首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The connections of the amygdala with the insular and temporal cortices were examined by injecting wheat germ agglutinin conjugated to HRP (WGA-HRP) into the rat cortex. Following injections into the posterior agranular insular area (AIp) or perirhinal cortex (PR), bands of labeled neurons extending across nuclear boundaries were observed in the amygdala. These neuronal bands involved cells in the lateral, basolateral, and basomedial nuclei as well as the periamygdaloid cortex. Other nuclei of the corticomedial amygdala and the ventral endopiriform nucleus also exhibited retrogradely labeled cells. Anterograde label was observed in nuclei containing labeled neurons and in the central nucleus. Injections into gustatory, somatosensory, and auditory neocortical areas located dorsal to AIp and PR labeled small numbers of cells in the lateral and basolateral nuclei. Injections into AIp, PR, and, to a lesser extent, dorsally adjacent neocortical areas produced both retrograde and anterograde labeling in the contralateral amygdala. The main nuclei with contralateral insular and temporal projections are the basomedial nucleus, ventral endopiriform nucleus, and nucleus of the lateral olfactory tract. The contralateral central nucleus and to a lesser extent the lateral nucleus exhibited anterograde labeling. The pattern of retrograde labeling seen with injections at different rostrocaudal levels of the AIp-PR continuum indicates that amygdalocortical projections to these areas exhibit an overlapping topographical organization. Comparison of the results of this study with findings on amygdaloprefrontal cortical efferents suggests that amygdaloid projections to the entire fronto-insulo-temporal mesocortical field are topographically organized.  相似文献   

2.
We have analyzed the cortical and subcortical afferent connections of the medial prefrontal cortex (MPF) in the cat with the specific aim of characterizing subregional variations of afferent connectivity. Thirteen tracer deposits were placed at restricted loci within a cortical district extending from the proreal to the subgenual gyrus. The distribution throughout the forebrain of retrogradely labeled neurons was then analyzed. Within the thalamus, retrogradely labeled neurons were most numerous in the mediodorsal nucleus and in the ventral complex. The projection from each region exhibited continuous topography such that more medial thalamic neurons were labeled by tracer from more ventral and posterior cortical deposits. Marked retrograde labeling without any sign of topographic order occurred in a narrow medioventral sector of the lateroposterior nucleus. Several additional thalamic nuclei contained small numbers of labeled neurons. In a subset of nuclei closely affiliated with the limbic system (the parataenial, paraventricular, reuniens, and basal ventromedial nuclei), retrograde labeling occurred exclusively after deposits at extremely ventral and posterior cortical sites. Within the amygdala, retrogradely labeled neurons occupied the anterior basomedial nucleus, the posterior basolateral nucleus, and a narrow strip of the lateral nucleus immediately adjoining the basolateral nucleus. The number of labeled neurons was greater after more ventral deposits. Very ventral deposits resulted in extensive labeling of the cortical amygdala. Within the cerebral cortex, the distribution of labeled neurons depended on the location of the tracer deposit. Comparatively dorsal deposits produced prominent retrograde transport to the anterior and posterior cingulate areas, to the agranular insula, and to lateral prefrontal cortex. Comparatively ventral deposits gave rise to prominent labeling of the hippocampal subiculum, various parahippocampal areas, and prepiriform cortex. On the basis of afferent connections, it is possible to divide the cat's medial prefrontal cortex into an infralimbic component, MPFil, marked by strong afferents from prepiriform cortex and the cortical amygdala, and a dorsal component, MPFd, without afferents from these structures. Further, within MPFd, it is possible to define an axis, running from ventral and posterior to dorsal and anterior levels, along which limbic afferents gradually become weaker and projections from cortical association areas gradually become stronger.  相似文献   

3.
The rostral nucleus of the solitary tract (NST) is the first central site of taste information processing. Specific anatomical subdivisions of the NST receive taste afferent input and contain interneurons and projection neurons that engage ascending or premotor taste pathways. The forebrain projects to the NST and can influence taste responses, but the anatomical relationship between forebrain inputs and the subdivisions of the NST and their cellular elements is not understood. To evaluate this, in this study, we used cholera toxin B (CTb) as a retrograde and anterograde marker. CTb was injected into the rostral NST to label, by retrograde transport, the sources of forebrain inputs. Cells were labeled bilaterally in the lateral and paraventricular hypothalamic nuclei, bed nucleus of the stria terminalis, central nuclei of the amygdala, and the agranular and dysgranular divisions of insular cortex. Within the medulla, labeled cells were located in the parvicellular reticular formation and spinal trigeminal nuclei. In addition, labeled cells and anterograde axonal labeling were present in the rostral NST contralateral to the injections. Injections of CTb centered in the dysgranular insular cortex, the site of most forebrain-NST cells, labeled axon endings confined to the rostral NST. These endings were concentrated in the rostral central and ventral subdivisions. Corticofugal endings in the rostral central subdivision are positioned to influence microcircuits that include taste afferent synapses, presumed inhibitory interneurons, and neurons that project to the parabrachial nucleus. The many corticofugal endings in the ventral subdivision synapse among premotor neurons that ultimately influence salivatory and oromotor outflow. Intramedullary CTb labeling after NST injection indicates that the rostral central subdivision also receives projections from the contralateral rostral NST.  相似文献   

4.
The medial nucleus of the pulvinar complex (PM) has widespread connections with association cortex. We investigated the connections of the PM with the prefrontal cortex (PFC) in macaque monkeys, with tracers placed into the PM and the PFC, respectively. Injections of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) placed into the PM resulted in widespread anterograde terminal labeling in layers III and IV, and retrograde cellular labeling in layer VI of the PFC. Injections of tracers centered on the central/lateral PM resulted in labeling of dorsolateral and orbital regions, whereas injections centered on caudal, medial PM resulted in labeling of dorsomedial and medial PFC. Since injections of the PM included neighboring thalamic nuclei, retrograde tracers were placed into distinct cytoarchitectonic regions of the PFC and retrogradely labeled cells in the posterior thalamus were charted. The results of this series of tracer injections confirmed the results of the thalamic injections. Injections placed into areas 8a, 12 (lateral and orbital), 45, 46 and 11, retrogradely labeled neurons in the central/lateral PM, while tracer injections placed into areas 9, 12 (lateral), 10 and 24, labeled medial PM. The connections of the PM with temporal, parietal, insular, and cingulate cortices were also examined. The central/lateral PM has reciprocal connections with posterior parietal areas 7a, 7ip, and 7b, insular cortex, caudal superior temporal sulcus (STS), caudal superior temporal gyrus (STG), and posterior cingulate, whereas medial PM is connected mainly with the anterior STS and STG, as well as the cingulate cortex and the amygdala. These connectional studies suggest that the central/lateral and medial PM have divergent connections which may be the substrate for distinct functional circuits. J. Comp. Neurol. 379:313–332, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Recent evidence suggests that autonomic reflexes involving sensations such as olfaction and gustation may be cortically mediated via centripetal pathways to brainstem autonomic centers. A study was therefore undertaken to elucidate one of these pathways in greater detail. Lectin conjugated horseradish peroxidase was injected into the nucleus tractus solitarius. Following standard light microscopic histochemical procedures to reveal horseradish peroxidase activity, the distribution of retrogradely labeled neurons in the cortex was recorded. Retrogradely labeled somata were seen bilaterally in layer five of the orbital gyrus, anterior insular cortex and infralimbic cortex. In other cats, the same tracer was injected into the orbital gyrus or anterior insular cortex. Bilateral anterograde labeling was seen in various subnuclei throughout the rostrocaudal extent of the nucleus tractus solitarius, but was heaviest in rostral regions of the nucleus. Labeling was also seen bilaterally in the spinal trigeminal nucleus. The projection to the nucleus tractus solitarius could allow for cortical modulation of gustatory and visceral information which is conveyed to the brainstem via the facial, glossopharyngeal and vagus nerves.  相似文献   

6.
It has been proposed that calcitonin gene-related peptide (CGRP) may serve as a major neuromodulator in visceral sensory pathways, but its exact role in the visceral sensory thalamus and cortex has not been determined. We therefore examined the distribution of CGRP-like immunoreactive (CGRPir) innervation of the insular cortex and the parvicellular division of the ventroposterior nucleus of the thalamus (VPpc) in the rat by using immunohistochemistry for CGRP combined with retrograde transport of the fluorescent dye fluoro-gold. Modest numbers of CGRPir fibers were distributed in the dysgranular and agranular insular cortex, but few were observed in the granular insular cortex. The density of CGRPir innervation increased caudally along the rhinal fissue and was considerably greater in the perirhinal cortex. When fluoro-gold was injected into the insular cortex numerous retrogradely labeled neurons were seen in the VPpc, but few of these were CGRPir. Retrogradely labeled CGRPir neurons were, however, seen in the ventral lateral and medial parabrachial (PB) subnuclei. Injection of fluoro-gold into the perirhinal cortex (which is just caudal to the insular cortex along the rhinal fissure) resulted in many retrogradely labeled CGRPir neurons in the posterior thalamic region, including the subparafascicular, the lateral subparafascicular, and the posterior intralaminar nuclei. The VPpc was heavily innervated by CGRPir fibers but contained few CGRPir cell bodies. Injection of fluoro-gold into the VPpc resulted in many retrogradely labeled CGRPir neurons in the external medial PB subnucleus bilaterally, but with a contralateral predominance. Smaller numbers of retrogradely labeled CGRPir neurons were also observed in the ventrolateral PB subnucleus, bilaterally with an ipsilateral predominance. These results suggest that CGRP may be a neuromodulator in the ascending visceral sensory pathways from the PB to the VPpc and the insular cortex, but not between the latter two structures.  相似文献   

7.
The connections of the posterior part of the medial prefrontal cortex with the thalamic lateral posterior nucleus in rats were studied using anterograde and retrograde axonal transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and tritiated leucine. After injections of WGA-HRP into the medial prefrontal cortex, an area confirmed to receive direct projections from the visual cortex, retrogradely labeled neurons were observed ipsilaterally in the lateral posterior nucleus of the thalamus, as well as in the mediodorsal, anteromedial, ventromedial, ventrolateral, laterodorsal, centrolateral, paracentral, rhomboid, parafascicular and posterior nuclei. In the lateral posterior nucleus, the labeled cells were located mainly in the lateroventral portion of its anterior half. In contrast, the posterior half of this nucleus was free of label. Axons labeled by the anterograde transport of tritiated leucine were dispersed over the same region which contained retrogradely labeled cells. The functional significance of these connections is discussed with special reference to their possible role in visuomotor integration in rats.  相似文献   

8.
The connections of the cerebellar cortex with vestibular premotor neurons of the oculomotor and collimotor systems in the pigeon were delineated in experiments using WGA-HRP as an anterograde and retrograde tracer. Putative premotor neuron pools were identified by injections into the oculomotor (mIII) and trochlear nuclei (mIV) and into the most rostral portion of the cervical neck motor nucleus, nucleus supraspinalis (SSp). The retrograde data indicate that ipsilateral projections upon oculomotor neurons arise from the medial portions of the superior (VeS) and tangential (Ta) nuclei. Contralateral projections originate from the infracerebellar nucleus, the interstitial vestibular region including the main (lateral) portion of the tangential nucleus, and from the descending and medial vestibular nuclei (VeD, VeM). These projections were confirmed in anterograde studies that also defined the connections of these vestibular premotor regions with specific subnuclear divisions of the pigeon's "oculomotor" nuclei (mIII, mIV, mVI). The organization of projections from the vestibular nuclei to the pigeon's extraocular motoneurons is similar to that reported in mammals. Projections upon neck premotor neurons arise primarily from neurons in the interstitial region of the vestibular nuclear complex. After injections in SSp, retrogradely labeled neurons were found, contralaterally, in the lateral part of the tangential and superior vestibular nuclei and in the dorsolateral vestibular nucleus (VDL). Ipsilateral labeling was seen in the medial interstitial region (VeM, VeD, and medial Ta). These projections were confirmed in anterograde experiments. With the exception of VDL, vestibular nuclei projecting to neck motoneurons also project to extraocular motoneurons. Thus the infracerebellar nucleus projects exclusively, and the superior vestibular nucleus predominantly, upon oculomotor (mIII, mIV) nuclei; VDL projects predominantly upon the neck motor nucleus, whereas the interstitial vestibular regions (medial Ta, rostral VeD, intermediate VeM) project upon both collimotor and oculomotor neurons. The pattern of retrograde labeling seen in the cerebellar cortex after injections into vestibular premotor nuclei was used to define the projections of specific cerebellar cortical zones upon vestibular eye and neck premotor neurons. Corticovestibular projections upon these regions arise from the auricle and lateral unfoliated cortex, the posterior lobe components of cortical zones B and E, and from the vestibulocerebellum. Each of these cortical zones projects upon components of the vestibular nuclear complex, which are premotor to either oculomotor nuclei or collimotor nuclei. The hodological findings are related to the functional organization of the oculomotor and collimotor systems in the pigeon and compared with the mammalian data.  相似文献   

9.
The distribution of presumptive glutamatergic and/or aspartatergic neurons retrogradely labeled following injections of [3H]-D-aspartate into the magnocellular basal forebrain of the rat was compared with the distribution of neurons labeled by comparable injections of the nonspecific retrograde axonal tracer wheat germ agglutinin conjugated to horseradish peroxidase. Cells retrogradely labeled by wheat germ agglutinin-horseradish peroxidase were found in a wide range of limbic and limbic-related structures in the forebrain and brainstem. In the telencephalon, labeled neurons were seen in the orbital, medial prefrontal, and agranular insular cortical areas, the amygdaloid complex, and the hippocampal formation. Labeled cells were also seen in the olfactory cortex, the lateral septum, the ventral striatopallidal region, and the magnocellular basal forebrain itself. In the diencephalon, neurons were labeled in the midline nuclear complex of the thalamus, the lateral habenular nucleus, and the hypothalamus. In the brainstem, labeled cells were found bilaterally in the ventral midbrain, the central gray, the reticular formation, the parabrachial nuclei, the raphe nuclei, the laterodorsal tegmental nucleus, and the locus coeruleus. A significant fraction of the afferents to the magnocellular basal forebrain appear to be glutamatergic and/or aspartatergic. Only a few of the regions labeled with wheat germ agglutinin-horseradish peroxidase were not also labeled with [3H]-D-aspartate in the comparable experiments. Most prominent among the non-glutamatergic/aspartatergic projections were those from fields CA1 and CA3 of the hippocampus, the hilus of the dentate gyrus, the dorsal subiculum, the tuberomammillary nucleus, and the ventral pallidum. In addition, most of the lateral hypothalamic and brainstem projections to the magnocellular basal forebrain were not significantly labeled with [3H]-D-aspartate. In addition to these inputs, a commissural projection from the region of the contralateral nucleus of the horizontal limb of the diagonal band was confirmed with both wheat germ agglutinin-horseradish peroxidase and the anterograde axonal tracer Phaseolus vulgaris leucoagglutinin. This projection did not label with [3H]-D-aspartate or [3H]-GABA, suggesting that it is not glutamatergic/aspartatergic or GABAergic. Furthermore, double labeling experiments with the fluorescent retrograde tracer True Blue and antibodies against choline acetyltransferase indicate that the projection is not cholinergic.  相似文献   

10.
The efferent and centrifugal afferent connections of the main olfactory bulb (MOB) of the mouse were studied by orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). MOB projects ipsilaterally to the anterior olfactory nucleus, taenia tecta, anterior hippocampal continuation, indusium grisium, olfactory tubercle, and the lateral and medial divisions of the entorhinal area. In the region of the anterior one-half to two-thirds of the posterior division of the insular cortex the projection from MOB extends into the insular cortex. The only efferent projection of MOB to the contralateral half of the brain was to the anterior olfactory nucleus. All efferent projections of MOB, thus, are to telencephalic structures. By contrast the centrifugal afferents to MOB originate from every major division of the neuraxis. Neurons projecting to the bulb were found ipsilaterally in all divisions of the anterior olfactory nucleus (AON). In some cases, labeling in the external division of AON was weak or absent. In the contralateral AON, pars externa was the most intensively labeled sub-division. Retrogradely labeled neurons were also present in all other subdivisions of the contralateral AON but were fewer in number and less heavily labeled than in the ipsilateral AON. Ipsilaterally, positive neurons were also present in taenia tecta, and the anterior hippocampal continuation. There was profuse retrograde labeling of neurons in the entire extent of the ipsilateral piriform cortex (PC). There was a rostral to caudal gradient of labeling in PC with more positive neurons in rostral than caudal parts. Labeled neurons were present in the lateral entorhinal cortex LEC and in the transitional cortex between LEC and PC. Very heavy retrograde labeling was present in the nuclei of the horizontal and vertical limbs of the diagonal band (HDB and VDB). More cells were labeled in HDB than in VDB. Neurons were labeled in the ipsilateral nucleus of the lateral olfactory tract (NLOT) and, when the injection spread into the accessory olfactory bulb, labeled neurons were present ventral to NLOT in accessory NLOT. A few lightly labeled neurons were always present in the posterolateral and medial cortical amygdaloid areas. Neurons were labeled in the zona inserta and scattered throughout several hypothalamic nuclei. There was massive retrograde labeling of neurons in the locus coeruleus and neurons were abundantly labeled in the dorsal and medial raphe nuclei and nucleus raphe pontis. In general, the labeling of MOB connections was more extensive than that which has been reported in closely related species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
In order to investigate the possible routes linking the thalamus in the two sides of the brain, the connections of the reticular nucleus (RT), the major component of the ventral thalamus, with contralateral dorsal thalamic nuclei were systematically investigated in the adult rat. This study was performed with several tract-tracing techniques: single and double retrograde labeling with fluorescent tracers, and anterograde tracing with biocytin. Retrograde tracing was also combined with immunocytochemistry to provide additional criteria for the identification of labeled RT neurons. The data obtained with the retrograde transport of one fluorescent tracer showed that RT neurons project to contralateral dorsal thalamic domains. In particular, retrograde labeling findings indicated that the anterior intralaminar nuclei, as well as the ventromedial (VM) nucleus, are preferential targets of the contralateral RT projections. Commissural neurons were concentrated in two portions of RT: its rostral part, including the rostral pole, which projects to the contralateral central lateral (CL) and paracentral (Pc) nuclei, and the ventromedial sector of the middle third of RT, which projects to the contralateral VM and posterior part of CL and Pc. The double retrograde labeling study of the bilateral RT–intralaminar connection indicated that at least part of the commissural RT cells bifurcate bilaterally to symmetrical portions of the anterior intralaminar nuclei. The targets of the RT commissural system inferred from the retrograde labeling data were largely confirmed by anterograde tracing. Moreover, it was shown that RT fibers cross the midline in the intrathalamic commissure. The present data demonstrate that bilateral RT connections with the dorsal thalamus provide a channel for interthalamic crosstalk. Through these bilateral connections with thalamic VM and intralaminar neurons, RT could influence the activity of wide territories of the cerebral cortex and basal ganglia of both hemispheres. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Afferent connections to the substantia innominata/nucleus basalis complex of monkeys and cats were traced by using the method of retrograde transport of horseradish peroxidase (HRP). Altogether ten injections of HRP were performed in four monkeys (Saimiri sciureus, Callithrix jacchus, Galago senegalensis) and in four cats, with either vertical or oblique needle approaches. The entire brains excluding the olfactory bulbs and the cerebellum were then screened for labeled neurons. In both monkey and cat brains, many retrogradely labeled neurons could be detected in the amygdala, hypothalamus, midline thalamus, zona incerta, and the fields of Forel. Further but weaker labeling occurred in the medial septal nucleus, diagonal band of Broca, olfactory tubercle, paraventricular, anterior, mediodorsal, and central lateral thalamic nuclei, lateral habenula, ventral tegmental area of Tsai, interpeduncular nucleus, parabrachial, raphe, dorsal tegmental nucleus and the locus caeruleus. Cortically, prefrontal, insular, entorhinal, prepiriform, and periamygdaloid areas of both species showed considerable labeling as well as the whole temporal lobe of the monkeys used. The perirhinal and basal temporal cortex of all cats showed moderate labeling. In both monkeys and cats, extremely scarce labeling occurred within the cingulate, retrosplenial, and subicular cortex. From an anatomical point of view, the manifold connections of the substantia innominata/basal nucleus of Meynert found in this study underscore the participation of these nuclear groups in motivational, emotional, and cognitive (e.g. mnemonic) functions. Considering the widespread cortical efferents of this complex, it is suggested that the substantia innominata/nucleus basalis of Meynert serves the transmission of information arising within the limbic system to the whole neocortex.  相似文献   

13.
The projections of the rat area postrema were analysed using anterograde and retrograde axonal transport techniques. Discrete injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the area postrema produced anterograde labeling in specific medullary and pontine nuclei. In the medulla, anterograde labeling was present in the internal solitary zone and dorsal division of the medial solitary nucleus, both of which also contained a small number of retrogradely labeled perikarya. Prominent projections to the dorsal motor nucleus of the vagus were seen only if the WGA-HRP injections in the area postrema invaded dorsal solitary nuclei. In the pons, anterograde labeling was present in the parabrachial nuclei, the dorsolateral tegmental nucleus, and the pericentral division of the dorsal tegmental nucleus. By far the major pontine projection was to the dorsolateral region of the middle one-third of the rostrocaudal extent of the parabrachial nuclei. Retrograde fluorescent tracing studies indicated that most area postrema neurons take part in this parabrachial projection. The area postrema projection to the parabrachial nuclei was bilaterally distributed, whereas that from the dorsal solitary nuclei was primarily ipsilateral. The external solitary zone, immediately subadjacent to the area postrema, neither received area postrema projections nor participated in the projections to the parabrachial nuclei. Fluorescent retrograde double labeling studies confirmed the bilateral nature of the area postrema projection to the parabrachial nuclei. In addition, because no doubly labeled neurons were observed it appears that individual area postrema neurons project to either side but not both sides of the dorsal pons. Thus, numerous neuronal pathways exist for the transfer of blood-borne information (that cannot cross the blood-brain barrier) from the area postrema to other brain regions.  相似文献   

14.
Increasingly strong evidence suggests that cholinergic neurons in the mesopontine tegmentum play important roles in the control of wakefulness and sleep. To understand better how the activity of these neurons is regulated, the potential afferent connections of the laterodorsal (LDT) and pedunculopontine tegmental nuclei (PPT) were investigated in the rat. This was accomplished by using retrograde and anterograde axonal transport methods and NADPH-diaphorase histochemistry. Immunohistochemistry was also used to identify the transmitter content of some of the retrogradely identified afferents. Following injections of the retrograde tracer wheatgerm agglutinin-conjugated horseradish peroxidase (WGA-HRP) into either the LDT or the PPT, labelled neurons were seen in a number of limbic forebrain structures. The medial prefrontal cortex and lateral habenula contained more retrogradely labelled neurons from the LDT, whereas in the bed nucleus of the stria terminalis and central nucleus of the amygdala, more cells were labelled from the PPT. Moderate numbers of neurons were seen in the magnocellular regions of the basal forebrain, and many labelled neurons were observed in the lateral hypothalamus, the zona incerta, and the midbrain central gray from both the LDT and the PPT. Accessory oculomotor nuclei in the midbrain as well as eye movement-related structures in the lower brainstem contained some neurons labelled from the LDT, and fewer neurons from the PPT. A few labelled neurons were seen in somatosensory and other sensory relay nuclei in the brainstem and the spinal cord. Retrograde labelling was seen in a number of extrapyramidal structures, including the globus pallidus, entopenduncular and subthalamic nuclei, and substantia nigra following PPT injections; with LDT injections, labelling was similar in density in the substantia nigra but virtually absent in the entopeduncular and subthalamic nuclei. Data with the fluorescent retrograde tracer fluorogold combined with immunofluorescence indicated that many neurons in the zona incerta-lateral hypothalamic region that were retrogradely labelled from the LDT contained alpha-melanocyte-stimulating hormone. Numerous neurons were labelled throughout the reticular formation of the brainstem following either LDT or PPT injections. Many neurons retrogradely labelled in the LDT and PPT, the dorsal and median raphe nuclei, and the locus ceruleus contained choline acetyltransferase, serotonin, and tyrosine hydroxylase, respectively. The anterograde tracers WGA-HRP and phaseolus vulgaris leucoagglutinin were used to confirm some of the projections indicated by the retrograde labelling data; anterograde labelling was seen in the LDT and PPT following injections of one of these tracers into the medial prefrontal cortex, lateral hypothalamus, and the contralateral LDT.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The hypothalamus is known to be intimately involved in the control of autonomic function. This study provides detailed information about pathways between the hypothalamus and the dorsal vagal complex in cat. Injection of horseradish peroxidase into the dorsomedial medulla produced retrograde neuronal labeling in the paraventricular nucleus of the hypothalamus. Injection of 3H-leucine into the paraventricular nucleus produced dense anterograde labeling in the dorsal motor nucleus of the vagus, and lighter labeling in the nucleus of the tractus solitarius, particularly in its medial subnucleus. The subnucleus gelatinous was virtually free of label, except in its medial and lateral portions. Anterograde labeling was distributed bilaterally, with an ipsilateral predominance. Injection of horseradish peroxidase into the area of the paraventricular nucleus produced retrograde neuronal labeling bilaterally in the nucleus of the tractus solitarius and the reticular formation ventrolateral to the dorsal vagal complex. anterograde terminal labeling overlapped the distribution of retrogradely labeled neurons. These findings are compared to those in rat, and discussed in relation to their functional implications.  相似文献   

16.
The present study used anterograde and retrograde tract tracing and immunohistochemistry to determine the efferent projections of corticotropin-releasing hormone (CRH) neurons of Barrington's nucleus in the rat. Injections of Phaseolus vulgaris-leucoagglutinin into Barrington's nucleus resulted in anterograde labeling in the dorsal motor nucleus of the vagus, periaqueductal gray, medial thalamic nuclei, lateral hypothalamus, paraventricular nucleus of the hypothalamus, lateral preoptic area, and lateral septum. The retrograde tract tracer, fluorogold, injected into the lumbosacral spinal cord labeled many, but not all, CRH-immunoreactive neurons in Barrington's nucleus. Moreover, some Barrington's neurons that were retrogradely labeled from the spinal cord were not CRH-immunoreactive. Several CRH-immunoreactive Barrington's neurons were retrogradely labeled by fluorogold injections into the periaqueductal gray, and these were located predominantly in the dorsal part of the nucleus. Additionally, some CRH-immunoreactive Barrington's neurons were retrogradely labeled from fluorogold injections into the dorsal motor nucleus of the vagus. In contrast, fluorogold injections into the lateral hypothalamus, lateral preoptic area, or lateral septum did not result in double labeling of CRH-immunoreactive neurons in Barrington's nucleus. These results suggest that many, but not all, CRH-containing neurons of Barrington's nucleus project to the lumbosacral spinal cord. In addition to their previously documented projections to the spinal cord, these neurons may be a source of CRH in the periaqueductal gray and dorsal motor nucleus of the vagus. CRH projections of Barrington's nucleus may play a role in behavioral or autonomic aspects of stress responses, in addition to their proposed role in micturition. © 1995 Wiley-Liss, Inc.  相似文献   

17.
The projection from the parabrachial nucleus (PB) to the cerbral cortex in the rat was studied in detail using the autoradiographic method for tracing anterograde axonal transport and the wheat germ agglutinin-horseradish peroxidase (WGA-HRP) method for both anterograde and retrograde tracing. PB innervates layers I, V and VI of a continuous sheet of cortex extending from the posterior insular cortex caudally, through the dorsal agranular and the granular anterior insular cortex and on rostrally into the lateral prefrontal cortex. Within the prefrontal area, PB fibers innervate primarily layer V of the ventrolateral cortex caudally, but more rostrally the innervated region includes progressively more dorsal portions of the prefrontal area, until by the frontal pole the entire lateral half of the hemisphere is innervated. This projection originates for the most part in a cluster of neurons in the caudal ventral part of the medial PB subdivision, although a few neurons in the adjacent parts of the PB, the Kolliker-Fuse nucleus and the subcoeruleus region also participate.After injection of WGA-HRP into the PB region, retrogradely labeled neurons were found in layer V of the same cortical areas which receive PB inputs. The importance of this monosynaptic reciprocal brainstem-cortical projection as a possible anatomical substrate for the regulation of cortical arousal is discussed.  相似文献   

18.
Afferent projections to the thalamic lateral dorsal nucleus were examined in the rat by the use of retrograde axonal transport techniques. Small iontophoretic injections of horseradish peroxidase were placed at various locations within the lateral dorsal nucleus, and the location and morphology of cells of origin of afferent projections were identified by retrograde labeling. For all cases examined, subcortical retrogradely labeled neurons were most prominent in the pretectal complex, the intermediate layers of the superior colliculus, and the ventral lateral geniculate nucleus. Labeled cells were also seen in the thalamic reticular nucleus and the zona incerta. Within the cerebral cortex, labeled cells were prominent in the retrosplenial areas (areas 29b, 29c, and 29d) and the presubiculum. Labeled cells were also seen in areas 17 and 18 of occipital cortex. Peroxidase injections in the dorsal lateral part of the lateral dorsal nucleus result in labeled neurons in all of the ipsilateral pretectal nuclei, but especially those that receive direct retinal afferents. Labeled cells were also seen in the ventral lateral geniculate nucleus and the rostral tip of laminae IV-VI of the superior colliculus. In contrast, peroxidase injections in ventral medial portions of the lateral dorsal nucleus result in fewer labeled pretectal cells, and these labeled cells are found exclusively in the pretectal nuclei that do not receive retinal afferents. Other labeled cells following injections in the rostral and medial portions of the lateral dorsal nucleus are seen contralaterally in the medial pretectal region and nucleus of the posterior commissure, and bilaterally in the rostral tips of laminae IV and V of the superior colliculus. Camera lucida drawings of HRP labeled cells reveal that projecting cells in each pretectal nucleus have a characteristic soma size and dendritic branching pattern. These results are discussed with regard to the type of sensory information that may reach the lateral dorsal nucleus and then be relayed on to the medial limbic cortex.  相似文献   

19.
The anterograde and retrograde transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) was used to study the anatomical organization of descending projections from the mamillary body (MB) to the mesencephalon and pons at light and electron microscopic levels. Injections of WGA-HRP into the medial mamillary nucleus resulted in dense anterograde and retrograde labeling in the ventral tegmental nucleus, while injections in the lateral mamillary nucleus resulted in dense anterograde labeling in the dorsal tegmental nucleus pars dorsalis and dense anterograde and retrograde labeling in the pars ventralis of the dorsal tegmental nucleus. Anterogradely labeled fibers in the mamillotegmental tract diverged from the principal mamillary tract in an extensive dorsocaudally oriented swath of axons which extended to the dorsal and ventral tegmental nuclei, and numerous axons turned sharply ventrally and rostrally to terminate topographically in the dorsomedial nucleus reticularis tegmenti pontis and rostromedial pontine nuclei. The anterograde labeling in these two precerebellar relay nuclei was distributed near the midline such that projections from the lateral mamillary nucleus terminated mainly dorsomedial to the terminal fields of projections from the medial mamillary nucleus. In the dorsal and ventral tegmental nuclei, labeled axon terminals contained round synaptic vesicles and formed asymmetric synaptic junctions primarily with small diameter dendrites and to a lesser extent with neuronal somata. A few labeled terminals contained pleomorphic vesicles and formed symmetric synaptic junctions with dendrites and neuronal somata. Labeled axon terminals were also frequently found in synaptic contact with retrogradely labeled dendrites and neuronal somata in the dorsal and ventral tegmental nuclei. These findings indicate that neurons in the dorsal and ventral tegmental nuclei are reciprocally connected with MB projection neurons. In the nucleus reticularis tegmenti pontis and medial pontine nuclei, labeled axon terminals contained round synaptic vesicles and formed asymmetric synaptic junctions primarily with small diameter dendrites. The present study demonstrates that projections from the medial and lateral nuclei of the MB are topographically organized in the mesencephalon and pons. The synaptic morphology of mamillotegmental projections suggests that they may have excitatory influences primarily on the distal dendrites of neurons in these brain regions.  相似文献   

20.
The fluorescent carbocyanine dye Dil has been used to retrogradely label the neuronal connections between the forebrain septal area and the interpeduncular nucleus. Previous works based on retrograde horseradish peroxidase transport have identified that only the diagonal band nucleus is a source of the septointerpeduncular projections, but anterograde tracing with labeled amino acids and selective lesions with colchicine have shown that also the posterior septal nuclei project to the interpeduncular nucleus. In the present study, the retrograde labeling in septal nuclei after placing the carbocyanine Dil in the interpeduncular nucleus resulted in the fluorescent labeling of numerous neurons of the diagonal band nucleus. Our results, in addition, showed the labeling of some scattered neurons in the ventral portion of the triangular nucleus of the septal area and in the septofimbrial nucleus, confirming the presence of a previously controversial septointerpeduncular projection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号