首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The type and distribution of indoleamine-accumulating neurons were studied in the cat retina. The neurons were characterized by their capacity to take up an exogenous indoleamine, 5,6-dihydroxytryptamine, which could then be visualized using formaldehyde-induced fluorescence. Under direct microscopic control, intracellular injection of Lucifer yellow into the labeled cells revealed that the indoleamine-accumulating neurons comprise 2 distinct morphological types of amacrine cell and 1 class of ganglion cell. The dendritic morphology and retinal distribution of these cells were studied in detail. The proportion of retinal cells that accumulate 5-HT was measured using 5-HT (5-hydroxytryptamine) preloading in vitro and immunocytochemistry with an anti-5-HT antibody. Only 1 type of amacrine cell showed uptake of 5-HT at a concentration of 10(-7) M. Cells containing endogenous 5-HT were not detected by immunocytochemistry.  相似文献   

2.
A system of indoleamine-accumulating neurons in the rabbit retina   总被引:2,自引:0,他引:2  
The indoleamine-accumulating neurons of the rabbit retina were labeled by intraocular injection of 5,7-dihydroxytryptamine (5,7-DHT). The retinas were fixed with 2.5% paraformaldehyde and 0.2% glutaraldehyde and inspected by fluorescence microscopy. Five kinds of cell accumulated the indoleamine. They were labeled to essentially the same brightness and remained so despite variations in the concentration at which 5,7-DHT had been applied or the duration of its application. Experiments in which 5,7-DHT was applied to retinas incubated in vitro gave identical results. To see the whole shape of the cells, we visually guided micropipettes to the fluorescent cell bodies and injected the cells with Lucifer yellow CH. To study the cells as a population, we used a new method in which the fluorescence of 5,7-DHT is photochemically converted to an insoluble diaminobenzidine product. The dendrites of all of the indoleamine-accumulating cells were then simultaneously visible. Used together, these techniques revealed an interrelated system of indoleamine-accumulating neurons. All of the cells contribute processes to a dendritic plexus that lies at the inner margin of the inner plexiform layer. The plexus is roughly 4 micron thick. It is pierced by the stalks of the Müller cells and is occasionally interrupted by ganglion cell bodies, where they extend above the average margin of the ganglion cell layer. Otherwise it fills much of the space at the junction of the plexiform and ganglion cell layers. The type 1 and type 2 cells are amacrine cells with cell bodies at the inner margin of the inner nuclear layer. They have 5-8 radially branching primary dendrites which extend horizontally across the inner plexiform layer before descending to join the dendritic plexus. They differ from each other in cell body shape, dendritic morphology, and the course of their dendrites within the inner plexiform layer. Each has a "displaced" counterpart, with a morphology similar to the type 1 or type 2 cell but with a cell body located in the ganglion cell layer. The displaced cells are separate functional elements because, in contrast to the type 1 and type 2 cells, they have no dendrites (and hence can have no synaptic connections) in the outer part of the inner plexiform layer. The fifth kind of cell (type 3) appears not to have been described before. Its cell body is located at the outer margin of the inner nuclear layer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The organization of the Cebus monkey regina was analysed after the intraocular injection of 5,6-dihydroxytryptamine. This amine was taken up not only by the previously known dopaminergic neurons, but also by a set of indoleamine-accumulating neurons, whose processes are confined to the inner plexiform layer. The synaptic contacts of the dopaminergic neurons were analysed in the electron microscope after the processes of the indoleamine-accumulating neurons were destroyed by the intravitreal injection of the neurotoxic indoleamine, 5,7-dihydroxytryptamine. The subsequent injection of 5,6-dihydroxytryptamine induces certain changes in the dopaminergic neurons which accumulate the substance: electron-dense cores appear in the synaptic vesicles, and increased electron-density of mitochodrial and cellular membranes is often observed. The dopaminergic neurons were found to be presynaptic to amacrine cell perikarya and processes in the inner plexiform layer. In the outer plexiform layer they were presynaptic to both bipolar and horizontal cells, but they did not contact photoreceptors. The dopaminergic neurons received synapses only in the inner plexiform layer, from amacrine cell processes. It is inferred that in Cebus most dopaminergic neurons belong to a special class of retinal neuron, the interplexiform cells, which appear to transmit information centrifugally within the retina, from the inner to the outer plexiform layers. There are considerable similarities between the synaptology of the dopaminergic interplexiform neurons in the Cebus monkey and the goldfish retina, and the function of interplexiform neurons may therefore be similar in these two species.  相似文献   

4.
Colocalization of indoleamine uptake and GABA-like immunoreactivity was studied in the cat retina. Consecutive, semithin sections were incubated in antisera to either 5-HT (5-hydroxytryptamine) or GABA. More than 90% of all 5-HT-accumulating amacrine cells expressed GABA-like antigens. With the same approach, the colocalization of 5-HT uptake and GABA-like immunoreactivity was studied in rabbit and 75-80% of the 5-HT-accumulating amacrine cells expressed GABA-like immunoreactivity, thus confirming a previous study (Osborne and Beaton, 1986). Since, in both cat and rabbit, endogenous 5-HT could not be found by immunocytochemistry, one must consider the possibility that some GABAergic amacrine cells take up indoleamines. In the cat retina, antibodies against tyrosine hydroxylase (TH) label dopaminergic amacrine cells (Oyster et al., 1985). By incubating consecutive, semithin sections in antisera to either TH or GABA, it was found that 84% of the dopaminergic amacrine cells also expressed GABA-like immunoreactivity. GABA-like immunoreactivity and 3H-muscimol uptake were found to be colocalized in more than 90% of the amacrine cells labeled. However, dopaminergic amacrine cells did not accumulate 3H-muscimol. Evidence is presented from colocalization studies for 2 types of interplexiform cell in the cat retina. One is stained by GABA-like immunocytochemistry and by 3H-muscimol uptake. The other is the dopaminergic amacrine cell, which also expresses GABA-like immunoreactivity, but does not accumulate 3H-muscimol.  相似文献   

5.
6.
In cell cultures of the retina from 10 days old chicken embryo photoreceptors, bipolar neurons, synaptic contacts, and supporting cells of Müller were demonstrated by scanning electron microscopy. It was found that the longer the cells survive in culture media they form constantly growing cell aggregates. After 12 days in vitro large multilayered cell complexes covered by an epithelioid cell layer had developed. Merely at the border of such aggregates typical retinal cells could be observed. The occurrence of a dense epithelioid cell layer covering the aggregate of neuronal cells is interpreted as a general adaptational reaction of the cells to the long lasting survival under in vitro conditions.  相似文献   

7.
Previous work suggests that slowly adapting (SA) periodontal afferents have different synaptic arrangements in the principal (Vp) and oral trigeminal nuclei and that the synaptic structure associated with transmitter release may be related directly to bouton size. The present study examined the ultrastructures of SA and fast adapting (FA) vibrissa afferents and their associated unlabeled axonal endings in the cat Vp by using intra-axonal labeling with horseradish peroxidase and a morphometric analysis. All SA and FA afferent boutons contained clear, round, synaptic vesicles. All the FA and most SA boutons were presynaptic to dendrites, but a few SA boutons were axosomatic. Both types of bouton were frequently postsynaptic to unlabeled axonal ending(s) containing pleomorphic, synaptic vesicles (P-ending). The size of labeled boutons was larger in FA than SA afferents, but the size of dendrites postsynaptic to labeled boutons was larger for SA than FA afferents. Large-sized FA and SA boutons made synaptic contacts with small-diameter dendrites. The size of FA and SA boutons was larger than that of their associated P-endings. A morphometric analysis made on the pooled data of SA and FA boutons indicated that apposed surface area, active zone number, total active zone area, vesicle number, and mitochondrial volume were highly correlated in a positive linear manner with labeled bouton volume. These relationships were also applicable to unlabeled P-endings, but the range of each parameter was smaller than that of the labeled boutons. These observations provide evidence that the two functionally distinct types of vibrissa afferent manifest unique differences but share certain structural features in the synaptic organization and that the ultrastructural “size principle” proposed by Pierce and Mendell ([1993] J. Neurosci. 13:4748–4763) for Ia-motoneuron synapses is applicable to the somatosensory system. J. Comp. Neurol. 389:12–33, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Connections of indoleamine-accumulating cells in the rabbit retina   总被引:5,自引:0,他引:5  
To study the connections of the neurons of the rabbit retina that accumulate indoleamines, we injected 5,7-dihydroxytryptamine into the vitreous body. It accumulated within a subset of amacrine cells and could be visualized there by aldehyde-induced fluorescence. The fluorescent labeling was photo-converted to an insoluble, osmiophilic product by irradiation in the presence of diaminobenzidine, and the tissue was examined by electron microscopy. Preservation of the structure of the tissue after photoconversion was satisfactory and the dendrites of the indoleamine-accumulating cells could easily be identified. They form a dense plexus near the junction of the inner plexiform and ganglion cell layers, where they exhibit large synaptic endings that occupy a substantial fraction of the surface of rod bipolar terminals. The dendrites of the indoleamine-accumulating cells receive input from rod bipolars at dyad synapses, where the other postsynaptic partner is a dendrite of a narrow-field, bistratified amacrine cell; in addition, they receive amacrine cell input throughout the inner plexiform layer. The only outputs we observed are reciprocal synapses onto the rod bipolar endings. Thus, these amacrine cells appear to exert an important effect on the transmission of scotopic information through the retina.  相似文献   

9.
10.
Single, biocytin filled neurons in combination with immunocytochemistry and retrograde tracing as well as material with traditional double-immunolabeling were used at the light and electron microscopic levels to study the neural circuitry within the basal forebrain. Cholinergic neurons projecting to the frontal cortex exhibited extensive local collaterals terminating on non-cholinergic, (possible GABAergic) neurons within the basal forebrain. Elaborate axon arbors confined to the basal forebrain region also originated from NPY, somatostatin and other non-cholinergic interneurons. It is proposed that putative interneurons together with local collaterals from projection neurons contribute to regional integrative processing in the basal forebrain that may participate in more selective functions, such as attention and cortical plasticity.  相似文献   

11.
After intra-axonal injection of horseradish peroxidase (HRP) into afferent fibers originating from muscle spindle primary endings of the cat gastrocnemius, group Ia boutons located in the ventral horn of the spinal cord were identified and studied electron microscopically. The Ia boutons were invariably found to contain spherical synaptic vesicles (S-type boutons), and a number of them were also postsynaptic to smaller P-type boutons (large S-type boutons with axo-axonic contacts). None of the present Ia- boutons belonged to the previously described M-type8. The vast majority of the studied boutons were considered to be located at less than 500 μm distance from the α-motoneuron soma. The results are discussed in relation to previous light and electron microscopic data.  相似文献   

12.
The cat superior colliculus (SC) receives a dense cholinergic input from three brainstem nuclei, the pedunculopontine tegmental nucleus, the lateral dorsal tegmental nucleus, and the parabigeminal nucleus (PBG). The tegmental inputs project densely to the intermediate gray layer (IGL) and sparsely to the superficial layers. The PBG input probably projects only to the superficial layers. In the present study, the morphology of choline acetyltransferase (ChAT)-immunoreactive axons and synaptic endings in the superficial and deep layers of the SC was examined by light and electron microscopy to determine whether these cholinergic afferents form different types of synapses in the superifical and deep layers. Two types of fibers were found within the zonal (ZL) and upper superficial gray layers (SGL): small diameter fibers with few varicosities and larger diameter fibers with numerous varicosities. Quantitative analysis demonstrated a bimodal distribution of axon diameters, with one peak at approximately 0.3–0.5 μm and the other at 0.9–1.0 μm. On the other hand, ChAT-immunoreactive fibers in the IGL were almost all small and formed discrete patches within the IGL. Two types of ChAT-immunoreactive synaptic profiles were observed within the ZL and upper SGL using the electron microscope. The first type consisted of small terminals containing predominantly round synaptic vesicles and forming asymmetric synaptic contacts, mostly on dendrites. The second type was comprised of varicose profiles that also contained round synaptic vesicles. Their synaptic contacts were always symmetric in profile. ChAT-immunoreactive terminals in the IGL patches contained round or pleomorphic synaptic vescles, and the postsynaptic densities varied from symmetric to asymmetric, including intermediate forms. However, no large varicose profiles were observed. This study suggests that cholinergic fibers include at least two differnt synaptic morphologies: small terminals with asymmetric thickenings and large varicose profiles with symmetric terminals. The large varicose profile in the superficial layers is absent in the IGL. This result suggests that the cholinergic inputs that innervate the superficial layers and the patches in the IGL of the cat SC differ in their synaptic organization and possibly also in their physiological actions. © 1993 Wiley-Liss, Inc.  相似文献   

13.
A normal and an epileptic firing neuron were recorded simultaneously from within a chronic epileptic focus. The cross-correlation histogram demonstrated that they received some common synaptic input even though their patterns of firing were markedly different.  相似文献   

14.
The neurons of origin of the bilateral corticostriatal projection arising from the medial agranular cortical field in rats were identified by antidromic activation from contralateral neostriatal stimulation. The same cells were tested for antidromic activation from the contralateral neocortex and for orthodromic responses to stimulation of neocortex of the contralateral hemisphere or ipsilateral rostral thalamus. The neurons were then stained by intracellular injection of horseradish peroxidase. The laminar distribution of these neurons was compared to that of cortical cells stained retrogradely after injection of wheat germ agglutinin/HRP in the ipsilateral or contralateral neostriatum. The morphological features of physiologically identified corticostriatal neurons, their laminar organization, and their responses to stimulation were examined and compared with crossed corticocortical and brainstem-projecting cells. Crossed corticostriatal cells of the medial agranular cortical field were medium-sized pyramidal neurons found in the superficial part of layer V and in the deep part of layer III. Their basilar dendritic fields and initial intracortical axon collateral arborizations were coextensive with the layer defined by the distribution of corticostriatal neurons. The apical dendrites were thin and sparsely branched but consistently reached layer I, where they made a small arborization. These morphological features were shared by cortical neurons projecting to contralateral neocortex but not responding antidromically to stimulation of contralateral neostriatum, but they were not shared by brainstem-projecting cortical cells. Orthodromic responses to contralateral cortical stimulation consisted of brief excitatory postsynaptic potentials that were followed by powerful and longer-lasting inhibitory postsynaptic potentials. Corticostriatal cells also exhibited small excitatory postsynaptic potentials in response to thalamic stimulation. Many crossed corticostriatal neurons were also commissural corticocortical neurons. The results of reciprocal collision tests showed that this was due to the existence of two separate axonal branches, one projecting to contralateral neocortex and one to contralateral neostriatum. Intracellular staining of these neurons revealed ipsilateral axonal projections to the neostriatum and cortex.  相似文献   

15.
16.
The indoleamine-accumulating amacrine cells of the rabbit retina are wide-field and numerous. They form a dense plexus in sublamina 5 of the inner plexiform layer where they make reciprocal synapses with rod bipolar cells. To provide a quantitative test for the colocalization of serotonin (5-HT) and gamma-aminobutyric acid (GABA) in the rabbit retina, we designed two parallel double-label experiments. In the first series, the indoleamine-accumulating cells were labeled with 5,7-dihydroxytryptamine (5,7-DHT), which was subsequently visualized by photooxidation in the presence of diaminobenzidine. This was combined with autoradiography for 3H-muscimol. In the second and complementary series, 3H-5-HT uptake was combined with postembedding GABA immunocytochemistry. These two experiments provided essentially identical results: over 98% of the indoleamine-accumulating amacrine cells were double-labeled. This means that, within the limit of experimental error, all the indoleamine-accumulating amacrine cells are GABAergic. The indoleamine-accumulating amacrine cells account for 15-20% of a large diverse group of GABA amacrine cells. In addition, the rare type 3 indoleamine-accumulating cells and fine processes running in the optic fiber layer were double-labeled. If there is insufficient 5-HT to support a transmitter role in the rabbit retina, our results suggest that the indoleamine-accumulating cells may use GABA as a neurotransmitter. Thus, rod bipolar cells, in common with other bipolar cell types, receive extensive negative feedback at GABA-mediated reciprocal synapses.  相似文献   

17.
Previous studies indicate that the trigeminal motor nucleus (Vmo) and supratrigeminal nucleus (Vsup) receive direct projections from muscle spindle (MS) and periodontal ligament (PL) afferents. The aim of the present study is to examine the ultrastructural characteristics of the two kinds of afferent in both nuclei using the intracellular horseradish peroxidase (HRP) injection technique in the cat. Our observations are based on complete or near-complete reconstructions of 288 MS (six fibers) and 69 PL (eight fibers) afferent boutons in Vmo, and of 93 MS (four fibers) and 188 PL (four fibers) afferent boutons in Vsup. All the labeled boutons contained spherical synaptic vesicles and were presynaptic to neuronal elements, and some were postsynaptic to axon terminals containing pleomorphic, synaptic vesicles (P-endings). In Vmo neuropil, MS afferent boutons were distributed widely from soma to distal dendrites, but PL afferent boutons predominated on distal dendrites. Most MS afferent boutons (87%) formed synaptic specialization(s) with one postsynaptic target while some (13%) contacting two or three dendritic profiles; PL afferents had a higher number of boutons (43%) contacting two or more dendritic profiles. A small but significant number of MS afferent boutons (12%) received contacts from P-endings, but PL afferent boutons (36%) received three times as many contacts from P-endings as MS afferents. In Vsup neuropil, most MS (72%) and PL (87%) afferent boutons formed two contacts presynaptic to one dendrite and postsynaptic to one P-ending, and their participation in synaptic triads was much more frequent than in Vmo neuropil. The present study indicates that MS and PL afferent terminals have a distinct characteristic in synaptic arrangements in Vmo and Vsup and provides evidence that the synaptic organization of primary afferents differs between the neuropils containing motoneurons and their interneurons. © 1996 Wiley-Liss, Inc.  相似文献   

18.
An invaginating bipolar cell that has dendritic terminals forming the central elements of the cone triads is described for the retina of the cat. This type of bipolar contacts a minimum of four or five and a maximum of nine or ten cones. There is no evidence for a bipolar cell which contacts only one cone, i.e., a midget bipolar cell as in simians. There are flat bipolar cells that make superficial contacts with the bases of the cone pedicles and are postsynaptic to between 8 and 14 cones. One cone can be in contact with both an invaginating and a flat bipolar cell. There is evidence suggestive of two kinds of flat bipolars. A comparison is made between the bipolar connections in simians and the cat. The comparison is summarized in figures 29 and 30.  相似文献   

19.
Axon-bearing horizontal cells of the Xenopus retina were studied by intracellular injection of HRP following physiological characterization. The profile of the cell viewed in whole mount consisted of a round or oval perikaryon about 50 microns in diameter and an axon about 1 mm long which lacked a prominent terminal expansion. The axonal diameter was 0.5-1.0 microns in its proximal third but 2-4 microns in its distal portion. Along its course the axon emitted 25-40 branchlets each 0.2 micron in diameter, up to 10 micron long and terminating in a cluster of two to six synaptic knobs. Electron microscopic examination revealed that both perikaryal dendrites and axon branchlets ended in both rod and cone synaptic bases; cone contacts outnumbered rod contacts by two- to threefold. We were unable to document synapses of presumed interplexiform cells onto identified horizontal cells. Horizontal cell axons are joined in their distal portions by numerous, small (0.2 micron long) gap junctions. Other gap junctions were noted between horizontal cell processes within the synaptic endings of photoreceptors. An hypothesis is advanced whereby the cluster of axon branchlet synaptic knobs permits dynamic interaction of rod and cone synaptic inputs to the horizontal cell.  相似文献   

20.
By means of tungsten microelectrodes, action potentials from axons within the dorsal spino-cerebellar tract (DSCT) and from muscle spindle afferents were recorded. A quantitative study was performed in monomuscular DSCT neurons which were excited predominantly by Ia fibers originating in the gastrocnemius muscles. In some experiments single Ia fibers were stimulated electrically while the impulse sequence of a DSCT neuron postsynaptic to the respective afferent fiber was recorded. The gastrocnemius DSCT neurons receive excitatory inputs from 10-18 Ia muscle spindle afferents. The efficacy of each of these inputs is very similar. Thus the neuronal activation decreased approximately linearly with the number of the excitatory afferents cut. Cross-correlograms between the impulse sequence of a Ia gastrocnemius muscle spindle afferent and a DSCT neuron postsynaptic to it exhibited an increased discharge probability of the DSCT neuron from 3-4 ms to 10 ms after the Ia action potential. With increasing impulse rates of the Ia afferent fibers, the excitatory efficacy of the single action potential decreased, but the overall excitation increased with the presynaptic discharge frequency, according to a hyperbolic function. This effect was tested by electrical stimulation of a single Ia axon exciting the DSCT neuron recorded. Interval histograms computed from DSCT neuron impulse trains at steady stretch conditions were predominantly monomodal. They can be well approximated by a Gaussian distribution. The coefficient of variation was independent of the mean activity. At impulse rates above 25 imp X s-1 a negative correlation between successive intervals was observed in first order joint interval diagrams. With an increasing mean discharge rate this correlation (expressed as the serial linear correlation coefficient of the first order r1,2) became stronger up to--0.62 at 90 imp X s-1. Only in a few neurons did the higher order linear correlation coefficients deviate significantly from zero. In 15% of the observed histograms double discharging (mean interval 3-5 ms) produced bimodal distributions. Under steady-state conditions the response of Ia-activated DSCT cells are linearly related to muscle stretch within a middle range of extensions. The differences between Ia impulse pattern and DSCT neuron impulse pattern at steady stretch are discussed. The number of large dendrites of the principal cells in the nucleus dorsalis (Clarke's column) corresponds to the number of excitatory afferent muscle fibers. It is assumed that each excitatory Ia axon sends one axon collateral to the DSCT neuron, forming a climbing type terminal mainly on one of the large dendrites of a DSCT cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号