首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muco-ciliary transport in the human airway is a crucial defense mechanism for removing inhaled pathogens. Optical coherence tomography (OCT) is well-suited to monitor functional dynamics of cilia and mucus on the airway epithelium. Here we demonstrate several OCT-based methods upon an actively transporting in vitro bronchial epithelial model and ex vivo mouse trachea. We show quantitative flow imaging of optically turbid mucus, semi-quantitative analysis of the ciliary beat frequency, and functional imaging of the periciliary layer. These may translate to clinical methods for endoscopic monitoring of muco-ciliary transport in diseases such as cystic fibrosis and chronic obstructive pulmonary disease (COPD).OCIS codes: (170.4500) Optical coherence tomography, (110.4153) Motion estimation and optical flow, (170.2655) Functional monitoring and imaging, (170.3880) Medical and biological imaging, (110.6150) Speckle imaging, (110.0113) Imaging through turbid media  相似文献   

2.
We have designed and fabricated a 4 mm diameter rigid endoscopic probe to obtain high resolution micro-optical coherence tomography (µOCT) images from the tracheal epithelium of living swine. Our common-path fiber-optic probe used gradient-index focusing optics, a selectively coated prism reflector to implement a circular-obscuration apodization for depth-of-focus enhancement, and a common-path reference arm and an ultra-broadbrand supercontinuum laser to achieve high axial resolution. Benchtop characterization demonstrated lateral and axial resolutions of 3.4 μm and 1.7 μm, respectively (in tissue). Mechanical standoff rails flanking the imaging window allowed the epithelial surface to be maintained in focus without disrupting mucus flow. During in vivo imaging, relative motion was mitigated by inflating an airway balloon to hold the standoff rails on the epithelium. Software implemented image stabilization was also implemented during post-processing. The resulting image sequences yielded co-registered quantitative outputs of airway surface liquid and periciliary liquid layer thicknesses, ciliary beat frequency, and mucociliary transport rate, metrics that directly indicate airway epithelial function that have dominated in vitro research in diseases such as cystic fibrosis, but have not been available in vivo.OCIS codes: (170.4500) Optical coherence tomography, (170.2150) Endoscopic imaging, (170.1610) Clinical applications, (170.4580) Optical diagnostics for medicine  相似文献   

3.
Optical coherence tomography (OCT) is a promising imaging technique to evaluate small airway remodeling. However, the short-term insertion-reinsertion reproducibility of OCT for evaluating the same bronchial pathway has yet to be established. We evaluated 74 OCT data sets from 38 current or former smokers twice within a single imaging session. Although the overall insertion-reinsertion airway wall thickness (WT) measurement coefficient of variation (CV) was moderate at 12%, much of the variability between repeat imaging was attributed to the observer; CV for repeated measurements of the same airway (intra-observer CV) was 9%. Therefore, reproducibility may be improved by introduction of automated analysis approaches suggesting that OCT has potential to be an in-vivo method for evaluating airway remodeling in future longitudinal and intervention studies.OCIS codes: (170.0170) Medical optics and biotechnology, (170.4500) Optical coherence tomography  相似文献   

4.
Optical coherence tomography (OCT) is a high-resolution, cross-sectional optical imaging technique that allows in situ imaging of tissue by measuring back-reflected light. OCT provides images in real time with a resolution approaching that of conventional histopathology, but without the need for tissue removal. OCT imaging can be performed endoscopically to visualize gastrointestinal tissue using a fiberoptic catheter passed through the instrument channel of a conventional endoscope. The resolution of OCT allows visualization of the different layers of gastrointestinal epithelium and the differentiation of Barrett's epithelium from normal gastric and squamous mucosa. OCT has also been used to image esophageal adenocarcinoma and colonic polyps. Recent developments include Doppler OCT, spectroscopic OCT, and ultrahigh-resolution OCT, which can visualize nuclei within single cells. Although still in its infancy as a clinical tool, OCT currently provides high-resolution images over the same imaging depth as conventional mucosal biopsy, and may prove to be a useful and minimally invasive technique for evaluating gastrointestinal tissue, particularly for early neoplastic changes.  相似文献   

5.
Smoke inhalation injury is frequently accompanied by cyanide poisoning that may result in substantial morbidity and mortality, and methods are needed to quantitatively determine extent of airway injury. We utilized a 3-D endoscopic frequency-domain optical coherence tomography (FD-OCT) constructed with a swept-source laser to investigate morphological airway changes following smoke and cyanide exposure in rabbits. The thickness of the mucosal area between the epithelium and cartilage in the airway was measured and quantified. 3-D endoscopic FD-OCT was able to detect significant increases in the thickness of the tracheal walls of the rabbit beginning almost immediately after smoke inhalation injuries which were similar to those with combined smoke and cyanide poisoning.  相似文献   

6.
Aerosol‐based cell therapy has emerged as a novel and promising therapeutic strategy for treating lung diseases. The goal of this study was to determine the safety and efficacy of aerosol‐based airway epithelial cell (AEC) delivery in the setting of acute lung injury induced by tracheal brushing in rabbit. Twenty‐four hours following injury, exogenous rabbit AECs were labelled with bromodeoxyuridine and aerosolized using the MicroSprayer® Aerosolizer into the injured airway. Histopathological assessments of the injury in the trachea and lungs were quantitatively scored (1 and 5 days after cell delivery). The aerosol‐based AEC delivery appeared to be a safe procedure, as cellular rejection and complications in the liver and spleen were not detected. Airway injury initiated by tracheal brushing resulted in disruption of the tracheal epithelium as well as morphological damage in the lungs that is consistent with acute lung injury. Lung injury scores were reduced following 5 days after AEC delivery (AEC‐treated, 0.25  ±  0.06 vs. untreated, 0.53  ±  0.05, P  <  0.01), and rapid clearance of haemorrhage, proteinaceous debris and hyaline membranes occurred. In the trachea, AEC delivery led to an upsurge in epithelium regeneration and repair. Re‐epithelialization was significantly increased 5 days after treatment (AEC‐treated, 91.07  ±  2.37% vs. untreated, 62.99  ±  7.39%, P  <  0.01). Our results indicate that AEC delivery helps in the regeneration and repair of the respiratory airway, including the lungs, following acute insults. These findings suggest that aerosol‐based AEC delivery can be a valuable tool for future therapy to treat acute lung injury. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
As the field of tissue engineering continues to progress, there is a deep need for non‐invasive, label‐free imaging technologies that can monitor tissue growth and health within thick three‐dimensional (3D) constructs. Amongst the many imaging modalities under investigation, optical coherence tomography (OCT) has emerged as a promising tool, enabling non‐destructive in situ characterization of scaffolds and engineered tissues. However, the lack of optical contrast between cells and scaffold materials using this technique remains a challenge. In this communication, we show that mapping the optical phase fluctuations resulting from cellular viability and motility allows for the distinction of live cells from their surrounding scaffold environment. Motility imaging was performed via a common‐path optical coherence phase microscope (OCPM), an OCT modality that has been shown to be sensitive to nanometer‐level fluctuations. More specifically, we examined the development of human adipose‐derived stem cells and/or murine pre‐osteoblasts within two distinct scaffold systems, commercially available alginate sponges and custom‐microfabricated poly(d , l ‐lactic‐co‐glycolic acid) fibrous scaffolds. Cellular motility is demonstrated as an endogenous source of contrast for OCPM, enabling real‐time, label‐free monitoring of 3D engineered tissue development. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Optical coherence tomography (OCT) is a high-resolution imaging technique that is increasingly used for intracoronary imaging to characterize coronary atherosclerotic plaques and vascular responses after coronary stent implantation. Introduction of optical frequency-domain imaging (OFDI; second generation OCT) has simplified practical use of this novel imaging modality resulting in a more widespread availability in interventional cardiology. Here we highlight recent insights into the acute and chronic vascular response after coronary stent implantation by OCT imaging. OCT provides cross-sectional images with approximately 10-fold higher resolution as compared to intravascular-ultrasound (IVUS), allowing for precise evaluation of tissue coverage and malapposition of coronary stent struts. More than 30 studies using OCT to compare vascular responses to different stents have now been reported. Recent studies have examined the relation between OCT-image characteristics and tissue composition around stent struts. OCT is used for evaluation of novel stent concepts, such as bioengineered stents and bioabsorbable stents, where it provides more accurate information than IVUS. While intracoronary OCT imaging is further developed, including faster 3D-OCT-image-reconstruction, larger OCT studies/registries with standardized analysis will provide more insights into clinical implications of observations from OCT-imaging after coronary stent implantation.  相似文献   

9.
Optical coherence tomography (OCT) is a high-resolution technology for imaging of biological tissues that has shown tremendous potential for intracoronary use. Based on near-infrared light rather than ultrasound, catheter-based OCT provides cross-sectional images of the vessel wall and related devices in a histology-like manner. At present, OCT is primarily being used in research to better characterize and understand the pathophysiology of vulnerable plaques and to study the acute and long-term effects of coronary stent implantation. The present review provides the interventional cardiologist with a summary of the clinical research involving OCT, with an emphasis on specific challenges and how these may be overcome to promote a shift from the mainly research application of this technology, to a wider adoption in clinical practice.  相似文献   

10.
Matrilysin expression and function in airway epithelium.   总被引:12,自引:1,他引:12       下载免费PDF全文
We report that matrilysin, a matrix metalloproteinase, is constitutively expressed in the epithelium of peribronchial glands and conducting airways in normal lung. Matrilysin expression was increased in airway epithelial cells and was induced in alveolar type II cells in cystic fibrosis. Other metalloproteinases (collagenase-1, stromelysin-1, and 92-kD gelatinase) were not produced by normal or injured lung epithelium. These observations suggest that matrilysin functions in injury-mediated responses of the lung. Indeed, matrilysin expression was increased in migrating airway epithelial cells in wounded human and mouse trachea. In human tissue, epithelial migration was reduced by > 80% by a hydroxamate inhibitor, and in mouse tissue, reepithelialization in trachea from matrilysin-null mice was essentially blocked. In vivo observations and cell culture studies demonstrated that matrilysin was secreted lumenally by lung epithelium, but upon activation or while migrating over wounds, some matrilysin was released basally. The constitutive production of matrilysin in conducting airways, its upregulation after injury, its induction by alveolar epithelium, and its release into both lumenal and matrix compartments suggest that this metalloproteinase serves multiple functions in intact and injured lung, one of which is to facilitate reepithelialization.  相似文献   

11.
Multiple complications have been reported with spinal intervertebral transforaminal injection procedures, despite the use of fluoroscopic needle-positioning measures. We explored an imaging technology (optical coherence tomography, or OCT) for its possible use in spine interventional procedures as a means of providing needle tip vision at the neuroforamen. Optical coherence tomography is the B-mode optical analog of ultrasound. With the use of 2 different (time- and frequency-domain) OCT systems, we obtained high-resolution (approximately 10 microm) images of ex vivo and in situ paraspinal structures (spinal nerves, radicular artery, dura, cauda equina) in different animals. An OCT forward-looking, needle-shaped endoscope in development is presented, with a discussion of its possible method of use, safety, efficacy, technical problems, and future prospects. Further studies are needed to determine whether such OCT technology has a potential niche in the performance of spine pain procedures. PERSPECTIVE: This article presents preliminary high-resolution images obtained with an optical imaging approach (optical coherence tomography) of neurovascular and other structures within the spinal neuroforamen. Advances in this technology may provide effective needle tip vision for pain interventionalists and may help to reduce complications from spine needle injection procedures.  相似文献   

12.
Adult marrow-derived stem cells can localize to lung and acquire immunophenotypic characteristics of lung epithelial cells. Lung injury increases recruitment of the marrow-derived cells. We speculated that comparing patterns of lung engraftment following different lung injuries would provide insight into potential mechanisms by which marrow-derived cells were recruited to lung. To evaluate this, adult female C57Bl/6 mice irradiated and engrafted with marrow from adult male transgenic GFP mice were exposed to either intranasal inhalation of endotoxin (25 microg/mouse) or 3 days of 25 ppm NO(2) and then compared 1 or 3 months later to transplanted but otherwise uninjured mice. In all cases, the majority of marrow-derived cells recruited to lung were CD45(+) leukocytes. In lungs of transplanted but otherwise uninjured mice, small numbers of CD45(-) donor-derived cells in alveolar septae stained positively for pro-surfactant protein C. Rare donor-derived cells located in the airway epithelium stained positively with cytokeratin. Subsequent exposure of engrafted mice to NO(2) or endotoxin did not significantly increase the number or pattern of donor-derived CD45(-) cells found in recipient lungs. These results suggest that NO(2) or endotoxin lung injury does not result in significant engraftment of marrow-derived cells in lung.  相似文献   

13.
Optical coherence tomography (OCT) has a tremendous global impact upon the ability to diagnose, treat, and monitor eye diseases. A miniature 25-gauge forward-imaging OCT probe with a disposable tip was developed for real-time intraoperative ocular imaging of posterior pole and peripheral structures to improve vitreoretinal surgery. The scanning range was 2 mm when the probe tip was held 3-4 mm from the tissue surface. The axial resolution was 4-6 µm and the lateral resolution was 25-35 µm. The probe was used to image cellophane tape and multiple ocular structures.OCIS codes: (170.4500) Optical coherence tomography, (120.3890) Medical optics instrumentation  相似文献   

14.
Corneal imaging is important for the diagnostic and therapeutic evaluation of many eye diseases. Optical coherence tomography (OCT) is extensively used in ocular imaging due to its non-invasive and high-resolution volumetric imaging characteristics. Optical coherence microscopy (OCM) is a technical variation of OCT that can image the cornea with cellular resolution. Here, we demonstrate a blue-light OCM as a low-cost and easily reproducible system to visualize corneal cellular structures such as epithelial cells, endothelial cells, keratocytes, and collagen bundles within stromal lamellae. Our blue-light OCM system achieved an axial resolution of 12 µm in tissue over a 1.2 mm imaging depth, and a lateral resolution of 1.6 µm over a field of view of 750 µm × 750 µm.  相似文献   

15.
We present a 1300 nm Fourier domain mode locked (FDML) laser for optical coherence tomography (OCT) that combines both, a high 1.6 MHz wavelength sweep rate and an ultra-long instantaneous coherence length for rapid volumetric deep field imaging. By reducing the dispersion in the fiber delay line of the FDML laser, the instantaneous coherence length and hence the available imaging range is approximately quadrupled compared to previously published MHz-FDML setups, the imaging speed is increased by a factor of 16 compared to previous extended coherence length results. We present a detailed characterization of the FDML laser performance. We demonstrate for the first time MHz-OCT imaging of the anterior segment of the human eye. The OCT system provides enough imaging depth to cover the whole range from the top surface of the cornea down to the crystalline lens.OCIS codes: (170.4500) Optical coherence tomography, (110.4500) Optical coherence tomography, (140.3600) Lasers, tunable  相似文献   

16.
Successful treatment of breast cancer typically requires surgical removal of the tumor. Optical coherence tomography (OCT) has been previously developed for real-time imaging of the surgical margin. However, it can be difficult to distinguish between normal stromal tissue and cancer tissue based on scattering intensity and structure alone. Polarization-sensitive optical coherence tomography (PS-OCT) is sensitive to form birefringence of biological tissue. We report on the development of a high-speed PS-OCT system and imaging of ex vivo human breast tissue, showing enhanced contrast between healthy and cancerous tissues based upon collagen content confirmed with corresponding histology. These results demonstrate the feasibility of using PS-OCT to supplement structural OCT as a possible method for intraoperative tumor margin evaluation.OCIS codes: (110.4500) Optical coherence tomography, (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (260.1440) Birefringence, (110.5405) Polarimetric imaging, (170.6935) Tissue characterization  相似文献   

17.
Inflammation is a non-specific immune response to injury intended to protect biological tissue from harmful stimuli such as pathogens, irritants, and damaged cells. In vivo optical tissue imaging has been used to provide spatial and dynamic characteristics of inflammation within the tissue. In this paper, we report in vivo visualization of inflammation in the skin at both cellular and physiological levels by using a combination of label-free two-photon microscopy (TPM) and optical coherence tomography (OCT). Skin inflammation was induced by topically applying lipopolysaccharide (LPS) on the mouse ear. Temporal OCT imaging visualized tissue swelling, vasodilation, and increased capillary density 30 min and 1 hour after application. TPM imaging showed immune cell migration within the inflamed skin. Combined OCT and TPM was applied to obtain complementary information from each modality in the same region of interest. The information provided by each modality were consistent with previous reports about the characteristics of inflammation. Therefore, the combination of OCT and TPM holds potential for studying inflammation of the skin.OCIS codes: (180.2520) Fluorescence microscopy, (180.4315) Nonlinear microscopy, (110.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (170.6920) Time-resolved imaging  相似文献   

18.
Optical coherence tomography (OCT) imaging is showing great potential as an alternative or complementary tool to intravascular ultrasound (IVUS) for aiding in stent procedures and future diagnosis/treatment of atherosclerosis. Here, we describe the basic theory behind OCT imaging and explain important parameters such as axial resolution, lateral resolution and sensitivity. Also, we describe several image acquisition techniques that have been adopted for OCT imaging.  相似文献   

19.
Minimally invasive imaging of upper airway obstructions in children and adults is needed to improve clinical decision-making. Toward this goal, we demonstrate an anatomical optical coherence tomography (aOCT) system delivered via a small-bore, flexible endoscope to quantify the upper airway lumen geometry. Helical scans were obtained from a proximally-scanned fiber-optic catheter of 820 μm outer diameter and >2 mm focal length. Coupled with a long coherence length wavelength-swept light source, the system exhibited an SNR roll-off of < 10 dB over a 10 mm range. Operating at 10 rotations/s, the average accuracy of segmented cross-sectional areas was found to be −1.4 ± 1.0%. To demonstrate the capability of this system, aOCT was performed on a pediatric airway phantom and on ex vivo swine trachea. The ability for quantitative endoscopy afforded by this system can aid in diagnosis, medical and surgical decision making, and predictive modeling of upper airway obstructive disorders.OCIS codes: (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (170.3890) Medical optics instrumentation, (170.2150) Endoscopic imaging  相似文献   

20.
We present a power-efficient fiber-based imaging system capable of co-registered autofluorescence imaging and optical coherence tomography (AF/OCT). The system employs a custom fiber optic rotary joint (FORJ) with an embedded dichroic mirror to efficiently combine the OCT and AF pathways. This three-port wavelength multiplexing FORJ setup has a throughput of more than 83% for collected AF emission, significantly more efficient compared to previously reported fiber-based methods. A custom 900 µm diameter catheter ‒ consisting of a rotating lens assembly, double-clad fiber (DCF), and torque cable in a stationary plastic tube ‒ was fabricated to allow AF/OCT imaging of small airways in vivo. We demonstrate the performance of this system ex vivo in resected porcine airway specimens and in vivo in human on fingers, in the oral cavity, and in peripheral airways.OCIS codes: (110.0110) Imaging systems, (110.2350) Fiber optics imaging, (110.4500) Optical coherence tomography, (170.2520) Fluorescence microscopy, (170.3890) Medical optics instrumentation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号