzyme in the blood coagulation system where it converts fibrinogen to fibrin. It participates in a variety of biological processes such as the induction of mitogenesis and of morphological changes, the production of cytokines and growth factors, and apoptosis. To clarify the role of thrombin in the proliferation of human malignant gliomas, we investigated its effect on the expression of vascular endothelial growth factor (VEGF) in vitro and determined its intrinsic expression in human glioma tissues. In 3 human glioma cell lines tested, U-87 MG, U-251 MG, and U-105 MG, thrombin induced the VEGF mRNA expression and protein in a dose- and time-dependent manner. The thrombin receptor expression was detectable by RT-PCR and immunoblot. The secretion of VEGF protein in glioma cells was stimulated by the thrombin receptor agonist peptide and the induction of VEGF was significantly blocked by the thrombin inhibitor hirudin, indicating that the up-regulation of VEGF was mediated by the thrombin/thrombin receptor pathway. Immunoblot analysis demonstrated that prothrombin, the precursor of thrombin, was distributed in all 10 glioma tissues examined. In situ hybridization and immunohistochemical analysis revealed the co-localization of prothrombin mRNA-positive and GFAP-positive cells in the glioma tissues. Although various factors may be involved in the up-regulation of VEGF, our results suggest that human gliomas per se express prothrombin, and that thrombin, converted from prothrombin in glioma tissues, substantially stimulates angiogenesis in an autocrine fashion.  相似文献   

15.
Su JD  Mayo LD  Donner DB  Durden DL 《Cancer research》2003,63(13):3585-3592
Previous work from our laboratory demonstrated that PTEN regulates tumor-induced angiogenesis and thrombospondin 1 expression in malignant glioma. Herein, we demonstrated the first evidence that the systemic administration of a phosphatidylinositol 3'-kinase (PI3K) inhibitor (LY294002) has antitumor and antiangiogenic activity in vivo. We show that PTEN reconstitution diminished phosphorylation of AKT, induced the transactivation of p53 (7.5-fold induction) and increased the expression of p53 target genes, p21(waf-1) and insulin-like growth factor binding protein 3 in glioma cells. PTEN and LY294002 induced p53 activity in human brain endothelial cells, suggesting that PTEN and PI3K pathways can suppress the progression of cancer through direct actions on tumor and endothelial cells. The capacity of PTEN and LY294002 to inhibit U87MG or U373MG glioma growth was tested in an ectopic skin and orthotopic brain tumor model. LY294002 inhibited glioma tumor growth in vivo, induced tumor regression, decreased the incidence of brain tumors, and blocked the tumor-induced angiogenic response of U87MG cells in vivo. These data provide evidence that both PTEN and PI3K inhibitors regulate p53 function and display in vivo antiangiogenic and antitumor activity. These results provide evidence that the two tumor suppressor genes, PTEN and p53, act together to block tumor progression in vivo. Our data provide the first preclinical evidence for the in vivo efficacy for LY294002 in the treatment of malignant gliomas.  相似文献   

16.
Astrocytes harbour functional receptors to many neurotransmitters, including substance P (SP), an undecapeptide belonging to the tachykinin family of peptide transmitters. SP activates malignant glial cells to induce cytokine release and proliferation, both responses being relevant for tumour progression. In tumours developed in nude mice transplanted subcutaneously (s.c.) to U373 MG human glioma cells, the presence of SP was observed at immunohistochemistry. Although the administration of exogenous SP did not significantly affect the size or development of U373 MG xenograft, a role of SP in supporting glioma progression in vivo was highlighted by the tumour growth inhibition induced by highly specific and selective human tachykinin NK1 receptor antagonists (MEN 11467 and MEN 11149). The anti-tumour activity of MEN 11467 was observed both with s.c. or intravenous treatments and was partially reverted by the concomitant administration of exogenous SP. Doxorubicin did not show any activity in controlling U373 MG growth in this in vivo model. A novel therapeutic approach to treat malignant gliomas with tachykinin NK1 receptor antagonists is suggested by these findings.  相似文献   

17.
Matrix metalloproteinase (MMP) plays important roles in cell invasion and tumor angiogenesis. SI-27, an anti-MMP agent, has already been shown to possess both in vitro anti-invasive and anti-angiogenic properties against malignant gliomas in non-cytotoxic dose concentrations. However, to the best of our knowledge, the molecular mechanism mediating the cytotoxic action by this agent and the molecular mechanism in the cytotoxic action against malignant glioma cell have not yet been clarified. Therefore, we assessed the effect in the cytotoxic dose concentrations to investigate whether this cytotoxic action is related to apoptosis in this study. The effect on human glioma cell lines (U87MG, U251MG, and U373MG) was examined by transmission electron microscope, agarose gel electrophoresis with the DNA fragmentation, flow cytometry with FITC-conjugated Annexin V, and detection of caspase activity. Drug-induced apoptosis was observed in the cytotoxic dose. The result indicated that the cytotoxity of SI-27 might be related to the drug-induced apoptosis mediated by caspase.  相似文献   

18.
A mutant epidermal growth factor receptor (variously called DeltaEGFR, de2-7 EGFR, or EGFRvIII) containing a deletion of 267 amino acids of the extracellular domain is frequently highly expressed in human malignant gliomas and has been reported for cancers of the lung, breast, and prostate. We tested the efficacy of a novel monoclonal anti-DeltaEGFR antibody, mAb 806, on the growth of intracranial xenografted gliomas in nude mice. Systemic treatment with mAb 806 significantly reduced the volume of tumors and increased the survival of mice bearing xenografts of U87 MG.DeltaEGFR, LN-Z308.DeltaEGFR, or A1207.DeltaEGFR gliomas, each of which expresses high levels of DeltaEGFR. In contrast, mAb 806 treatment was ineffective with mice bearing the parental U87 MG tumors, which expressed low levels of endogenous wild-type EGFR, or U87 MG.DK tumors, which expressed high levels of kinase-deficient DeltaEGFR. A slight increase of survival of mice xenografted with a wild-type EGFR-overexpressing U87 MG glioma (U87 MG.wtEGFR) was effected by mAb 806 concordant with its weak cross-reactivity with such cells. Treatment of U87 MG.DeltaEGFR tumors in mice with mAb 806 caused decreases in both tumor growth and angiogenesis, as well as increased apoptosis. Mechanistically, in vivo mAb 806 treatment resulted in reduced phosphorylation of the constitutively active DeltaEGFR and caused down-regulated expression of the apoptotic protector, Bcl-XL. These data provide preclinical evidence that mAb 806 treatment may be a useful biotherapeutic agent for those aggressive gliomas that express DeltaEGFR.  相似文献   

19.
BACKGROUND: p27Kip1 is a potential tumor suppressor gene. As malignant gliomas express Fas at high levels, the relationship between Fas-mediated apoptosis and p27Kip1 expression may improve therapeutic approaches for treating gliomas. MATERIALS AND METHODS: In this study, we transduced U-373MG glioma cells with the Fas ligand or caspase-8 genes using adenovirus vectors after transduction of the p27Kip1 gene to induce cell cycle arrest in U-373MG cells, and evaluated the degree of apoptosis. RESULTS: The results demonstrate that expression of p27Kip1 enhanced Fas ligand- or caspase-8-mediated apoptosis in U-373MG cells. Expression of apoptosis-related genes such as Bax, Bcl-X(L), Bcl-2 or caspase-8 were reduced by p27Kip1 transduction compared with that of beta-actin, whereas p27Kip1 transduction did not affect the expression level of Fas or the Fas ligand. CONCLUSION: Combined transduction of p27Kip1 with Fas ligand or caspase-8 would overide the resistance mechanism to apoptosis in malignant gliomas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号