首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: The objective of this study was to evaluate the effect of a new antiseizure drug, retigabine (D-23129; N-(2-amino-4-[fluorobenzylamino]-phenyl) carbamic acid ethyl ester) on low-Mg2+-induced epileptiform discharges in rat in vitro. METHODS: Three types of epileptiform discharges (recurrent short discharges in the hippocampus, seizure-like events, and late recurrent discharges in the entorhinal cortex) were elicited in rat combined entorhinal cortex-hippocampal slices by perfusion with low-Mg2+-artificial cerebrospinal fluid (ACSF). The antiepileptic properties of retigabine were evaluated as effect on the frequency and amplitude of the epileptiform activities as well as time of onset of the effect in the entorhinal cortex (EC) and in hippocampal area CA1 (CA1) by using extracellular recording techniques. RESULTS: Retigabine (20 microM) reversibly suppressed the recurrent short discharges otherwise sensitive only to high doses of valproate (VPA) but insensitive to standard antiepileptic drugs (AEDs) in CA1, whereas 10 microM reduced the frequency of discharges by 34+/-18.8%, with no significant effect on the amplitude. In EC, retigabine (50 microM) reversibly suppressed the seizure-like events, whereas 20 microM blocked seizure-like events in 71.5% of the slices. The seizure-like events were also sensitive to standard AEDs. Late recurrent discharges in EC that are not blocked by standard AEDs were reversibly suppressed by retigabine (100 microM), whereas 50 microM reduced the frequency of the discharges by 94.4+/-7.7%, and 20 microM, by 74.2+/-18.0%, with no significant effect on the amplitude. CONCLUSIONS: Retigabine is an effective AED with suppressive effects on recurrent short discharges and on late recurrent discharges normally insensitive to standard AEDs.  相似文献   

2.
Primary cultures of cerebellar neurons obtained from 7-9-day-old rats and grown 7-9 days in vitro (DIV) were used to study the effects of Na+ and Ca++ on K+-evoked taurine release. These cultures, made up largely of granule neurons (90%) and inhibitory interneurons (5-7%), produced a dose-dependent, depolarization-evoked taurine release that was Ca++-dependent at 40 mM K+, and Ca++-independent at K+ concentrations above 40 mM. The dihydropyridine Ca++ channel agonist BAY K 8644 (1 microM) augmented 30 mM K+-evoked release, while the antagonist nifedipine (5 microM) abolished both the BAY K 8644- and K+-enhanced release. Depolarization with the Na+ channel agonist veratridine (50 microM) stimulated taurine efflux, which was completely blocked by pretreatment with tetrodotoxin (2 microM). However, 50 mM K+-evoked taurine release was not affected by tetrodotoxin pretreatment. Substitution of choline Cl for NaCl partially antagonized 50 mM K+-evoked release, and by itself, the Na+ ionophore monensin (50 microM) stimulated release. These results suggest that both K+-evoked and basal taurine release from primary cerebellar neuronal cultures are sensitive to the levels of both intracellular and extracellular Na+ and Ca++. In contrast to previous findings using cerebellar astrocytes, neuronal L-type Ca++ channels, but not voltage-dependent Na+ channels, also appear to be necessary. The implications of these results on taurine's status as a putative neurotransmitter are discussed.  相似文献   

3.
Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons.   总被引:16,自引:0,他引:16  
Recent data have indicated that the divalent cation Zn2+ can selectively block central neuronal excitation mediated by N-methyl-D-aspartate (NMDA) receptors. The present experiments were conducted to determine the action of Zn2+ at the single-channel level. Outside-out membrane patches were prepared from cultured murine cortical neurons. Glutamate, 3 microM, in the presence of 5 microM glycine activated channels with a main conductance state of about 50 pS which were blocked in a voltage-dependent manner by Mg2+. Zn2+ appeared to have 2 effects on these NMDA receptor-activated channels. First, at concentrations as low as 1-10 microM, Zn2+ produced a concentration-dependent reduction in channel open probability, insensitive to membrane voltage between -60 and +40 mV; about 50% reduction in open probability was produced by 3 microM Zn2+. This reduction was mostly due to a decrease in opening frequency and only weakly mimicked by Mg2+. Second, at higher concentrations (10-100 microM) and negative membrane voltages, Zn2+ additionally produced an apparent reduction in single-channel amplitude, associated with an increase in channel noise, suggestive of a fast channel block. The amplitude reduction was voltage-dependent, with a delta of 0.51; amplitude distribution analysis suggested that this voltage dependence was primarily contributed by the "on" blocking rate constant, with little contribution from the "off" rate constant. The channel block produced by Zn2+ was faster than that of Mg2+, which at 100 microM and negative membrane voltages induces flickering of the NMDA receptor-activated channel without changing apparent channel amplitude.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The role of calcium-activated potassium channels in the regulation of neuronal hyperexcitability, as in epilepsy, is unclear. To examine this issue, we have used the acute hippocampal slice model of epileptiform activity to investigate the effects of an enhancer of SK channel activity, 1-ethyl-benzimidazolinone (EBIO). That EBIO is an SK channel modulator was confirmed by its potentiation of hSK1, hSK2, hSK3 and hIK currents (EC(50) values in the range of 130-870 microM) and its apamin (1 microM) sensitive reduction of the number of action potentials fired in CA3 pyramidal neurons in response to a depolarizing current step. In addition, while EBIO did not significantly affect electrically evoked glutamatergic synaptic transmission, it did inhibit epileptiform activity (IC(50) values in the range of 150-325 microM) induced by (1) modifying the extracellular ionic environment by removing extracellular Mg(2+) or elevating extracellular K(+) from 3.0 to 8.5 mM and (2) disinhibiting the slice using 3 mM pentylenetetrazol or combined application of 10 microM gabazine and 10 microM CGP55845. Furthermore, its inhibitory effect in the full disinhibition model of epileptiform activity (10 microM gabazine + 10 microM CGP55845) was occluded by the SK channel blocker apamin (300 nM-1 microM) which in its own right increased the duration and reduced the frequency of individual epileptiform bursts. In conclusion, compounds that enhance the activation of small conductance Ca(2+) -activated K(+) channels are effective inhibitors of epileptiform activity in vitro.  相似文献   

5.
B A MacVicar  D Hochman  M J Delay  S Weiss 《Glia》1991,4(5):448-455
Fura-2 and indo-1 fluorescence measurements were used to examine intracellular Ca++ concentration ([Ca++]i) and its modulation by voltage-activated influx in murine cortical astrocytes in primary cell culture. Extracellular K+ was increased from 5 to 50 mM to depolarize cells to determine if Ca++ influx through voltage activated Ca++ channels could alter [Ca++]i. In confluent 4 to 6 weeks in vitro astrocyte cultures 50 mM K+ increased [Ca++]i 3-4-fold (from 150 nM up to 550 nM); this increase was blocked by nifedipine and enhanced by BayK 8644 indicating that influx was through L-type channels. However, in 1 to 2 weeks in vitro astrocyte cultures, high K+ reduced [Ca++]i. L-type channels were apparently present in these cells because high K+ in combination with BayK 8644 increased [Ca++]i. Following pretreatment of 1 to 2 weeks in vitro astrocytes with dibutyryl cAMP (dbcAMP) high K+ increased [Ca++]i in the absence of BayK 8644 indicating enhanced activity of Ca++ channels in agreement with previous voltage-clamp studies. Ca++ influx through voltage-activated channels in cultured cortical astrocytes can substantially increase [Ca++]i and these channels can be dynamically modulated by dihydropyridines. Immature astrocytes may express 'silent' or inactive Ca++ channels or have a much lower number of channels.  相似文献   

6.
PURPOSE: We used field-potential recordings in slices of rat cerebral cortex along with whole-cell patch recordings from rat neocortical cells in culture to test the hypothesis that the antiepileptic drug (AED) lamotrigine (LTG) modulates K+-mediated, hyperpolarizing currents. METHODS: Extracellular field-potential recordings were performed in neocortical slices obtained from Wistar rats aged 25-50 days. Rat neocortical neurons in culture were subjected to the whole-cell mode of voltage clamping under experimental conditions designed to study voltage-gated K+ currents. RESULTS: In the in vitro slice preparation, LTG (100-400 microM) reduced and/or abolished epileptiform discharges induced by 4-aminopyridine (4AP, 100 microM; n = 10), at doses that were significantly higher than those required to affect epileptiform activity recorded in Mg2+-free medium (n = 8). We also discovered that in cultured cortical cells, LTG (100-500 microM; n = 13) increased a transient, 4AP-sensitive, outward current elicited by depolarizing commands in medium containing voltage-gated Ca2+ and Na+ channel antagonists. Moreover, we did not observe any change in a late, tetraethylammonium-sensitive outward current. CONCLUSIONS: Our data indicate that LTG, in addition to the well-known reduction of voltage-gated Na+ currents, potentiates 4AP-sensitive, K+-mediated hyperpolarizing conductances in cortical neurons. This mechanism of action contributes to the anticonvulsant effects exerted by LTG in experimental models of epileptiform discharge, and presumably in clinical practice.  相似文献   

7.
A Ameri  T Simmet 《Brain research》1999,842(2):332-341
Aconitine, lappaconitine and ajacine are structurally related alkaloids occurring in several species of the Aconitum genus. While aconitine is known to activate the voltage-dependent sodium channel, lappaconitine has been reported to block this channel. To investigate a possible antagonism of the aconitine action on neuronal activity by lappaconitine and the closely related alkaloid ajacine, we have performed extracellular recordings of stimulus evoked population spikes and field excitatory postsynaptic potential (EPSP) in rat hippocampal slices. Aconitine (10-100 nM) diminished the amplitude of the orthodromic population spike in a concentration-dependent manner. When aconitine was applied in presence of 10 microM lappaconitine, the concentration-response curve was shifted to the right. Furthermore, the complete suppression of the population spike evoked by 100 nM aconitine was reversed by 10 microM lappaconitine. The action of lappaconitine was mimicked by ajacine, however, the latter alkaloid was less potent. Both lappaconitine and ajacine shifted the input-output relationship of the presynaptic fiber spike as function of the stimulation intensity and of the field EPSP as function of the presynaptic fiber spike to the right. After pharmacological isolation, the presynaptic fiber spike was decreased by both compounds in a frequency-dependent manner indicative for a use-dependent action. Thus, electrophysiologically these alkaloids seem to inhibit predominantly the excitability of the afferent fibres and, in consequence, neurotransmission between Schaffer collaterals and the CA1 neurons, thereby suppressing the firing of the latter. Ajacine and lappaconitine inhibited stimulus-triggered epileptiform population bursts in area CA1 elicited by omission of Mg(2+) as well as spontaneously occurring epileptiform discharges in area CA3 elicited by omission of Mg(2+) and elevation of K(+). It is concluded that the inhibitory and antiepileptiform effect of ajacine and lappaconitine is mediated by a frequency-dependent inhibition of the voltage-dependent sodium channel, thereby decreasing the excitability which might be important for filtering high frequency bursts of action potentials characteristic for epileptiform activity in the hippocampus. Moreover, these alkaloids are naturally occurring antagonists of the sodium channel activator aconitine.  相似文献   

8.
Extracellular field potentials and [K+]o were recorded in slices of human epileptogenic neocortex maintained in vitro during perfusion with Mg(2+)-free artificial cerebrospinal fluid (ACSF). The human neocortex was obtained during neurosurgical procedures for the relief of seizures that were resistant to medical treatment. Spontaneous epileptiform activity and episodes of spreading depression appeared within 1.5 to 2 hours of perfusion with Mg(2+)-free ACSF. The epileptiform discharges consisted of negative field potential shifts (amplitude, 0.8-10 mV) that lasted 2.5 to 80 seconds and recurred at intervals ranging between 4 and 160 seconds. Both duration and frequency of occurrence of epileptiform events were not significantly different when measured in slices obtained from spiking tissue compared with those gathered from nonspiking neocortical areas. Transient increases in [K+]o of up to 10.5 mM were associated with each epileptiform discharge; these changes were maximal and fastest in the middle neocortical layers. Spreading depression episodes were characterized by 20 to 30-mV negative shifts that lasted up to 200 seconds and were accompanied by increases in [K+]o of approximately 100 mM. Epileptiform discharges and spreading depressions did not occur during perfusion with Mg(2+)-free ACSF that contained either competitive or noncompetitive antagonists of the N-methyl-D-aspartate (NMDA) receptor subtype. In contrast, pharmacological blockade of non-NMDA receptors did not influence the epileptiform activity observed in Mg(2+)-free ACSF. These findings demonstrate that decreasing [Mg2+]o leads to the appearance of both spontaneous epileptiform discharges and spreading depression in the human epileptogenic neocortex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
M Okada  A Urae  K Iwasaki  K Mine  M Fujiwara 《Brain research》1992,583(1-2):227-236
The effects of non-competitive NMDA antagonists, MK-801 and dextrorphan in relation to the rise in intracellular Ca2+ concentrations ([Ca2+]i) after stimulation with 15 mM K+ in whole brain synaptosomes from young (3 months old) and aged (24 months old) Fisher344 rats were examined. A fluorescent chelating agent, Rhod-2, was employed to monitor any alterations of K(+)-evoked [Ca2+]i. In young rats, the rise in [Ca2+]i following depolarization was affected by neither dextrorphan (1, 10, 100 microM) nor MK-801 (0.1, 1, 10 microM), while in aged rats, 1 microM dextrorphan and 0.1 microM MK-801 brought about a significant increase in [Ca2+]i following depolarization. In low Mg2+ medium, 10 microM MK-801 and 100 microM dextrorphan significantly inhibited the rise in [Ca2+]i after stimulation with 15 mM K+ in young rats, while neither dextrorphan nor MK-801 could affect the rise in [Ca2+]i significantly in aged rats. When 100 microM NMDA was applied in a medium containing 1.2 mM Mg2+, the rise in [Ca2+]i following depolarization was slightly inhibited by 1 microM MK-801 in young rats, but it was not inhibited significantly by dextrorphan. In aged rats, both 100 microM dextrorphan and 10 microM MK-801 strongly inhibited the rise in [Ca2+]i following depolarization in the presence of 100 microM NMDA. Instead of NMDA, when 100 microM alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), a non-NMDA receptor agonist, was applied, dextrorphan did not inhibit the rise in [Ca2+]i. In low Mg2+ medium, 100 microM NMDA potentiated the inhibitory effect of 10 microM dextrorphan in young rats, while 100 microM dextrorphan or MK-801 did not show any further inhibition by adding 100 microM NMDA. The addition of 100 microM AMPA did not affect the effect of dextrorphan in a low Mg2+ medium in young rats. These results suggest that NMDA antagonist-mediated [Ca2+]i homeostatic system may alter through aging. In addition, the findings that NMDA potentiated the inhibitory effect of NMDA antagonist, which being further potentiated by aging or lowered extrasynaptosomal Mg2+, indicate the possibility that the Mg2+ block to NMDA receptors might be attenuated through aging.  相似文献   

10.
C. Peers   《Brain research》1991,568(1-2):116-122
Whole-cell patch-clamp recordings were used to investigate the effects of the respiratory stimulant doxapram on K+ and Ca2+ currents in isolated type I cells of the neonatal rat carotid body. Doxapram (1-100 microM) caused rapid, reversible and dose-dependent inhibitions of K+ currents recorded in type I cells (IC50 approximately 13 microM). Inhibition was voltage-dependent, in that the effects of doxapram were maximal at test potentials where a shoulder in the current-voltage relationship was maximal. These K+ currents were composed of both Ca(2+)-activated and Ca(2+)-independent components. Using high [Mg2+], low [Ca2+] solutions to inhibit Ca(2+)-activated K+ currents, doxapram was also seen to directly inhibit Ca(2+)-independent K+ currents. This effect was voltage-independent and was less potent (IC50 approximately 20 microM) than under control conditions, suggesting that doxapram was a more potent inhibitor of the Ca(2+)-activated K+ currents recorded under control conditions. Doxapram (10 microM) was without effect on L-type Ca2+ channel currents recorded under conditions where K+ channel activity was minimized and was also without significant effect on K+ currents recorded in the neuronal cell line NG-108 15, suggesting a selective effect on carotid body type I cells. The effects of doxapram on type I cells show similarities to those of the physiological stimuli of the carotid body, suggesting that doxapram may share a similar mechanism of action in stimulating the intact organ.  相似文献   

11.
The ability of acute application of the neurotoxicant methylmercury (MeHg) to disrupt the function of presynaptic Ca2+ and Na+ channels at intact neuromuscular junctions was examined using mouse triangularis sterni motor nerves. In Ba(2+)-containing solutions, potential changes arising from Na+ and Ca2+ channel function could be recorded from the perineurial sheath surrounding motor neurons when K+ channels were blocked by tetraethylammonium chloride and 3,4-diaminopyridine. MeHg (100 microM) reduced both Na(+)- and Ba(2+)-dependent components to block within 3-5 min at apparently equivalent rates. Time to block was approximately 7 min after exposure to 50 microM MeHg. In 2 of 5 preparations exposed to 50 microM MeHg, the Ca2+ channel-mediated component was blocked prior to the Na+ channel-mediated component. In the remaining three preparations, Na(+)- and Ba(2+)-dependent potentials were blocked at similar times. Following block by MeHg, neither perfusing the preparation in MeHg-free solutions nor increasing the intensity and/or duration of stimulus to the intercostal nerves resulted in recovery of Na+ or Ca2+ potentials. In the presence of K+ channel blockers, repetitive firing of nerves in response to a single stimulus was observed in 20-30% of the triangularis preparations; in the two preparations treated with MeHg in which repetitive firing was observed, it decreased prior to block of the stimulus-induced Na+/Ba2+ potentials. These results corroborate the results obtained in isolated synaptosomes and pheochromocytoma cells, and suggest that MeHg decreases motor nerve excitability by disrupting Na+ channel function and may block neurotransmitter release by disrupting Na+ and Ca2+ channel function.  相似文献   

12.
Heavy metals: effects on synaptic transmission   总被引:5,自引:0,他引:5  
The acute effects of Pb++, Cd++ and Hg++ on synaptic transmission were studied on the in vitro sciatic nerve-sartorius muscle preparation of the frog, using electrophysiological techniques. Biochemical procedures were used to examine the effects of Pb++ and Cd++ on in vitro preparations of synaptosomes. In the electrophysiological studies Pb++ was shown to be a powerful competitive inhibitor of action potential-evoked release of acetylcholine (ACh) as judged by its depressant effects on the amplitude of endplate potentials (EPPs). The dissociation constant between Pb++ and the presynaptic Ca++ receptor is about 1 microM. Pb++ also increases spontaneous transmitter release as determined by the frequency of miniature endplate potentials (MEPPs). The increase in MEPP frequency is assumed to be due to an intracellular action of Pb++ to reduce the ability of nerve terminal organelles to buffer Ca++ and thereby, increases the intracellular concentration of Ca++. Cd++ also blocks evoked ACh release by a competitive inhibitory mechanism which appears similar to that for Pb++. The dissociation constant for Cd++ is about 2.8 microM. In contrast to Pb++, Cd++, does not increase resting MEPP frequency. Hg++ is unique in that it first causes an increase in evoked ACh release and then a sudden and complete blockade; the MEPP frequency follows a similar time course. The mechanism underlying these effects of Hg++ is uncertain. In rat brain synaptosomes, Pb++ and Cd++ competitively inhibit the K+-stimulated influx of 45Ca++. The dissociation constants for the interaction of Pb++ and Cd++ with Ca++ channels is 1.1 microM and 2.2 microM respectively. These data strongly support the idea that the electrophysiological effects of Pb++ and Cd++ on the EPP are due to a reduction of voltage-gated Ca++ entry into presynaptic nerve terminals.  相似文献   

13.
We have used single cell imaging of [Ca2+]i and single channel cell-attached patch clamp recording to characterise the Ca2+ channels present on the plasma membrane of retinoic acid-differentiated human neuroblastoma (SH-SY5Y) cells. Exposure to raised K+ (45 or 60 mM) for 1 min resulted in a transient rise in [Ca2+]i which was abolished by cadmium (100 microM). The amplitude of the evoked rise varied from cell to cell. Both omega-Conus toxin (500 nM) and nifedipine (10 microM) reduced, but did not abolish, the rise in [Ca2+]i whereas Bay K 8644 (3 microM) potentiated it. In single channel records both L- and N-type Ca2+ channel openings were observed during membrane depolarisations from a holding potential of -90 mV. L-type channel openings (unitary conductance 22.5 pS) were prolonged by S(+)-PN 202-791 (500 nM) and could still be evoked from a depolarised holding potential (-40 mV). N-type channel openings (unitary conductance 12.5 pS) were unaffected by the dihydropyridine agonist but were inactivated at a holding potential of -40 mV. These results indicate that, in contrast to previous observations using whole cell recording, retinoic acid-differentiated SH-SY5Y cells express both L- and N-type Ca2+ channels.  相似文献   

14.
The anticonvulsant properties of ketamine and 2-APV were compared on 3 types of convulsant activity in hippocampal area CA1: the 'picrotoxin-epilepsy,' the 'low magnesium epilepsy' and the 'low calcium epilepsy.' In particular the spontaneous activity, the synaptically evoked responses and the changes in [Ca2+]0 were examined, since in many cases of epilepsy, Ca2+ uptake into cells is enhanced. In normal medium, ketamine and 2-APV have nearly no effect on stimulus evoked decreases in [Ca2+]0, although they clearly depress NMDA-induced ionic changes. However, ketamine and 2-APV prevent to some extent the augmentation of stimulus-induced changes in [Ca2+]0, observed after treating slices with picrotoxin or Mg2+-free medium. This extra Ca2+ uptake is probably mediated by NMDA operated channels. Our findings also show that ketamine, like 2-APV, has a stronger anticonvulsant effect on the low Mg-than on the picrotoxin-induced epileptiform activity. Responses to iontophoretically applied NMDA are facilitated in the 'low calcium epilepsy' and can be selectively blocked by ketamine. Spontaneous epileptiform activity occurring in low calcium can be blocked by ketamine only when some synaptic transmission is still present.  相似文献   

15.
PURPOSE: The anticonvulsant effects of the novel antiepileptic drug (AED) levetiracetam (LEV) were tested in neocortical slice preparations from 23 patients who underwent surgery for the treatment of refractory epilepsy. METHODS: Slices were used to evaluate the effects of LEV on two different models of epilepsy: low-Mg2+-induced untriggered and bicuculline-evoked stimulus-triggered epileptiform burst discharges and spontaneously appearing rhythmic sharp waves. RESULTS: LEV (0.1-1 mM) did not influence spontaneously appearing rhythmic sharp waves or Mg2+-free aCSF-induced epileptiform field potentials. LEV affected neither the amplitudes or duration nor the repetition rates of burst discharges in these epilepsy models. However, LEV (100-500 microM) significantly suppressed the ictal-like discharges elicited by the gamma-aminobutyric acid subtype A (GABAA)-receptor antagonist bicuculline. A marked reduction of the amplitude and duration of bicuculline-evoked field response in the presence of LEV was observed. CONCLUSIONS: The results indicate the potential for LEV to inhibit epileptiform burst discharges in human neocortical tissue, which is consistent with its effects in animal models of epilepsy. These results also support the seizure reduction observed in clinical trials and support that this may, in part, be related to the ability of LEV to inhibit epileptiform discharges.  相似文献   

16.
NMDA receptor-mediated Ca2+ flux was studied in cultured rat retinal ganglion cells and neocortical neurons. Intracellular free calcium ([Ca2+]i was measured with fura-2 fluorescence imaging. Baseline [Ca2+]i was 59 +/- 5 nM. In low [Mg2+]o, 200 microM NMDA reversibly increased [Ca2+]i to 421 +/- 70 nM. This rise in [Ca2+]i was blocked by the NMDA antagonists APV (200 microM) or [Mg2+]o (1 mM), but only slightly inhibited by the non-NMDA antagonist CNQX (10 microM). Chemical reduction with dithiothreitol (DTT) had no effect on resting [Ca2+]i. However, DTT increased the NMDA-induced rise in [Ca2+]i approximately 1.6-fold; the oxidizing agent dithiobisnitrobenzoic acid (DTNB) reversed this effect. In patch-clamp experiments, DTT increased NMDA-activated whole-cell conductance approximately 1.7-fold in low and high [Ca2+]o. The Ca2+/Na+ permeability ratio of approximately 7 for NMDA channels remained unaltered by chemical reduction. Thus, redox modulation of the NMDA receptor/channel complex results in a dramatic alteration in current magnitude but no change in ionic permeabilities.  相似文献   

17.
The locust corpus cardiacum (CC) is a peripheral neurohemal organ in which are clustered a prodigious array of neurosecretory cells (NSCs), nearly all of which synthesize and release adipokinetic hormones (AKHs). We have examined the extracellular requirements for Na+ and Ca2+ in the process of AKH release following NSC depolarization by high extracellular K+ or veratridine. Na+ is not required for release mediated by high external K+ although Ca2+ is. The Ca2+ channel antagonists cobalt and lanthanum prevent release and support the hypothesis that depolarization with K+ leads to Ca2+ channel activation and subsequent AKH release. Tetrodotoxin does not block K+-mediated release suggesting that Na+ channel activation and Na+ influx are not required for K+-mediated release. The alkaloid veratridine leads to cobalt- and tetrodotoxin-sensitive release and this suggests that cell depolarization by Na+ channel activation is nevertheless capable of opening Ca2+ channels and initiating release. Release mediated by high external K+ is reduced by nifedipine but is not significantly reduced by methoxyverapamil, however veratridine-mediated release is slightly reduced by methoxyverapamil. Glandular lobes accumulated greater amounts of 45Ca2+ following high K+-mediated depolarization compared to glands incubated in normal saline and this enhanced accumulation was blocked by the Ca2+ channel antagonist lanthanum. During prolonged exposure to high K+ saline the release of AKHs and the uptake of 45Ca2+ reach a maximum and then gradually decline. The temporal pattern of the reduction in AKH release is similar to that of 45Ca2+ accumulation by the glandular lobe. This reduction in AKH release and 45Ca2+ uptake may result from inactivation of Ca2+ channels associated with the release process. These results indicate that Ca2+ influx into the NSCs by way of voltage-sensitive Ca2+ channels plays a critical role in the process of depolarization-mediated AKH release.  相似文献   

18.
Potassium- and calcium conductances regulate neuronal excitability and epileptiform activity. In this study, the effects of different extracellular potassium concentrations ([K(+)](o)) were investigated on the modulatory effect of the L-type transmembranous calcium currents on epileptiform discharges. The in vitro brain slice technique was used to examine the effects of calcium channel blockers, verapamil and nifedipine, on the repetition rate, amplitude, and duration of epileptiform field potentials (EFP) in the presence of low, physiological, and high background [K(+)](o) in guinea pig hippocampal slices. Epileptiform activity was induced by omission of Mg(2+) from artificial cerebrospinal fluid contained 2, 4, and 8 mM [K(+)](o). Both verapamil and nifedipine suppressed EFP after a transient increase in repetition rate. The extent of EFP frequency rate acceleration significantly increased with reduction of [K(+)](o). The increase in EFP frequency rate induced by application of verapamil and nifedipine was accompanied by a reduction in the EFP amplitude and a reversible increase in the burst discharge duration. The extent of burst discharge prolongation was also significantly higher with decreasing [K(+)](o). Further application of verapamil and nifedipine suppressed the epileptiform burst activity in the presence of different [K(+)](o). The latency of EFP depression was significantly diminished both with increased and decreased background potassium concentrations. The data indicate the importance of the effect of the L-type transmembranous calcium currents on the regulatory effect of background [K(+)](o) on epileptiform burst discharge frequency and duration.  相似文献   

19.
1. Recordings were obtained from transverse slices of rat hippocampus, which were placed in a perfusion chamber and superfused with oxygenated artificial cerebrospinal fluid. 2. The effects of 10 microM (+)- or (-)-oxaprotiline applied by the bath were examined on the population spike, postsynaptic excitability in low Ca2+-high Mg2+ medium, the epileptiform discharge in Mg2+-free medium and long-term potentiation (LTP). Only the last paradigm (LTP) was significantly enhanced by (+)-oxaprotiline. 3. In rats chronically injected with (+)-oxaprotiline, neither LTP nor the actions of a variety of neurotransmitters in low Ca2+-high Mg2+ medium were significantly altered. 4. Intracellular recordings showed a small depolarization (3.5 +/- 1.6 mV) in response to 10 microM (+)- or (-)-oxaprotiline. Neither input resistance nor inward rectification, long-lasting afterhyperpolarization or accommodation were significantly altered. 5. Acute application, but not chronic treatment with (+)-oxaprotiline affects long-term potentiation in the hippocampal slice, presumably due to an effect on gabaergic inhibition.  相似文献   

20.
Bonansco C  Buño W 《Hippocampus》2003,13(1):150-163
This article reports the cellular mechanisms underlying a form of intracellular "theta-like" (theta-like) rhythm evoked in vitro by microiontophoresis of N-methyl-D-aspartate (NMDA) at the apical dendrites of CA1 pyramidal neurons. Rhythmic membrane potential (Vm) oscillations and action potential (AP) bursts (approximately 6 Hz; approximately 20 mV; approximately 2-5 APs) were evoked in all cells. The response lasted approximately 2 s, and the initial oscillations were usually small (< 20 mV) and below AP threshold. Rhythmic bursts were never evoked by imposed depolarization in the absence of NMDA. Block of Na+ conductance with tetrodotoxin (TTX) (1.5 microM), of non-NMDA receptors with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (20 microM) and of synaptic inhibition by bicuculline (50 microM) and picrotoxin (50 microM) did not prevent NMDA oscillation. Inhibition of the voltage dependence of the NMDA conductance in Mg2+-free Ringer's solution blocked oscillations. Preventing Ca2+ influx with Ca2+-free and Co2+ (2-mM) solutions and block of the slow Ca2+-dependent afterhyperpolarization (sAHP) by carbamilcholine (5 microM), isoproterenol (10 microM), and intracellular BAPTA blocked NMDA oscillations. Inhibition of L-type Ca2+ conductance with nifedipine (30 microM) reduced oscillation amplitude. Block of tetraethylammonium (TEA) (10 mM) and 4AP (10 mM)-sensitive K+ conductance increased the duration and amplitude, but not the frequency, of oscillations. In conclusion, theta-like bursts relied on the voltage dependence of the NMDA conductance and on high-threshold Ca2+ spikes to initiate and boost the depolarizing phase of oscillations. The repolarization is initiated by TEA-sensitive K+ conductance and is controlled by the sAHP. These results suggest a role of interactions between NMDA conductance and intrinsic membrane properties in generating the CA1 theta-rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号