首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclin D1 and cyclin G are essential regulatory factors in the progression of the cell cycle from G0 through G1 and S phase. Aberrations in expression of these cyclins may lead to dysregulated cellular proliferation that could result in neoplasia. Amplification and overexpression of cyclin D1 have been observed in many human cancers, whereas cyclin G is a new cyclin recently described in osteosarcoma cells. This study was performed to determine whether these cyclins were amplified in head and neck squamous cell carcinoma (HNSCC) tumors. Polymerase chain reaction of DNA extracted from 22 HNSCC primary tumors and three HNSCC cell lines did not reveal amplification of cyclin D1 in any of the tumor samples. Southern blot analysis identified amplification of cyclin D1 in a single tumor. Amplification of cyclin G was not observed in any of the tumors by Southern blot hybridization with a cyclin G probe. HNSCC cell lines transfected with antisense cyclin D1 were tested for cell proliferation by the incorporation of 3 H-thymidine into cells grown in serum-free media. By 72 hours of incubation, there was a greater than 30% reduction in proliferation of cells transfected with antisense cyclin D1 as compared with nontransfected control cells. The results indicate that cyclin D1 may play an important role in the growth and proliferation of HNSCC cells. (Otolaryngol Head Neck Surg 1998;119:593-9.)  相似文献   

2.
The major regulator of the gap-1/synthesis phase (G(1)/S) cell cycle checkpoint is the retinoblastoma protein (pRb), and this is regulated in part by the activities of cyclin-dependent kinase (cdk)-4 and the D cyclins. Surprisingly, given the potential importance of beta-cell replication for islet replacement therapy, pRb presence, phosphorylation status, and function have not been explored in beta-cells. Here, adenoviruses expressing cdk-4 and cyclin D(1) were used to explore rat and human pRb phosphorylation and beta-cell cycle control. pRb is present in rat and human islets, and overexpression of cyclin D(1)/cdk-4 led to strikingly enhanced pRb phosphorylation in both species. Combined overexpression of both cdk-4 and cyclin D(1) caused a threefold increase in [(3)H]thymidine incorporation. This increase in proliferation was confirmed independently using insulin and bromodeoxyuridine immunohistochemistry, where human beta-cell replication rates were increased 10-fold. Cdk-4 or cyclin D(1) overexpression did not adversely effect beta-cell differentiation or function. The key cell cycle regulatory protein, pRb, can be harnessed to advantage using cyclin D(1)/cdk-4 for the induction of human and rodent beta-cell replication, enhancing replication without adversely affecting function or differentiation. This approach will allow detailed molecular study of the cellular mechanisms regulating the cell cycle in beta-cells, beta-cell lines, and stem cell-derived beta-cells.  相似文献   

3.
Cyclin D1 is a critical component of the core cell cycle machinery. Mice lacking cyclin D1 develop mammary glands that fail to undergo normal lobuloalveolar proliferation during pregnancy. Thus, cyclin D1 seems to play a critical role in pregnancy-induced proliferation of mammary epithelium. Cyclin D1 also participates in neoplasia, as the majority of human mammary carcinomas contain elevated levels of this cyclin.  相似文献   

4.
Diabetes-prone BB rats were examined before, during, and after clinical onset of diabetes for the occurrence of circulating islet cell surface antibodies (ICSAs) with a specific binding to islet beta-cells. The presence of ICSA was assessed by incubating serum immunoglobulin fractions with normal Wistar rat islet cells and identifying cell-bound immunoglobulins by indirect immunofluorescence and by a complement-induced cell toxicity reaction. Under the selected experimental conditions, none of the diabetes-resistant rats were ICSA positive over the entire study period (45-120 days of age). In two diabetes-prone BB rat strains, 19 animals developed diabetes with onset between 50 and 120 days. At day 45, none of these animals was positive for ICSA. In rats developing diabetes between 50 and 85 days of age, 7 of 9 animals presented ICSA at clinical onset, determined by either the immunofluorescence or cytotoxicity test. The antibodies bound to insulin-containing beta-cells but not to other islet cell types, and binding was not eliminated by absorption with liver powder. In animals developing diabetes between 85 and 120 days, only 1 of 10 was positive for beta-cell-specific surface antibodies at onset of the disease. After 30 days of insulin treatment, beta-cell-specific antibodies were detectable in 3 of 4 animals of age 50-85 days, whereas only 3 of 12 older rats presented ICSAs that were, in addition, of low titer or affinity. Our data confirm that ICSAs develop in diabetic BB rats and indicate that these antibodies can bind specifically to islet beta-cells compared with other islet cell types.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Clark A  Jones LC  de Koning E  Hansen BC  Matthews DR 《Diabetes》2001,50(Z1):S169-S171
Type 2 diabetes is characterized by diminished or inappropriate secretion of insulin, which could be a defect of either islet cell function or beta-cell mass. Quantitation of islet cell populations in postmortem pancreas demonstrates little change of beta-cell mass in type 2 diabetes. Reduction of islet cell mass (up to 30%) is associated largely with islet amyloid deposition, and the degree of amyloidosis is independent of the duration of the disease. Insulin secretory capacity is dependent on both function and mass of cells. beta-Cell secretion is heterogeneous; increasing glucose concentrations result in recruitment of beta-cells into the secretory pool, indicating a large reserve of secretory capacity that can be recruited in insulin resistant conditions. The Starling curve of islet function describes the relationship of insulin secretion to increasing levels of insulin resistance and hyperglycemia in type 2 diabetes. Longitudinal studies in Macaca mulatta monkeys show that insulin resistance is accompanied by increased islet mass and onset of diabetes is associated with deposition of amyloid and reduction of beta-cells. Increasing the function of unresponsive beta-cells rather than the mass of cells may be a more effective therapeutic target for type 2 diabetes.  相似文献   

6.
Intestinal epithelium is a complex organ that undergoes continuous proliferation. D-type cyclins bind cyclin-dependent kinases (Cdk4 and Cdk6) and are expressed during the transition from G0 into the S phase. Previously, we reported that cyclins D1 and D3 are induced by growth factors in two rat intestinal epithelial cell lines, IEC-6 and RIE-1. However, transforming growth factor beta induces G1 arrest in both intestinal cell lines without inhibiting cyclin D3, suggesting that cyclin D3 may not have essential functions in the gut. In the present study, we determined whether cyclin D3 is required for the transition from G0 into the S phase in intestinal epithelial cells. Microinjection of anti-cyclin D3 antiserum inhibited quiescent IEC-6 and RIE-1 cells from entering the S phase, while cells microinjected with a nonspecific mouse immunoglobin G continued to progress into the S phase. We also examined the expression of cyclin D3 in rat jejunal mucosa after fasting and refeeding. Cyclin D3 levels were not altered by fasting and refeeding; however, Cdk4 expression was suppressed by fasting and returned to control levels after refeeding. Our results suggest that cyclin D3 is essential for intestinal epithelial cell proliferation, although its expression is not regulated by dietary restriction.  相似文献   

7.
BACKGROUND: The podocyte cell is believed to play an important role in idiopathic nephrotic syndrome (INS) of childhood. In adults with cellular and collapsing focal segmental glomerulosclerosis (FSGS), the expression of cell-cycle regulatory proteins such as p27, p57, and cyclin D is decreased and expression of cyclin A, Ki-67, and p21 is observed in podocyte cells suggestive of a dysregulated podocyte phenotype. We investigated for alterations in the expression of cyclin kinase inhibitors, p27, p57, p21, and cyclins D and A in the podocyte cell of children with INS. METHODS: Forty-two kidney biopsies were investigated; 14 with minimal-change disease (MCD), seven with diffuse mesangial hypercellularity (DMH), 12 with FSGS, four with Alport syndrome (AS), and five normal biopsies. The sections were examined by immunohistochemistry using dual staining method. Podocyte cells were first identified by Wilm's tumor-1 staining after which expressions of cell-cycle regulatory proteins were analyzed. A quantitative analysis was performed for the proportion of podocyte cells that expressed each cell cycle regulatory protein. RESULTS: On light microscopy, all podocyte cells expressed p27, while p57 and p21 expression was seen in a portion of podocyte cells in normal kidney biopsies. Cyclin D was expressed in a small percent of podocyte cells though the expression was more marked in mesangial and endothelial cells. Cyclin A expression was not seen in normal biopsies. The mean expression of p27 decreased significantly in order from normal (100%), MCD (45.9%), DMH (22.4%), and FSGS (16.7%), and the difference between MCD and FSGS was significant. p21 was significantly and equally reduced in MCD (2.3%), DMH (0%), and FSGS (0.7%) compared to normal (66.6%). There was no significant difference in expression of p57, cyclin D and cyclin A in the podocyte cells between normal and children with INS. Children with AS showed a significant decrease in p27 and p21 expression, while the expression of p57, cyclin D and cyclin A were unchanged from normal, thus demonstrating a pattern similar to INS. CONCLUSION: The podocyte cell in children with INS down-regulates expression of cyclin kinase inhibitors such as p21 and p27, but not p57, but does not up-regulate cyclin D and cyclin A that are needed to overcome the G1/S transition and move the cell forward in the cell cycle process. Thus, the podocyte cell remains trapped in the G1 arrest phase. In children with INS or AS, the dysregulated podocyte phenotype is different than the one described in adults with cellular or collapsing FSGS.  相似文献   

8.
Cyclins and Breast Cancer   总被引:5,自引:0,他引:5  
  相似文献   

9.
Féliers D  Frank MA  Riley DJ 《Diabetes》2002,51(11):3290-3299
To determine the role of cell-cycle proteins in regulating pathological renal hypertrophy, diabetes was induced in mice expressing a human retinoblastoma (RB) transgene and in wild-type littermates. Whole-kidney and glomerular hypertrophy caused by hyperglycemia was associated with specific G1 phase cell-cycle events: early and sustained increase in expression of cyclin D1 and activation of cyclin D1-cdk4 complexes, but no change in expression of cyclin E or cdk2 activity. Overexpression of RB alone likewise caused hypertrophy and increased only cyclin D1-cdk4 activity; these effects were not further augmented by high glucose. Identical observations were made when isolated mesangial cells conditionally overexpressing RB from a tetracycline-repressible system hypertrophied in response to high glucose. A mitogenic signal in the same cell-culture system, in contrast, transiently and sequentially activated both cyclin D1-cdk4 and cyclin E-cdk2. In vivo and in cultured mesangial cells, high glucose resulted in persistent partial phosphorylation of RB, an event catalyzed specifically by cyclin D1-cdk4. These data indicate that mesangial hypertrophy caused by hyperglycemia in diabetes results in sustained cyclin D1-cdk4-dependent phosphorylation of RB and maintenance of mesangial cells in the early-to-middle G1 phase of the cell cycle.  相似文献   

10.
We recently demonstrated that the macrophage product interleukin 1 (IL-1) is cytotoxic to isolated pancreatic islets and hypothesized that IL-1 is responsible for beta-cell destruction in insulin-dependent diabetes mellitus (IDDM). We studied whether the variation in IDDM preponderance with age, sex, and genetic background in vivo is reflected in different susceptibility to IL-1 toxicity of islets in vitro. In addition, we studied the effect of preculture conditions that support endocrine islet cell function and decrease nonendocrine passenger-cell survival on the susceptibility of beta-cells to IL-1 because it is unknown whether IL-1 acts directly on beta-cells or via passenger cells. No differences in susceptibility to various doses of IL-1-containing mononuclear cell supernatants were found between islets isolated from newborn or adult rats, male or female rats, or rats of four inbred strains, indicating that age, sex, and genetic background do not influence the susceptibility of the beta-cell to IL-1. Preculture of islets for 1-7 days in normal atmosphere and preculture of islet clusters in 95% O2 to delete passenger cells did not affect IL-1-mediated cytotoxicity, suggesting that IL-1 acts directly on beta-cells. Increasing the glucose concentration (22 mM) in the culture medium, which is known to protect beta-cells against alloxan toxicity, reduced IL-1 toxicity. Five or 25% normal human serum as well as 5% normal rat serum, but not equivalent concentrations of human serum albumin, inhibited IL-1 toxicity, indicating the presence of IL-1 inhibitors, IL-1 antagonists, or beta-cell-protecting factors in normal serum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Transport of lactate across the plasma membrane of pancreatic islet beta-cells is slow, as described by Sekine et al. (J Biol Chem 269:4895-4902, 1994), which is a feature that may be important for normal nutrient-induced insulin secretion. Although eight members of the monocarboxylate transporter (MCT) family have now been identified, the expression of these isoforms within the exocrine and endocrine pancreas has not been explored in detail. Using immunocytochemical analysis of pancreatic sections fixed in situ, we demonstrated three phenomena. First, immunoreactivity of the commonly expressed lactate transporter isoform MCT1 is near zero in both alpha- and beta-cells but is abundant in the pancreatic acinar cell plasma membrane. No MCT2 or MCT4 was detected in any pancreatic cell type. Second, Western analysis of purified beta- and non-beta-cell membranes revealed undetectable levels of MCT1 and MCT4. In derived beta-cell lines, MCT1 was absent from MIN6 cells and present in low amounts in INS-1 cell membranes and at high levels in RINm5F cells. MCT4 was weakly expressed in MIN6 beta-cells. Third, CD147, an MCT-associated chaperone protein, which is closely colocalized with MCT1 on acinar cell membranes, was absent from islet cell membranes. CD147 was also largely absent from MIN6 and INS-1 cells but abundant in RINm5F cells. Low expression of MCT1, MCT2, and MCT4 contributes to the enzymatic configuration of beta-cells, which is poised to ensure glucose oxidation and the generation of metabolic signals and may also be important for glucose sensing in islet non-beta-cells. MCT overexpression throughout the islet could contribute to deranged hormone secretion in some forms of type 2 diabetes.  相似文献   

12.
Yin D  Tao J  Lee DD  Shen J  Hara M  Lopez J  Kuznetsov A  Philipson LH  Chong AS 《Diabetes》2006,55(12):3256-3263
Limitations in islet beta-cell transplantation as a therapeutic option for type 1 diabetes have prompted renewed interest in islet regeneration as a source of new islets. In this study we tested whether severely diabetic adult C57BL/6 mice can regenerate beta-cells. Diabetes was induced in C57BL/6 mice with high-dose streptozotocin (160-170 mg/kg). In the absence of islet transplantation, all diabetic mice remained diabetic (blood glucose >400 mg/dl), and no spontaneous reversal of diabetes was observed. When syngeneic islets (200/mouse) were transplanted into these diabetic mice under a single kidney capsule, stable restoration of euglycemia for >/=120 days was achieved. Removal of the kidney bearing the transplanted islets at 120 days posttransplantation revealed significant restoration of endogenous beta-cell function. This restoration of islet function was associated with increased beta-cell mass, as well as beta-cell hypertrophy and proliferation. The restoration of islet cell function was facilitated by the presence of a spleen; however, the facilitation was not due to the direct differentiation of spleen-derived cells into beta-cells. This study supports the possibility of restoring beta-cell function in diabetic individuals and points to a role for the spleen in facilitating this process.  相似文献   

13.
Koster JC  Remedi MS  Masia R  Patton B  Tong A  Nichols CG 《Diabetes》2006,55(11):2957-2964
Glucose metabolism in pancreatic beta-cells elevates cytoplasmic [ATP]/[ADP], causing closure of ATP-sensitive K(+) channels (K(ATP) channels), Ca(2+) entry through voltage-dependent Ca(2+) channels, and insulin release. Decreased responsiveness of K(ATP) channels to the [ATP]/[ADP] ratio should lead to decreased insulin secretion and diabetes. We generated mice expressing K(ATP) channels with reduced ATP sensitivity in their beta-cells. Previously, we described a severe diabetes, with nearly complete neonatal lethality, in four lines (A-C and E) of these mice. We have now analyzed an additional three lines (D, F, and G) in which the transgene is expressed at relatively low levels. These animals survive past weaning but are glucose intolerant and can develop severe diabetes. Despite normal islet morphology and insulin content, islets from glucose-intolerant animals exhibit reduced glucose-stimulated insulin secretion. The data demonstrate that a range of phenotypes can be expected for a reduction in ATP sensitivity of beta-cell K(ATP) channels and provide models for the corollary neonatal diabetes in humans.  相似文献   

14.
Pancreatic beta-cell survival is critical in the setting of diabetes as well as in islet transplantation. Transgenic mice overexpressing parathyroid hormone-related protein (PTHrP) targeted to beta-cells using the rat insulin II promoter (RIP) display hyperinsulinemia, hypoglycemia, and islet hyperplasia, without a concomitant increase in beta-cell proliferation rate or enlargement of individual beta-cell size. Thus, the mechanism for increased beta-cell mass is unknown. In this study, we demonstrated that beta-cells of transgenic mice are resistant to the cytotoxic effects of streptozotocin (STZ) in vivo, as documented by a sixfold reduction in the rate of STZ-induced beta-cell death in RIP-PTHrP mice relative to their normal siblings. The reduced cell death in transgenic mice is due neither to their increased islet mass nor to a decrease in their sensing of STZ, but rather results from PTHrP-induced resistance to beta-cell death. This is also demonstrated in vitro by markedly reduced cell death rates observed in beta-cells of transgenic mice compared with normal mice when cultured in the absence of serum and glucose or in the presence of STZ. Finally, we demonstrated that NH(2)-terminal PTHrP inhibits beta-cell death. These findings support the concept that PTHrP overexpression increases islet mass in transgenic mice through inhibition of beta-cell death.  相似文献   

15.
PROBLEM: Cyclin D1 is a regulatory factor essential in the progression of the cell cycle from G1 through S phase. Amplification and overexpression of cyclin D1 have been observed in many human cancers including head and neck squamous cell carcinoma (HNSCC). We have previously transfected a HNSCC control cell line (CCL23) with an antisense cyclin D1 plasmid and demonstrated inhibition of cell proliferation in vitro. In this study, we examine whether antisense cyclin D1 could inhibit tumor growth in vivo. Methods/measures: The CCL23 and its antisense cyclin D1 transfected clone (CCL23 AS) were injected into the flanks of nude mice. Tumor growth was monitored weekly. After 5 weeks, tumors were removed and studied for tumor size, cyclin D1 expression, cyclin D1-dependent kinase activity, and retinoblastoma (Rb) phosphorylation. RESULTS: Compared with the control tumors, 11 of 19 antisense tumors were smaller, 7 tumors were of equal size, and 1 tumor was larger. Immunohistochemical analysis with an anti-cyclin D1 antibody demonstrated decreased cyclin D1 expression in CCL23 AS and the smaller antisense tumors. Cyclin D1-dependent kinase activity was reduced in CCL23 AS and the smaller antisense tumors, and this was accompanied by a relative decrease in phosphorylated Rb in these samples. CONCLUSION: Antisense cyclin D1 inhibits growth of HNSCC tumors. Cyclin D1 expression, cyclin D1-dependent kinase activity, and Rb phosphorylation are decreased in these tumors. Clinical significance: These findings lend support for the potential use of antisense cyclin D1 as gene therapy for HNSCC.  相似文献   

16.
Bosco D  Meda P  Halban PA  Rouiller DG 《Diabetes》2000,49(2):233-243
It has long been recognized that islet cell function is rapidly altered in vitro, but can be maintained, at least in part, when cells are layered on defined extracellular matrices. The present work addresses the influence of short-term cell-matrix interactions on islet beta-cell function and provides first insight into the molecular basis of these interactions. When primary rat beta-cells were allowed to attach to a matrix produced by a rat carcinoma cell line (804G), there was an increased insulin secretory response to secretagogues. This change was the result of an increase in the proportion of actively secreting beta-cells and in the amount of insulin secreted per active cell, as shown using the reverse hemolytic plaque assay. In turn, the spreading or flattening of beta-cells on this matrix was enhanced by secretagogues, and flattened cells secreted more insulin than rounded cells. Using indirect immunofluorescence, it was found that 1)alpha6beta1 integrins are present at the surface of islet cells in situ, 2) alpha6beta1 expression is heterogeneous among purified beta-cells and is upregulated by insulin secretagogues, 3) alpha6beta1 expression is higher in spreading cells, and 4) anti-alpha6beta1-specific antibodies decrease spreading. These observations demonstrate that islet cell-matrix interactions can improve the sensitivity of insulin cells to glucose and are mediated, at least in part, by alpha6beta1 integrins, suggesting that outside-in signaling through alpha6beta1 integrin plays a major role in the regulation of beta-cell function.  相似文献   

17.
Rat islet beta-cells spread in response to glucose when attached on the matrix produced by a rat bladder carcinoma cell line (804G). Furthermore, in a mixed population of cells, it has been observed previously that spread cells secrete more insulin acutely in response to glucose, compared with cells that remain rounded. These results suggest bi-directional signaling between the islet beta-cell and the extracellular matrix. In the present study, the role of increased intracellular free Ca2+ concentration [Ca2+]i as an intracellular step linking glucose stimulation and beta-cell spreading (inside-out signaling) was investigated. Purified rat beta-cells were attached to this matrix and incubated under various conditions known to affect [Ca2+]i. The effect of glucose on beta-cell spreading was mimicked by 25 mmol/l KCl (which induces calcium influx) and inhibited by diazoxide (which impairs depolarization and calcium entry) and by the L-type Ca2+ channel blocker SR-7037. When a 24-h incubation at 16.7 glucose was followed by 24 h at 2.8 mmol/l, beta-cells that had first spread regained a round phenotype. In the presence of thapsigargin, spreading progressed throughout the experiment, suggesting that capture of calcium by the endoplasmic reticulum is involved in the reversibility of spreading previously induced by glucose. Spreading was still observed in degranulated beta-cells and in botulinum neurotoxin E-expressing beta-cells when exocytosis was prevented. In summary, the results indicate that increased [Ca2+]i is required for the glucose-induced spreading of beta-cells on 804G matrix and that it is not a consequence of exocytotic processes that follow elevation of [Ca2+]i.  相似文献   

18.
Studies on the pathogenesis of type 1 diabetes have mainly focused on the role of the immune system in the destruction of pancreatic beta-cells. Lack of data on the cellular and molecular events at the beta-cell level is caused by the inaccessibility of these cells during development of the disease. Indirect information has been collected from isolated rodent and human islet cell preparations that were exposed to cytotoxic conditions. This article reviews in vitro experiments that investigated the role of beta-cells in the process of beta-cell death. beta-Cells rapidly die in necrosis because of toxic levels of oxidizing radicals or of nitric oxide; they progressively become apoptotic after prolonged culture at low glucose or with proinflammatory cytokines. Their susceptibility to necrosis or apoptosis varies with their functional state and thus with the environmental conditions. A change in cellular phenotype can alter its recognition of potentially cytotoxic agents and its defense mechanisms against cell death. These observations support the view that beta-cells are not necessarily passive victims of a cytotoxic process but can actively participate in a process of beta-cell death. Their role will be influenced by neighboring non-beta-cells, which can make the islet internal milieu more protective or toxic for the beta-cells. We consider duct cells as potentially important contributors to this local process.  相似文献   

19.
20.
Diabetes mellitus involves metabolic changes that can impair bone repair. Bone mesenchymal stem cells (BMSCs) play an important role in bone regeneration. However, the bone regeneration ability of BMSCs is inhibited in high glucose microenvironments. It can be speculated that this effect is due to changes in BMSCs' proliferation and migration ability, because the recruitment of factors with an adequate number of MSCs and the microenvironment around the site of bone injury are required for effective bone repair. Recent genetic evidence has shown that the Cyclin D1 and the CXC receptor 4 (CXCR-4) play important roles in the proliferation and migration of BMSCs. In this study we determined the specific role of glycogen synthase kinase-3β (GSK3β) in the proliferation and migration of BMSCs in high glucose microenvironments. The proliferation and migration ability of BMSCs were suppressed under high glucose conditions. We showed that high glucose activates GSK3β but suppresses CXCR-4, β-catenin, LEF-1, and cyclin D1. Inhibition of GSK3β by LiCl led to increased levels of β-catenin, LEF-1, cyclin D1, and CXCR-4 expression. Our data indicate that GSK3β plays an important role in regulating the proliferation and migration of BMSCs by inhibiting cyclin D1 and CXCR-4 under high glucose conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号