首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
OBJECTIVE: We investigated whether angiotensin II (Ang II)-induced reactive oxygen species (ROS) generation is altered in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) during the phases of prehypertension, developing hypertension, and established hypertension and assessed the putative role of insulinlike growth factor-1 receptor (IGF-1R) in Ang II-mediated actions. METHODS: The VSMCs from SHR and Wistar-Kyoto rats (WKY) aged 4 (prehypertensive), 9 (developing hypertension), and 16 (established hypertension) weeks were studied. The ROS production and NAD(P)H oxidase activation were determined by fluorescence and chemiluminescence, respectively. The role of IGF-1R was assessed with the selective inhibitor AG1024. The ROS bioavailability was manipulated with Tiron (10(-5) mol/L) and diphenylene iodonium (DPI) (10(-6) mol/L). RESULTS: Angiotensin II dose dependently increased ROS production in WKY and SHR at all ages. The Ang II-induced responses were greater in SHR versus WKY at 9 and 16 weeks (P < .05). The Ang II-stimulated ROS increase was greater in 9- and 16-week-old SHR versus 4-week SHR (P < .05). These effects were reduced by AG 1024. Basal NAD(P)H oxidase activity was higher in VSMCs from 9-week-old SHR versus 4-week-old rats (P < .05). Angiotensin II induced a significant increase in oxidase activity in VSMCs from 9- and 16-week-old SHR (P < .001), without influencing responses in cells from 4-week-old SHR. Pretreatment of 9- and 16-week-old SHR cells with AG1024 reduced Ang II-mediated NAD(P)H oxidase activation (P < .05). CONCLUSIONS: Basal and Ang II-induced NAD(P)H-driven ROS generation are enhanced in VSMCs from SHR during development of hypertension, but not in cells from prehypertensive rats. Transactivation of IGF-1R by Ang II may be important in vascular oxidative excess in the development of hypertension in SHR.  相似文献   

3.
全反式维甲酸对高血压大鼠心脏氧化应激水平的影响   总被引:2,自引:1,他引:2  
目的:探讨全反式维甲酸(atRA)对高血压心脏还原型辅酶I氧化酶P22亚单位(p22phox)表达以及氧化应激水平的影响。方法:采用12周龄雄性自发性高血压大鼠(SHR)及其同源对照WKY大鼠,经腹腔注射at-RA,为期1月。分别采用免疫印迹、硫代巴比妥酸比色以及透射电镜技术测定atRA治疗后SHR心脏p22phox的表达、丙二醛(MDA)含量以及心肌超微结构情况。结果:与WKY对照组相比,SHR心脏组织中p22phox蛋白表达与MDA含量明显升高(P均<0.01)。而atRA治疗后SHR(低、高剂量atRA组)大鼠心脏组织中p22phox蛋白表达与MDA水平出现下调(P均<0.05),同时伴有心肌损伤减轻。结论:长期atRA治疗可降低SHR大鼠心脏组织中p22phox表达与MDA水平,提示atRA在高血压病中具有一定的抗氧化效应。  相似文献   

4.
The purpose of this study was to clarify how the metabolism of vascular prostacyclin (PGI2) and thromboxane (TX) A2 in spontaneously hypertensive rats (SHR) is involved in aging and development of hypertension. We removed the aortic walls from 5-week-old and 20 to 25-week-old SHR and age-matched Wistar Kyoto rats (WKY). At 5 weeks of age, there was no significant difference in basal and maximal (arachidonic acid 0.1 mM) 6-keto-PGF1 alpha production between SHR and WKY, but the TXB2 generation in the SHR aortic wall was markedly enhanced as compared with that in WKY. At 20 to 25 weeks of age, the SHR aortic wall synthesized about 1.5 times more 6-keto-PGF1 alpha in the basal condition and twice as much as in the maximal condition as did the WKY wall. However there was no significant difference in TXB2 production between SHR and WKY. Age-dependent increase of vascular 6-keto-PGF1 alpha was greater in SHR than in WKY. Moreover, the maximal/basal 6-keto-PGF1 alpha production ratio increased with age in SHR, but not in WKY. The synthesis of vascular TXB2 was enhanced with age in WKY, but did not change with age in SHR. These data suggest that not only the enhanced basal generation of vascular 6-keto PGF1 alpha but also a much greater reservoir of 6-keto-PGF 1 alpha synthesis in SHR was induced by both hypertension and maturity. The increased production of vascular TXB2 in young SHR may affect the development of hypertension.  相似文献   

5.
T Hattori  K Hashimoto  Z Ota 《Hypertension》1986,8(11):1027-1031
Corticotropin releasing factor and vasopressin were measured in major brain regions including the neurohypophysis in spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) during development of hypertension. The highest concentration of corticotropin releasing factor was found in the hypothalamus in both strains. Corticotropin releasing factor was decreased in most major brain regions of SHR. In the hypothalamus, corticotropin releasing factor was lower in 3- and 6-week-old SHR than in age-matched WKY (p less than 0.01), but was similar at 12 and 24 weeks of age. The content of corticotropin releasing factor did not differ in the neurohypophysis in 3-week-old rats but began to decrease at 6 weeks of age (p less than 0.01) and continued to decrease during the development of hypertension (p less than 0.01). Brain vasopressin concentration did not differ between SHR and WKY except in the hypothalamus. The level of hypothalamic vasopressin was consistently lower in SHR than in WKY (p less than 0.01). These peptides are thought to be associated with autonomic nervous regulation, and our results may further strengthen the possibility that the deficit of the peptides may be involved in the development of spontaneous hypertension.  相似文献   

6.
OBJECTIVE: The hypothesis was tested that differences in oxidative stress play a role in the sex differences in the development and maintenance of hypertension in spontaneously hypertensive rats (SHR). DESIGN AND METHODS: Male and female SHR [and Wistar-Kyoto (WKY) rats in the long-term study] (n = 6-12 per group) received tempol (30 mg/kg per day) or tap water for 6 weeks from 9 to 15 weeks of age or from birth until 15 weeks of age. Blood pressure [mean arterial pressure (MAP)] and kidney tissue F2-isoprostane (IsoP) were measured at 15 weeks of age. RESULTS: In SHR given tempol for 6 weeks, blood pressure and IsoP were reduced in males, but not in females. In SHR given tempol from birth, MAP was higher in SHR than WKY rats (SHR males, 181 +/- 2 mmHg; SHR females, 172 +/- 3 mmHg; WKY males, 100 +/- 2 mmHg; WKY females, 101 +/- 2 mmHg, P < 0.01), and tempol reduced MAP by 14% (156 +/- 3) and 26% (127 +/- 4) in male and female SHR, respectively, but had no effect on WKY rats. IsoP was higher in SHR than WKY rats and higher in male SHR than female SHR (SHR males, 5.18 +/- 0.23 ng/mg; SHR females, 3.71 +/- 0.19 ng/mg, P < 0.01; WKY males, 1.72 +/- 0.45 ng/mg; WKY females, 2.21 +/- 0.08 ng/mg, P < 0.05, compared with SHR). Tempol reduced IsoP in SHR to levels found in WKY rats, but had no effect on IsoP in WKY rats. CONCLUSIONS: Development of hypertension in SHR is mediated in part by oxidative stress independent of sex. Also, tempol is effective in reducing blood pressure in females only when given prior to the onset of hypertension.  相似文献   

7.
8.
9.
OBJECTIVES: We sought to examine the hypothesis that a pharmacologic up-regulation of endothelial nitric oxide synthase (eNOS) combined with a reversal of eNOS uncoupling provides a protective effect against cardiovascular disease. BACKGROUND: Many cardiovascular diseases are associated with oxidant stress involving protein kinase C (PKC) and uncoupling of eNOS. METHODS: Messenger ribonucleic acid (mRNA) expression was analyzed with RNase protection assay or quantitative real-time polymerase chain reaction, vascular nitric oxide (NO) with spin trapping, and reactive oxygen species (ROS) with dihydroethidium fluorescence. RESULTS: Aortas of spontaneously hypertensive rats (SHR) showed an elevated production of ROS when compared with aortas of Wistar-Kyoto rats (WKY). The aortic expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits (Nox1, Nox2, Nox4, and p22phox) was higher in SHR compared with WKY. In SHR, aortic production of ROS was reduced by the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), indicating eNOS "uncoupling" in hypertension. Oral treatment with the PKC inhibitor midostaurin reduced aortic Nox1 expression, diminished ROS production, and reversed eNOS uncoupling in SHR. Aortic levels of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) were significantly reduced in SHR compared with WKY. Midostaurin normalized BH4 levels in SHR. In both WKY and SHR, midostaurin increased aortic expression of eNOS mRNA and protein, stimulated bioactive NO production, and enhanced relaxation of the aorta to acetylcholine. Midostaurin lowered blood pressure in SHR and, to a lesser extent, in WKY; the compound did not change blood pressure in WKY made hypertensive with L-NAME. CONCLUSIONS: Pharmacologic interventions that combine eNOS up-regulation and reversal of eNOS uncoupling can markedly increase bioactive NO in the vasculature and produce beneficial hemodynamic effects such as a reduction of blood pressure.  相似文献   

10.
Red wine polyphenols (RWPs) have been reported to prevent hypertension and endothelial dysfunction. Several individual RWPs exert estrogenic effects. We analyzed the possible in vivo protective effects on blood pressure and endothelial function of RWPs in female spontaneously hypertensive rats (SHR) and its relationship with ovarian function. RWPs (40 mg/kg by gavage) were orally administered for 5 weeks. Ovariectomized rats showed both increased isoprostaglandin F(2alpha) excretion and aortic superoxide production and reduced relaxant response to acetylcholine and contraction to the endothelial nitric oxide synthase (eNOS) inhibitor l-NAME measured in the aorta but similar blood pressure, as compared with sham-operated rats. Moreover, in ovariectomized rats aortic eNOS expression was unchanged, whereas caveolin-1, angiotensin II receptor (AT)-1, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits p22(phox) and p47(phox) expression was increased compared with sham-operated rats. In both ovariectomized and sham-operated SHR, RWPs reduced systolic blood pressure, urinary isoprostaglandin F(2alpha) excretion, and aortic O(2)(-) production, improving the endothelium-dependent relaxant response to acetylcholine in SHR. These changes were associated with unchanged aortic eNOS expression, whereas caveolin-1 was increased and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits p22(phox) and p47(phox) expression was reduced. RWPs had no effect on the AT-1 overexpression found in ovariectomized animals. All these results suggest that a chronic treatment with RWPs reduces hypertension and vascular dysfunction through reduction in vascular oxidative stress in female SHR in a manner independent of the ovarian function.  相似文献   

11.
Changes in cardiac energy metabolism during early development of female SHR   总被引:2,自引:0,他引:2  
We investigated effects of hypertension and early development on myocardial energy metabolism as reflected by maximal enzyme activities, glucose transporter content, and endogenous substrates in female Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). Left ventricular hypertrophy and systolic hypertension were evident in SHR at 6 weeks of age and these differences increased at 14 and 22 weeks of age. 3-Hydroxyacyl-CoA dehydrogenase (HOAD) activity in the left ventricle was 18% lower in 6-week-old rats than both 14- and 22-week-old rats, but not different between WKY rats and SHR. Hexokinase activity was 15% lower in 6-week-old SHR than WKY rats and decreased progressively with age in both strains. Glucose transporter (GLUT) 1 content was nearly twofold greater in 6-week-old rats than both 14- and 22-week-old rats. We found no difference in citrate synthase activity or GLUT4 content among groups. Glycogen concentration was 44% lower in SHR than WKY rats, whereas triglyceride was slightly (16%) higher in SHR than WKY rats. Older animals had higher levels both glycogen and triglyceride than younger animals. We conclude that the left ventricle of both SHR and WKY rats may change from predominantly glucose to fatty acid oxidation for energy production during early development.  相似文献   

12.
Embryo cross-transplantation and cross-fostering between spontaneously hypertensive rats (SHR) and normotensive rats (WKY) suggest that perinatal environment modulates the genetically determined phenotype. In SHR the balance between NO and reactive oxygen species (ROS) is disturbed. We hypothesized that increasing NO and diminishing ROS in perinatal life would ameliorate hypertension in adult SHR. Pregnant SHR and WKY and their offspring received l-arginine plus antioxidants (vitamin C, vitamin E, and taurine) during the last 2 weeks of pregnancy and then until either 4 or 8 weeks after birth. Systolic blood pressure (SBP) and urinary excretion of protein, nitrates (NO(x)), and thiobarbituric acid reactive substances (TBARS) were measured. At 48 weeks of age rats were euthanized for glomerular counts. Perinatal supplements reduced SBP persistently in SHR and prevented the SBP increase observed in aging WKY. Initially NO(x) excretion was lower and TBARS excretion higher in SHR than WKY. There was a direct effect on NO(x) excretion in supplemented pregnant SHR and their offspring, but no increase was observed after stopping the supplements. TBARS excretion was only depressed up to 14 weeks by the supplements despite persistent differences in SBP. Consistent effects on nephron number were absent. Mild proteinuria, present in control SHR at 48 weeks, was prevented in all supplemented rats. Perinatal supplementation of NO substrate and antioxidants results in persistent reduction of SBP and renal protection in SHR, although effects on NO(x) and TBARS were only transient. This suggests a critical role for perinatal pro- and antioxidant balance in programming BP later in life.  相似文献   

13.
The aim of this study was to appreciate consequences of rosuvastatin administration on hemodynamic function, vascular oxidative stress and ischemia/reperfusion disorders in normotensive and hypertensive rats. At 10 weeks of age, spontaneously hypertensive rats (SHR, n=20) and normotensive Wistar Kyoto male rats (WKY, n=20) were divided into four groups and given, either vehicle or 10 mg/kg/day of rosuvastatin by gavage for 3 weeks. Systolic blood pressure was assessed every week. At the end of these treatments, vascular NADPH oxidase activity was evaluated by chemiluminescence (lucigenin 0.5 microM). Hearts were isolated and perfused according to the Langendorff method and were subjected to 30 min of global ischemia. Reactive oxygen species (ROS) produced during reperfusion were quantified by electron spin resonance (ESR) spectroscopy using a spin probe (CP-H, 1 mM). After one week of treatment, rosuvastatin reduced the arterial pressure in SHR rats (180.3 +/- 2.1, SHR vs 169.7 +/- 2.3 mmHg, SHR+rosuvastatin; p < 0.01), without lowering plasma cholesterol levels; these effects were not observed in WKY. NADPH activity was 25% higher in control SHR rat aortas compared to control WKY, and was reduced by rosuvastatin in SHR rats. In isolated rat hearts subjected to ischemia/reperfusion sequences, there was a deterioration in functional parameters in control SHR compared to control WKY hearts. Rosuvastatin decreased post-ischemic contracture in WKY hearts by 50% (41.5 +/- 7.5, WKY control vs 18.4 +/- 4.6 mmHg, WKY+rosuvastatin; p < 0.01) and increased left ventricular developed pressure. This beneficial effect was accompanied by a decrease in ROS detected by ESR during reperfusion (312.5 +/- 45.3, WKY control; vs 219.3 +/- 22.9 AUC/mL, WKY+rosuvastatin; p < 0.05). In conclusion, these results are in accordance with the hypothesis that oxidative stress plays a crucial role in the pathogenesis of cardiovascular diseases including hypertension, and demonstrate the beneficial effects of rosuvastatin.  相似文献   

14.
To clarify the effect of dietary sodium restriction on the mechanism regulating sodium and water in the development of hypertension, we determined the number of the alpha-adrenoceptors in renal basolateral membrane in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. The rats had been fed a low-sodium (0.5%) or normal-sodium (0.4%) diet from 3 weeks of age. The experiments were performed at 6, 8 and 20 weeks of age in both rat groups. Renal basolateral membranes were prepared using Percoll and radioligand binding studies were performed using 3H-prazosin and 3H-rauwolscine. Systolic blood pressure in SHR was already elevated at 6 weeks of age compared with that in WKY rats and rose to hypertensive levels at 8 weeks of age. The sodium balance in WKY rats on both diets decreased at 8 weeks of age, but that of SHR decreased at 20 weeks of age. The maximum number (Bmax) for the alpha 1-adrenoceptor did not differ in any groups of the WKY rats or SHR. Bmax for the alpha 2-adrenoceptors increased at 8 weeks of age in the low-sodium SHR compared with normal-sodium SHR, but did not increase in WKY rats. The data show that the increases in blood pressure in the SHR occur prior to significant increases in the alpha 2-adrenoceptor density of renal basolateral membrane, and that the modulation of alpha 2-adrenoceptor density in SHR differs from that in WKY rats under sodium restriction. The results suggest that renal alpha 2-adrenoceptors in SHR could relate the regulatory mechanism to sodium reabsorption under sodium restriction rather than to the primary cause of the development of hypertension in SHR. There may be the possibility of an abnormality in renal alpha 2-adrenoceptor mechanism in SHR.  相似文献   

15.
This study was designed to determine the cytoplasmic pH (pHi) profile of lymphocytes from a rat model of genetic hypertension that is well suited for study before and after the development of spontaneous hypertension. For this purpose, pHi was measured in thymic lymphocytes obtained from spontaneously hypertensive rats (SHR) and from age-matched Wistar-Kyoto (WKY) control rats using 2',7'-bis carboxyethyl-5,6-carboxyfluorescein (BCECF), a pH-sensitive fluorescence probe. At the age of 16-20 weeks, pHi of lymphocytes suspended in a HCO3-free HEPES-buffered solution, was markedly lower in the SHR than in the WKY rats (7.07 +/- 0.02, n = 16 and 7.22 +/- 0.01, n = 15, respectively, p less than 0.001), whereas systolic blood pressure was higher in SHR than in WKY rats (175 +/- 5.0 and 105 +/- 3.0 mm Hg, respectively, p less than 0.001). In rats less than 5 weeks of age, pHi was also lower in SHR than in WKY rat lymphocytes (7.12 +/- 0.04, n = 11 and 7.23 +/- 0.04, n = 11, respectively, p less than 0.05), although at this age systolic blood pressure was not different between the two groups (87 +/- 4.0 and 85 +/- 3.0 mm Hg, respectively). In lymphocytes suspended in a more physiological HCO3/CO2-buffered solution, pHi was again lower in the adult SHR than in the WKY rat (7.18 +/- 0.02, n = 16 and 7.31 +/- 0.02, n = 16, respectively, p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To determine whether the area postrema contributes to the development of hypertension in spontaneously hypertensive rats (SHR), sham or electrolytic lesions of the area postrema (AP) were made in 4-week-old SHR and Wistar-Kyoto (WKY) controls. From weeks 5 through 16, systolic pressure was measured via tail plethysmography. While blood pressure rose markedly in sham-operated SHR, increases in pressure were small in AP-ablated SHR and similar to those seen in all WKY. Subsequent direct measurements of mean arterial pressure in the same rats showed a significant correlation (r = 0.87, p less than 0.01) with the pressure data acquired via weekly tail-cuff measurement, thereby confirming that hypertension in AP-ablated SHR had indeed been attenuated. Analysis of several hundred computer-acquired measurements of mean arterial pressure from each rat showed that AP ablation shifted the distribution of mean arterial pressure to a lower range in SHR but not WKY. Ablation of the AP also decreased resting heart rate in SHR but not WKY. Suppression of heart rate in response to intravenous phenylephrine was equivalent in sham-operated and AP-ablated rats, suggesting that baroreflex-mediated slowing of heart rate was not impaired. In response to intravenous angiotensin II, suppression of heart rate was similar in sham and AP-ablated SHR, and actually was enhanced in AP-ablated WKY. Histological evaluation of the lesions indicated that visible damage to the adjacent nuclei of the solitary tracts was confined to a small portion of the commissural nucleus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Correlation of blood pressure (BP) with expression levels of large-conductance, voltage- and Ca2+-activated K+ (BK) channel beta1 subunit in vascular tissues from spontaneously hypertensive rats (SHR), Wistar-Kyoto rats (WKY), and Sprague-Dawley rats (SD) at different ages was investigated. Systolic BP and BK beta1 expression in mesenteric arteries at either mRNA or protein levels were not different among 4-week-old SHR, WKY, and SD. With hypertension developed at 7 weeks and reached plateau at 12 weeks, expression levels of BK beta1 mRNA in mesenteric arteries and aortae from SHR during this period of time were significantly higher than in age-matched normotensive WKY. The BK beta1 protein expression was significantly higher in mesenteric arteries from 12-week-old but not 7-week-old SHR when compared with age-matched WKY and SD. The BK beta1 protein levels in aortae were not different among 7-week-old SHR, WKY, and SD but were significantly lower in 12-week-old WKY than in age-matched SHR and SD. Captopril treatment normalized BP of 12-week-old SHR. This treatment downregulated BK beta1 protein in mesenteric arteries but upregulated it in aortae. No significant difference in BK alpha subunit expression was detected in mesenteric arteries from three strains of rats as well as the captopril-treated SHR. It appears that expression patterns of BK beta1 in vascular tissues vary depending on tissue types, animal age, and animal strains. Expression of BK beta1 in mesenteric arteries is closely correlated with BP in SHR. Increased BK beta1 expression in mesenteric arteries may represent a compensatory reaction to limit the development of hypertension.  相似文献   

18.
OBJECTIVE: A reduction in glomerular number and/or size has been implicated in the development of hypertension. This study investigated whether differences in glomerular number and/or size occur during the development of hypertension in the spontaneously hypertensive rat (SHR) and whether angiotensin II is responsible for any glomerular differences. METHODS: SHR (n=6) and Wistar-Kyoto (WKY) rats (n=6) were administered the angiotensin II type I receptor antagonist TCV-116 from 4 to 10 weeks of age. At 10 weeks of age, the kidneys from these rats and those from untreated SHR (n=6) and WKY rats (n=6) controls were perfusion fixed at physiological pressures and analysed using unbiased stereological techniques. RESULTS: There were no significant differences in glomerular number, glomerular volume or total glomerular volume between SHR and WKY rats. Treatment of SHR with TCV-116 significantly lowered systolic blood pressure but had no significant effect on glomerular number or volume or total glomerular volume. Treatment of WKY rats with TCV-116 reduced systolic blood pressure, body weight, glomerular volume and total glomerular volume; however, total glomerular volume per body weight of treated WKY rats was not significantly different from that of untreated WKY rats. CONCLUSION: There were no differences in glomerular number or volume in SHR compared with WKY rats at 10 weeks of age. We therefore conclude that glomerular changes are not responsible for the development of hypertension in SHR. Angiotensin II, via the type 1 receptor, does not contribute to glomerular growth during the development of hypertension in the SHR.  相似文献   

19.
In order to investigate whether resistance arterioles from spontaneously hypertensive rats (SHR) were more alkaline than those from Wistar-Kyoto rats (WKY), mesenteric arterioles were mounted in a myograph and loaded with the pH-sensitive dye 2',7'-bis (carboxyethyl)5,6-carboxyfluorescein (BCECF). At 5 weeks of age the arterioles from SHR were significantly more alkaline compared with WKY vessels, at a time when the blood pressure was rising and media:lumen ratio was increasing in the hypertension-prone animals. At 12 weeks this difference was not present due to a non-significant rise in intracellular pH in WKY arterioles. Activation of the vessels with high K+ depolarizing solution or noradrenaline induced an acid change in pH but no subsequent alkalinization was apparent. These results suggest that resistance arterioles from SHR are more alkaline than WKY vessels when the blood pressure is rising and their structural architecture is being modified, and the alkaline cytoplasmic pH may be contributing to the generation of the structural excess seen in these vessels in established hypertension.  相似文献   

20.
Plasma phosphate values are significantly lower in spontaneously hypertensive rats (SHR) than in normotensive Wistar-Kyoto rats (WKY). In this study, we increased plasma phosphate in SHR by a dietary phosphate intake and followed the effects on blood pressure. Fifteen male WKY and 15 male SHR were housed from 4 weeks of age up to 26 weeks. At 4 weeks of age all SHR manifested a hypophosphatemia compared with age-matched WKY (F = 62, p less than 0.0003). At 5 weeks of age, the rats were divided into three diet groups: a control group, a group receiving 1.41% (wt/vol) KCl in drinking water, and a group receiving 2% (wt/vol) K2HPO4 X KH2PO4 in drinking water. In the control (F = 16.2, p less than 0.02) and KCl groups, (F = 36.3, p less than 0.03), hypophosphatemia persisted throughout the study. The phosphate-supplemented diet normalized plasma phosphate level in SHR but did not change plasma phosphate level in WKY. As a consequence, no difference in plasma phosphate level between WKY and SHR was present in the group receiving additional phosphate from that time on (F = 1.2, p greater than 0.41). The phosphate-supplemented diet significantly decreased systolic blood pressure in both strains. In phosphate-supplemented SHR, a significant decline in systolic blood pressure was observed from 20 weeks of age on (at 20 weeks of age: 222 +/- 3 mm Hg for control SHR vs 198 +/- 5 mm Hg for phosphate-supplemented SHR; p less than 0.0003).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号