首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Located in the ventrolateral region of the avian brainstem, the superior olivary nucleus (SON) receives inputs from nucleus angularis (NA) and nucleus laminaris (NL) and projects back to NA, NL, and nucleus magnocellularis (NM). The reciprocal connections between the SON and NL are of particular interest because they constitute a feedback circuit for coincidence detection. In the present study, the chick SON was investigated. In vivo tracing studies show that the SON projects predominantly to the ipsilateral NM, NL, and NA. In vitro whole-cell recording reveals single-cell morphology, firing properties, and postsynaptic responses. SON neurons are morphologically and physiologically suited for temporal integration; their firing patterns do not reflect the temporal structure of their excitatory inputs. Of most interest, direct stimulation of the SON evokes long-lasting inhibition in NL neurons. The inhibition blocks both intrinsic spike generation and orthodromically evoked activity in NL neurons and can be eliminated by bicuculline methiodide, a potent antagonist for GABAA receptor-mediated neurotransmission. These results strongly suggest that the SON provides GABAergic inhibitory feedback to laminaris neurons. We discuss a mechanism whereby SON-evoked GABAergic inhibition can influence the coding of interaural time differences for sound localization in the avian auditory brainstem.  相似文献   

2.
3.
Histological sections of the brains of eight species of turtles representing six different families were studied in order to delineate the cochlear nuclei. In addition, the posterior eighth cranial nerve root and its ganglion were sectioned in 15 specimens of Kinosternon leucostomum, and the distribution of the degenerated nerve fibers and terminals was determined. Two primary and one probably secondary nuclei were demonstrated by the terminal degeneration pattern of the cochlear fibers. A spherical nucleus angularis and an elongated nuclus magnocellularis together form a column of primary cochlear nuclei in the dorsal alar lamina of the medulla. Heavy terminal degeneration is seen associated with these cells following transection of the posterior eighth nerve and ganglion. Nucleus magnocellularis is probably homologous with the nucleus magnocellularis medialis of lizards and crocodiles, and has been described in turtles as nucleus dorsalis magnocellularis by previous authors. A probably secondary cochlear nucleus, nucleus laminaris, lies just ventral to the nucleus magnocellularis. It is associated with the nucleus magnocellularis throughout its length but is shorter. Nucleus laminaris remains free of terminal degeneration after destruction of the posterior eighth nerve and ganglion. The cochlear nuclei of other turtle species were very similar to those of Kinosternon leucostomum.  相似文献   

4.
The brainstem auditory pathways of the chicken were used to examine the relationship between the maintenance of dendrites following de-nervation and the successful reinnervation (sprouting) by surviving afferents. In the system the third-order cells in n. laminaris receive spatially segregated bi-naural innervation from n. magnocellularis. Afferents from the ipsilateral n. magnocellularis innervate the dendrites on the dorsal aspect of n. laminaris cells, while afferents from contralateral magnocellular neurons innervate ventral den-drites via the crossed dorsal cochlear tract. Denervation of the ventral dendrites of n. laminaris cells by transection at the midline results in rapid and severe atrophy of the denervated dendrite. Unilateral cochlea removal induces tran-sneuronal degeneration of 30–45% of the ipsilateral magnocellular cells, thereby partially denervating one dendrite of the n. laminaris cells on each side of the brain. In animals with long-standing transections of the crossed dorsal cochlear tract there is no evidence of sprouting of fibers from the ipsilateral n. magnocellularis when the projections of the surviving magnocellular neurons are traced with degeneration methods after a secondary cochlea removal. However, when den-drites of n. laminaris are partially denervated dendrites do not disappear. Fur-thermore, secondary lesions of the crossed dorsal cochlear tract or secondary cochlea removal reveal that these denervated dendrites are reinnervated by the afferents from the opposite n. magnocellularis which are normally restricted to the opposite dendrite of the n. laminaris cells.  相似文献   

5.
The development of gamma-aminobutyric acid-immunoreactivity (GABA-I) in nucleus magnocellularis (NM) and nucleus laminaris (NL) of the chick was studied by using an antiserum to GABA. In posthatch chicks, GABA-I is localized to small, round punctate structures in the neuropil and surrounding nerve cell bodies. Electron microscopic immunocytochemistry demonstrates that these puncta make synaptic contact with neuronal cell bodies in NM; thus, they are believed to be axon terminals. GABAergic terminals are distributed in a gradient of increasing density from the rostromedial to the caudolateral regions of NM. The distribution of GABA-I was studied during embryonic development. At embryonic days (E) 9-11, there is little GABA-I staining in either NM or NL. Around E12-14, a few fibers are immunopositive but no gradient is seen. More GABA-I structures are present at E14-15. They are reminiscent of axons with varicosities along their length, preterminal axonal thickenings and fiber plexuses. At E15, terminals become apparent circumscribing neuronal somata and are also discernible in the neuropil of both nuclei. In E16-17 embryos, terminals are the predominantly labeled GABA-I structures and they are uniformly distributed throughout NM. The density of GABAergic terminals increases in caudolateral regions of NM such that by E17-19, there is a gradient of increasing density of GABA-I terminals from the rostromedial to caudolateral regions of NM. The steepness of this gradient increases during development and is the greatest in posthatch (P) chicks. Cell bodies labeled with the GABA antiserum are located around the borders of both NM and NL and in the neuropil between these two nuclei. Occasionally, GABA-I neurons can be found within these auditory brainstem nuclei in both embryonic and posthatch chicks. Nucleus angularis (NA) contains some GABAergic cells. The appearance of GABA-I terminals around E15 is correlated in time with the formation of end-bulbs of Held on NM neurons. Thus, the ontogeny of presumed inhibitory inputs to chick auditory brainstem nuclei temporally correlates with, and could modulate the development of, excitatory auditory afferent structure and function.  相似文献   

6.
N-methyl-D-aspartate (NMDA) receptor subunit-specific probes were used to characterize developmental changes in the distribution of excitatory amino acid receptors in the chicken's auditory brainstem nuclei. Although NR1 subunit expression does not change greatly during the development of the cochlear nuclei in the chicken (Tang and Carr [2004] Hear. Res 191:79-89), there are significant developmental changes in NR2 subunit expression. We used in situ hybridization against NR1, NR2A, NR2B, NR2C, and NR2D to compare NR1 and NR2 expression during development. All five NMDA subunits were expressed in the auditory brainstem before embryonic day (E) 10, when electrical activity and synaptic responses appear in the nucleus magnocellularis (NM) and the nucleus laminaris (NL). At this time, the dominant form of the receptor appeared to contain NR1 and NR2B. NR2A appeared to replace NR2B by E14, a time that coincides with synaptic refinement and evoked auditory responses. NR2C did not change greatly during auditory development, whereas NR2D increased from E10 and remained at fairly high levels into adulthood. Thus changes in NMDA NR2 receptor subunits may contribute to the development of auditory brainstem responses in the chick.  相似文献   

7.
Neurons in the brainstem auditory nuclei, n. magnocellularis and n. laminaris, of the chick are contacted by terminals containing the inhibitory neurotransmitter γ-aminobutyric acid (GABA). In this report we describe the physiological response of these neurons to GABA using an in vitro slice preparation. In brainstem auditory neurons, GABA produced a depolarization of up to 20 mV and an associated decrease in input resistance. This depolarization was inhibitory; action potentials generated by orthodromic synaptic drive, antidromic stimulation and intracellular current injection were prevented by GABA application. The GABA response still occurred when synaptic transmission was prevented by perfusing the slice with a medium containing low Ca2+ and high Mg2+ concentrations. Thus, the effects of GABA were directly on the postsynaptic neuron and not via an interneuron. Whole-cell voltage clamp of neurons revealed that the reversal potential of the inward current was approximately −45 mV, suggesting that the channel responsible for this response is not selective for Cl or K+. Pharmacological analyses suggest that this GABA receptor has properties distinct from those typical of either GABAa or GABAb receptors. Although a similar response was observed with the GABAa agonist, muscimol, it was not blocked by the GABAa antagonist, bicuculline. The response was not evoked by the GABAb agonist, baclofen, and was not blocked by the GABAb antagonist phaclofen. This unusual depolarizing response is not a common feature of all brainstem neurons. Neurons located in the neighboring medial vestibular nucleus show a more traditional response to GABA application. At resting potential, these neurons show a hyperpolarizing or biphasic response associated with a decrease in input resistance and inhibition of their spontaneous activity. GABA-induced responses in the medial vestibular nucleus are blocked by bicuculline. These results suggest that an unusual form of the GABA receptor is present in the brainstem auditory system of the chick. It is possible that this form of GABA receptor provides an efficient mechanism for inhibiting the relatively powerful EPSPs received by brainstem auditory neurons, or it may play a trophic role in the afferent regulation of neuronal integrity in this system.  相似文献   

8.
Neurons in the auditory hindbrain pathway of the chicken are physiologically and morphologically highly specialized. It remains unclear to what extent independent differentiation vs. activity-dependent mechanisms determines the development of this system. To address this question we established a primary culture system of the early auditory hindbrain neurons. Primary cultures of neurons from nucleus magnocellularis and nucleus laminaris were prepared from embryonic day 6.5 chicken. These cells developed in culture under serum-free conditions for up to 15 days. Immunocytochemical staining and whole-cell patch recordings were used to characterize the development of the neurons. A stable expression of the calcium-binding protein calretinin, which serves as a characteristic marker of the auditory pathway, was found at all stages. A voltage-gated potassium channel (Kv3.1b) with a specific function in the auditory system was also expressed after about 1 week in culture. Electrophysiological recordings showed a general maturation of the neuronal phenotype as reflected by an increase in the mean resting membrane potential, a decrease in the mean input resistance as well as a maturation of action potential parameters. Four groups of neurons that generate action potentials could be distinguished. One of these showed the phasic firing pattern of auditory brainstem neurons known from slice preparations. In older cultures we demonstrated functional synaptogenesis in vitro by recording postsynaptic activity elicited by extracellular stimulation and styryl dye loading of vesicles. Thus, isolated neurons from the auditory region of the avian brainstem differentiate to specific neuronal subtypes and autonomously develop synaptic connections in vitro.  相似文献   

9.
Third-order auditory neurons in the avian nucleus laminaris (NL) are the first to receive binaural input. In the chick, NL consists of a monolayer of neurons with polarized dendritic arbors oriented dorsally and ventrally. Afferents from second-order neurons in the ipsilateral nucleus magnocellularis (NM) innervate the dorsal dendrites of NL neurons, distributing processes of approximately equal length to NL neurons along an isofrequency band (roughly caudomedial to rostrolateral). Afferents from the contralateral NM innervate the ventral dendrites of NL neurons, distributing collateral branches sequentially as they proceed from caudomedial to rostrolateral along the isofrequency band of neurons. This innervation pattern could be the basis of a "delay line" circuit, as postulated in models of neural networks mediating sound localization. We examined this circuit by analyzing evoked field potentials using a brain slice preparation containing both NL and NM. The results were consistent with the previous anatomical findings. When the ipsilateral auditory nerve or ipsilateral NM was stimulated, there was no consistent variation in the latency of postsynaptic field potentials across the medial-to-lateral extent of NL. In contrast, when the contralateral NM or NM axons in the crossed dorsal cochlear tract were stimulated, a linear increase in the latency of postsynaptic potentials was observed from medial to lateral positions in NL. When stimulation amplitudes for both the ipsilateral and contralateral inputs were adjusted so as to produce little or no postsynaptic field potential, simultaneous bilateral stimulation evoked a pronounced response. Thus, NL neurons can act as "coincidence detectors." The amplitude of the postsynaptic response was dependent on the relative timing of stimulation of the two inputs. The optimal time difference changed systematically across the medial-to-lateral extent of NL. This system of delay lines and coincidence detectors could provide a mechanism for converting interaural time differences into a "place map" within NL.  相似文献   

10.
This series of experiments examined the arrival and organization of cochlear nerve axons in the primary auditory brainstem nucleus, nucleus magnocellularis (NM), of the chick. DiI and DiD were injected into the cochlear nerve, cochlear ganglion, and basilar papilla (i.e., avian cochlea) in fixed tissue and labeled axons were studied in NM and its vicinity. Cochlear nerve axons first penetrate NM between stages 29 (E6) and 36 (E10). Axons penetrate NM in a middle-to-posterior-to-anterior developmental sequence; the anterior, high-frequency region of NM receives axons last. When cochlear nerve axons arrive in the NM, they are already organized in a topographic map related to the position of their cell bodies along the basilar papilla, foreshadowing the tonotopic mapping observed between NM and the basilar papilla later in development. Evidence of a topographic map was also observed in the other primary auditory brainstem nucleus, nucleus angularis. These results indicate that topographic mapping of position (and ultimately characteristic frequency) between the basilar papilla and NM is established as cochlear nerve axons arrive in the NM prior to the onset of synaptic activity. .  相似文献   

11.
Nucleus magnocellularis (NM) in the avian auditory brainstem receives auditory input from nerve the VIIIth and projects bilaterally to nucleus laminaris (NL). This projection preserves binaural segregation in that ipsilateral NM projects to dorsal dendrites of NL and contralateral NM projects to ventral dendrites of NL. We have begun to examine the molecular signals that influence segregation of inputs onto discrete regions of NL cells. We previously showed that the Eph receptor, EphA4, is expressed selectively in the dorsal NL neuropil from embryonic day (E) 9 to E11, when NM axons grow into the NL neuropil. This asymmetric distribution suggests that EphA4 acts as a guidance molecule during binaural segregation. We report here on the developmental changes in the expression of two other Eph receptors, EphB2 and EphB5, and two ligands, ephrin-B1 and ephrin-B2, in the chick auditory brainstem. These proteins are expressed in the auditory nuclei during the maturation of the NM-NL projection. EphB2, EphB5, and ephrin-B1 are expressed in dorsal and ventral NL neuropil and at the midline of the brainstem at E10-E12. At this age, ephrin-B2, a ligand for EphB receptors and for EphA4, is expressed in NL cell bodies and NM-NL axons. The expression of these proteins diminishs in the posthatch ages examined. These results suggest that several members of the Eph family are involved in maturation of the nuclei and their projections. Moreover, ephrin-B2 in growing axons may interact with the asymmetrically expressed EphA4 during the establishment of binaural segregation.  相似文献   

12.
Nucleus magnocellularis (NM), nucleus angularis (NA), and nucleus laminaris (NL), second- and third-order auditory neurons in the avian brainstem, receive GABAergic input primarily from the superior olivary nucleus (SON). Previous studies have demonstrated that both GABA(A) and GABA(B) receptors (GABA(B)Rs) influence physiological properties of NM neurons. We characterized the distribution of GABA(B)R expression in these nuclei during development and after deafferentation of the excitatory auditory nerve (nVIII) inputs. We used a polyclonal antibody raised against rat GABA(B)Rs in the auditory brainstem during developmental periods that are thought to precede and include synaptogenesis of GABAergic inputs. As early as embryonic day (E)14, dense labeling is observed in NA, NM, NL, and SON. At earlier ages immunoreactivity is present in somas as diffuse staining with few puncta. By E21, when the structure and function of the auditory nuclei are known to be mature, GABA(B) immunoreactivity is characterized by dense punctate labeling in NM, NL, and a subset of NA neurons, but label is sparse in the SON. Removal of the cochlea and nVIII neurons in posthatch chicks resulted in only a small decrease in immunoreactivity after survival times of 14 or 28 days, suggesting that a major proportion of GABA(B)Rs may be expressed postsynaptically or on GABAergic terminals. We confirmed this interpretation with immunogold TEM, where expression at postsynaptic membrane sites is clearly observed. The characterization of GABA(B)R distribution enriches our understanding of the full complement of inhibitory influences on central auditory processing in this well-studied neuronal circuit.  相似文献   

13.
Neurotrophins and their cognate receptors are critical to normal nervous system development. Trk receptors are high-affinity receptors for nerve-growth factor (trkA), brain-derived neurotrophic factor and neurotrophin-4/5 (trkB), and neurotrophin-3 (trkC). We examine the expression of these three neurotrophin tyrosine kinase receptors in the chick auditory system throughout most of development. Trks were localized in the auditory brainstem, the cochlear ganglion, and the basilar papilla of chicks from embryonic (E) day 5 to E21, by using antibodies and standard immunocytochemical methods. TrkB mRNA was localized in brainstem nuclei by in situ hybridization. TrkB and trkC are highly expressed in the embryonic auditory brainstem, and their patterns of expression are both spatially and temporally dynamic. During early brainstem development, trkB and trkC are localized in the neuronal cell bodies and in the surrounding neuropil of nucleus magnocellularis (NM) and nucleus laminaris (NL). During later development, trkC is expressed in the cell bodies of NM and NL, whereas trkB is expressed in the nerve calyces surrounding NM neurons and in the ventral, but not the dorsal, dendrites of NL. In the periphery, trkB and trkC are located in the cochlear ganglion neurons and in peripheral fibers innervating the basilar papilla and synapsing at the base of hair cells. The protracted expression of trks seen in our materials is consistent with the hypothesis that the neurotrophins/tyrosine kinase receptors play one or several roles in the development of auditory circuitry. In particular, the polarized expression of trkB in NL is coincident with refinement of NM terminal arborizations on NL.  相似文献   

14.
Surgical extirpation of the otocyst on embryonic day (E) 3 in chick embryos prevents formation of the cochlear nerve and results in development of an aberrant axonal projection from the contralateral cochlear nucleus (nucleus magnocellularis, NM) to the deafferented NM. We have studied the morphology of this projection using horseradish peroxidase injections in NM axons and light and electron microscopy. The ability of the projection to activate its target neurons synaptically was assessed by means of extracellular microelectrode recording from in vitro preparations of the chick brainstem. The aberrant projection arises as a vertically directed branch from the contralaterally traveling NM axon at the medial border of nucleus laminaris (NL). This axonal branch forms boutonal endings that may terminate anywhere in NM but are most common in its ventral and medial regions. In our experiments, this projection is not seen on the unoperated side of experimental animals or in normal controls from E11 onward but is found on the operated sides of all experimental animals, including those with bilateral removal of the otocysts. The aberrant projection persists at least from E11 through hatching and has essentially identical features in unilaterally and bilaterally lesioned animals. The endings of the aberrant projection are boutonal in form and, in the electron microscope, exhibit all of the elements associated with normal synapses. Electrophysiological studies confirm that stimulation of the aberrant axons can elicit postsynaptic responses in NM and suggest that these synapses use an excitatory amino acid neurotransmitter.  相似文献   

15.
Multisensory integration is essential for the expression of complex behaviors in humans and animals. However, few studies have investigated the neural sites where multisensory integration may occur. Therefore, we used electrophysiology and retrograde labeling to study a region of the rat parietotemporal cortex that responds uniquely to auditory and somatosensory multisensory stimulation. This multisensory responsiveness suggests a functional organization resembling multisensory association cortex in cats and primates. Extracellular multielectrode surface mapping defined a region between auditory and somatosensory cortex where responses to combined auditory/somatosensory stimulation were larger in amplitude and earlier in latency than responses to either stimulus alone. Moreover, multisensory responses were nonlinear and differed from the summed unimodal responses. Intracellular recording found almost exclusively multisensory cells that responded to both unisensory and multisensory stimulation with excitatory postsynaptic potentials (EPSPs) and/or action potentials, conclusively defining a multisensory zone (MZ). In addition, intracellular responses were similar to extracellular recordings, with larger and earlier EPSPs evoked by multisensory stimulation, and interactions suggesting nonlinear postsynaptic summation to combined stimuli. Thalamic input to MZ from unimodal auditory and somatosensory thalamic relay nuclei and from multisensory thalamic regions support the idea that parallel thalamocortical projections may drive multisensory functions as strongly as corticocortical projections. Whereas the MZ integrates uni- and multisensory thalamocortical afferent streams, it may ultimately influence brainstem multisensory structures such as the superior colliculus.  相似文献   

16.
Nucleus magnocellularis is the avian homologue of the spherical cell region of the mammalian anteroventral cochlear nucleus. Its primary excitatory synaptic input is from large end bulbs of Held from the eighth nerve ganglion cells. We have examined the effects of three peripheral manipulations--middle ear ossicle (columella) removal (monaural and binaural), columella removal and oval window puncture (monaural), and monaural earplug--on cross-sectional cell area ("cell size") of second-order auditory neurons in n. magnocellularis of the chicken. Manipulations were performed between embryonic day 19 and posthatch day 4. Survival time was varied from 2 to 60 days. Air conduction and bone conduction thresholds were determined to assess for conductive and sensorineural hearing loss associated with each of these manipulations. Hair cell counts were made from basilar papillae of each experimental group. We found that a columella removal alone, which produced a 50-55-dB purely conductive hearing loss, was not associated with changes in cell size of n. magnocellularis neurons. Similarly, chronic monaural earplugging did not affect the cross-sectional area of these second-order auditory neurons. Conversely, a combined columella removal and oval window puncture, which produced a mixed hearing loss with a 15-40-dB sensorineural component was associated with an 18-20% reduction in n. magnocellularis cell area. Hair cell counts for experimental ears were not significantly different from control ears. These results, in conjunction with measurements of multiunit activity recorded in n. magnocellularis, suggest that manipulations which markedly attenuate extrinsic auditory stimulation, but do not result in chronic change in the average activity levels, also do not influence the size of n. magnocellularis cell bodies. On the other hand, a manipulation which influences overall activity levels, but does not result in degeneration of receptor cells, resulted in marked changes in n. magnocellularis cell size.  相似文献   

17.
Nucleus magnocellularis (NM) and nucleus laminaris (NL) are, respectively, second- and third-order auditory nuclei in the chicken brain stem. In this report the morphogenesis of these nuclei is examined. The times of origin of the cells of these nuclei were studied with 3H-thymidine autoradiography. The number of cells in each nucleus and their rostro-caudal distribution within each nucleus was determined in Nissl-stained sections at 9, 11, 13, 15, 17, 19, and 21 days of incubation. For the above ages the volumes of NM and NL were also calculated planimetrically and the rostro-caudal distribution of volume within each nucleus was studied.  相似文献   

18.
Changes in cytochrome oxidase (CO) activity were studied in the chick brainstem auditory nuclei, n. magnocellularis (NM) and n. laminaris (NL), following unilateral cochlea removal. Chickens aged 10 days or 56 weeks underwent unilateral cochlea removal. Following survival periods of 30 minutes to 14 days for the 10-day-old birds and 6 hours or 14 days for the 56-week-old birds, the animals were perfused with paraformaldehyde/glutaraldehyde fixative. Cryostat sections of the brainstem were then prepared for CO histochemistry. Microdensitometry was used to quantify the difference in CO staining in NM and NL ipsilateral and contralateral to the cochlea removal. Since the cochlea projects to the ipsilateral NM, the contralateral NM was used as a within-animal control. In normal chickens, NM cell bodies and the cell bodies and dendrites of NL neurons stain darkly for CO in both young and adult birds. In 10-day-old birds, there is no significant change in CO staining in NM from 30 minutes to 3 hours after cochlea removal. Then, a rapid biphasic change in CO staining was found in the ipsilateral NM. An increase in staining was observed 6 to 24 hours postoperatively, followed by a decrease in CO staining at 3- to 14-day survival times. In the 56-week-old birds, no increases in CO staining were observed 6 hours after cochlea removal, but a decrease in CO staining was found 14 days postoperatively. In NL, no changes were observed until 3 days (10-day-old birds) or 14 days (56-week-old birds) after cochlea removal. Then a decrease in CO staining was observed in the dendritic and glial/fiber regions of NL containing axons from the deafferented NM. Thus it appears that afferent input has a regulatory effect on the oxidative metabolism of neurons in the chicken auditory brainstem nuclei, an effect that differs with the age of the animal at the time of afferent manipulation.  相似文献   

19.
Elimination of presynaptic elements often results in marked changes, such as atrophy and death, in postsynaptic neurons in the central nervous system. These transneuronal changes are particularly rapid and profound in young animals. In order to understand the cellular events underlying transneuronal regulation it is necessary to explore changes in the local environment of neurons following manipulations of their afferents. In previous investigations we have documented a variety of rapid and marked cellular changes in neurons of the cochlear nucleus of neonatal chicks (n. magnocellularis) following cochlea removal. In adult chickens, however, these transneuronal changes are either absent or minor. The goals of the studies presented here were to examine changes in the electrical activity of nucleus magnocellularis cells and their afferents following removal of the cochlea and to determine if these changes were similar in adult and neonatal animals. Two measures of electrical activity were used; multiunit recording with microelectrodes and incorporation of radiolabeled 2-deoxyglucose (2-DG). Microelectrode recordings revealed high levels of spontaneous activity in n. magnocellularis and n. laminaris, the binaural target of n. magnocellularis neurons. Neither puncturing of the tympanic membrane nor removal of the columella causes significant changes in spontaneous activity, although the latter results in a profound hearing loss (40-50 dB). Removal of the cochlea, on the other hand, results in immediate cessation of all extracellular electrical activity in the ipsilateral n. magnocellularis. Recordings from the same location for up to 6 h failed to reveal any return of spontaneous activity. When the electrode tip was placed in n. laminaris, unilateral cochlea removal had no discernible effect on extracellularly recorded spontaneous activity, probably due to the high levels of excitatory input from the intact ear. Bilateral cochlea removal, however, completely eliminated activity in n. laminaris. 2-DG studies conducted 1 h to 8 days following unilateral cochlea removal revealed marked decreases in 2-DG incorporation in the ipsilateral n. magnocellularis and bilaterally in the n. laminaris target of the ablated cochlea. No compensatory return of 2-DG incorporation was observed for up to 8 days. Comparisons of adult and neonatal chicks failed to reveal significant differences in the effects of cochlea removal on multiunit activity or 2-DG incorporation, suggesting that age differences in transneuronal regulation are due to intrinsic biochemical differences in young and adult neurons rather than differences in the proportion of synaptic input that has been abolished.  相似文献   

20.
The expression of the calcium-binding protein calretinin (CR) in the chick brainstem auditory nuclei angularis (NA), laminaris (NL), and magnocelularis (NM) was studied during normal development and after deafening by surgical removal of the otocyst (embryonic precursor of the inner ear) or columella (middle ear ossicle). CR mRNA was localized by in situ hybridization by using a radiolabeled oligonucleotide chick CR probe. CR immunoreactivity (CR-IR) was localized on adjacent tissue sections. CR mRNA signal in the auditory nuclei was expressed at comparable levels at embryonic day (E)9 and E11 and increased thereafter to reach the highest levels in posthatch chicks. CR-IR neurons were apparent in NM and NA at E11 and in NL by E13, and CR-IR increased in all three auditory nuclei thereafter. Neither unilateral nor bilateral otocyst removal caused detectable changes in the intensity of CR mRNA expression or CR-IR in the auditory nuclei at any of the several ages examined. Similarly, columella removal at posthatching day 2 or 3 failed to significantly affect CR mRNA or CR-IR levels at 3 hours, 1 day, or 3–4 days survival times. We conclude that cochlear nerve input is not necessary for expression of either calretinin mRNA or protein and that the profound decrease in sound-evoked activity caused by columella removal does not affect the maintenance of CR expression after hatching. J. Comp. Neurol. 383:112–121, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号