首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The chondron represents the chondrocyte and its pericellular microenvironment and plays an important role in the progression of osteoarthritis. Type VI collagen is preferentially localized in the pericellular microenvironment of adult articular cartilage and increases during osteoarthritis. In this study, we characterized the pericellular sequestration of type VI collagen in long-term chondrocyte-agarose cultures, and assessed the action of interleukin-1 on type VI collagen deposition and assembly.Immunohistochemical and biochemical analysis showed that cultured chondrocytes initiate type VI collagen sequestration immediately upon plating and continue pericellular matrix sequestration in a time dependent manner. Confocal microscopy confirmed the cell surface localization and pericellular accumulation of type VI collagen, while image analysis identified a ‘cargo-net like’ organization of type VI collagen around each chondrocyte. Quantitative analysis revealed a primary phase of rapid cell division and low levels of type VI collagen sequestration, followed by a secondary phase of relative growth stability and high levels of type VI collagen deposition. Interleukin-1 treated cultures showed increased sequestration and retention of type VI collagen in an expanded microenvironment surrounding the chondrocytes.The data suggests a role for type VI collagen in the differentiation of the pericellular microenvironment in vitro. The increased type VI collagen sequestration promoted by interleukin-1 was consistent with previous studies on osteoarthritic cartilage, and implies a functional role for type VI collagen in the chondron remodeling associated with cartilage degradation.  相似文献   

2.
OBJECTIVE: To examine whether differences in the pericellular microenvironment of different chondron preparations influence the chondrocyte volume regulatory response to experimental osmotic challenge. DESIGN: Mechanically extracted chondrons (MC), enzymatically extracted chondrons (EC) and isolated chondrocytes (IC) were seeded into agarose and sampled at 1, 3 and 7 days. Samples mounted in a perfusion chamber were subjected to osmotic challenge. The cross-sectional areas of the chondrocyte and pericellular microenvironment were measured under isotonic, hypertonic and hypotonic conditions, and percentage change calculated. Separate samples were immunolabeled for type VI collagen and keratan sulfate. RESULTS: Initially, the microenvironment of MC represented 60% of the chondron area and was occupied by type VI collagen and keratan sulfate. In EC, the microenvironment comprised 18% of the chondron area with narrow bands of type VI collagen and keratan sulfate. IC had no visible microenvironment, with small amounts of type VI collagen and keratan sulfate present. All preparations sequestered additional pericellular macromolecules during culture. Under isotonic conditions, the EC and IC chondrocytes were larger than those of MC. All chondrocytes shrank under hypertonic conditions and swelled under hypotonic conditions. MC were the least responsive, displaying the most efficient volume regulation. IC showed the largest response initially but this decreased with time. EC exhibited intermediate responses that decreased as the microenvironment increased in size. CONCLUSIONS: The composition and structural integrity of the pericellular microenvironment do influence the cellular response to experimental osmotic challenge. This suggests that the microenvironment functions in situ to mediate the chondrocyte response to physicochemical changes associated with joint loading.  相似文献   

3.
We report on the morphology and structure of single and multiple chondrons isolated from homogenized samples of fresh and fixed canine tibial cartilage. Phase contrast, Nomarski, and scanning electron microscopy observations show each chondron to be composed of a chondrocyte and its pericellular matrix enclosed within a "felt-like" pericellular capsule. The extraction of intact chondrons from cartilage homogenates confirms the structural validity of the chondron concept and emphasizes the intrinsic mechanical strength of the capsule. Frayed collagen fibers radiate from multiple chondron columns suggesting a shear-resistant, structural interrelationship between capsular components and type II collagen fibers. Future development of chondron extraction procedures could provide a unique model with which to study the structure, biochemistry, and function of articular cartilage chondrocytes and their pericellular microenvironment.  相似文献   

4.
OBJECTIVE: Type VI collagen is a major component of the pericellular matrix compartment in articular cartilage and shows severe alterations in osteoarthritic cartilage degeneration. In this study, we analysed the exact localization of type VI collagen in its relationship to the chondrocyte and the (inter)territorial cartilage matrix. Additionally, we were interested in its ultrastructural appearance in normal and osteoarthritic cartilage. DESIGN: Distribution and molecular appearance was investigated by conventional immunostaining, by multilabeling confocal scanning microscopy, conventional transmission, and immunoelectron microscopy. RESULTS: Our analysis confirmed the pericellular concentration of type VI collagen in normal and degenerated cartilage. Type VI collagen formed an interface in between the cell surface and the type II collagen network. The type VI collagen and the type II collagen networks appeared to have a slight physical overlap in both normal and diseased cartilage. Additionally, some epitope staining was observed in the cell-associated interterritorial cartilage matrix, which did not appear to have an immediate relation to the type II collagen fibrillar network as evaluated by immunoelectron microscopy.In osteoarthritic cartilage, significant differences were found compared with normal articular cartilage: the overall dimension of the lacunar volume increased, and a significantly increased type VI collagen epitope staining was observed in the interterritorial cartilage matrix. Also, the banded isoform of type VI collagen was found around many chondrocytes. CONCLUSIONS: Our study confirms the close association of type VI collagen with both, the chondrocyte cell surface and the territorial cartilage matrix. They show severe alterations in type VI collagen distribution and appearance in osteoarthritic cartilage. Our immunohistochemical and ultrastructural data are compatible with two ways of degradation of type VI collagen in osteoarthritic cartilage: (1) the pathologically increased physiological molecular degradation leading to the complete loss of type VI collagen filaments from the pericellular chondrocyte matrix and (2) the transformation of the fine filaments to the band-like form of type VI collagen. Both might implicate a significant loss of function of the pericellular microenvironment in osteoarthritic cartilage.  相似文献   

5.
The chondron is the microanatomical unit composed of a chondrocyte and its pericellular microenvironment (PCME), including the pericellular matrix and capsule. In the present study, we extracted chondrons from human articular cartilages and investigated the relationship between the distribution of the matrix molecules, including type VI collagen, and the degeneration of articular cartilage. We also investigated the effects of interleukin-1 (IL-1) and transforming growth factor -1(TGF-1) on the distribution of type VI collagen in cultured chondrocytes. Chondrons were extracted by low-speed homogenization from cartilage pieces obtained from forensic autopsies and from patients with knee osteoarthritis (OA) undergoing total knee arthroplasty. Cartilage sections were classified into three groups (normal, slight degeneration, and moderate degeneration) based on the degree of degeneration according to Mankins score. Extracted chondrons were immunostained, and the distribution of the matrix molecules, including type VI collagen, was investigated using a confocal laser scanning microscope (CLSM). The chondrocytes isolated by enzymic treatment were subjected to three-dimensional culture in agarose gel and then treated with IL-1 or TGF-1. The distribution of newly synthesized type VI collagen in agarose gel was also investigated using the CLSM. Type VI collagen was localized specifically within the PCME of chondrons. The volume ratio of PCME to chondrocyte (P/C ratio) was significantly higher in the moderate degeneration group than in the other two groups. The accumulation of type VI collagen around a chondrocyte was obviously increased by the addition of TGF-1. The P/C ratio significantly increased as the severity of the OA progressed, suggesting that type VI collagen distributed specifically in the PCME was playing a protective role for chondrocytes by maintaining the pericellular microenvironment in OA.  相似文献   

6.
Pericellular matrix is at the ideal location to be involved in transmitting mechanical signals from the microenvironment to a cell. We found that changes of the content of matrilins that link various pericellular molecules surrounding chondrocytes affect mechanical stimulation of chondrocyte proliferation and gene expression. Thus, pericellular matrilins may play a role in chondrocyte mechanotransduction. INTRODUCTION: Chondrocytes reside in a capsule of pericellular matrix (chondron), which has been hypothesized to play a critical role in transducing mechanical signals to the cell. In this study, we test the hypothesis that the levels of matrilin (MATN)-1 and -3, major components of the chondrocyte pericellular matrix network, regulate activation of chondrocyte proliferation and differentiation by cyclic load-induced matrix deformation. MATERIALS AND METHODS: Functional matrilins were decreased by expressing a dominant negative mini-MATN in primary chondrocytes or by using MATN1-null chondrocytes. The abundance of matrilins was also increased by expressing a wildtype MATN1 or MATN3 in chondrocytes. Chondrocytes were cultured in a 3D sponge subjected to cyclic deformation at 1 Hz. Chondrocyte gene expression was quantified by real-time RT-PCR and by Western blot analysis. Matrilin pericellular matrix assembly was examined by immunocytochemistry. RESULTS: Elimination of functional matrilins from pericellular matrix abrogated mechanical activation of Indian hedgehog signaling and abolished mechanical stimulation of chondrocyte proliferation and differentiation. Excessive or reduced matrilin content decreased mechanical response of chondrocytes. CONCLUSIONS: Normal content of matrilins is essential to optimal activation of chondrocytes by mechanical signals. Our data suggest that the sensitivity of chondrocytes to the changes in the microenvironment can be adjusted by altering the content of matrilins in pericellular matrix. This finding supports a critical role of pericellular matrix in chondrocyte mechano-transduction and has important implications in cartilage tissue engineering and mechanical adaptation.  相似文献   

7.
A combination of scanning and transmission electron microscopy was used to investigate the morphology and ultrastructure of normal human articular cartilage sampled from adult amputation specimens. This study confirms our previous observations on canine articular cartilage, which showed middle and deep layer chondrocytes surrounded by a pericellular matrix and enclosed within a pericellular capsule composed of filamentous and fine fibrillar materials. Pores in the "felt-like" organization of the capsular weave progressively decreased in size from the inner to the outer border of the capsule. Matrix vesicles were found embedded within the capsular weave and distributed throughout the territorial matrix. It is suggested that the chondrocyte, its pericellular matrix, and capsule together constitute the "chondron," a primary functional and metabolic unit of cartilage that acts hydrodynamically to protect the integrity of the chondrocyte and its pericellular microenvironment during compressive loading.  相似文献   

8.
OBJECTIVE: Determine whether the structure of the type VI collagen component of the chondrocyte pericellular matrix (PCM) generated by agarose-embedded chondrocytes in culture is similar to that found in native articular cartilage. METHODS: Confocal microscopy, quick-freeze deep-etch electron microscopy, and real-time polymerase chain reaction (PCR) were used to investigate temporal and spatial patterns of type VI collagen protein deposition and gene expression by bovine chondrocytes during 4 weeks of culture within a 2% agarose hydrogel. Similar analyses were performed on chondrocytes within samples of intact cartilage obtained from the same joint surfaces as those used for cell isolation for comparison. RESULTS: Type VI collagen accumulated uniformly around cells embedded in agarose, with the rate of deposition slowing after the second week. After 1 week, PCM fibrils were observed to be oriented perpendicular to the cell surface, in contrast with the primarily tangential fibrillar arrangement observed in native articular cartilage. Expression of col6 in agarose-embedded cells was initially much higher ( approximately 400%) than that in chondrocytes within cartilage. Expression of col6 in the cultured chondrocytes declined by approximately 60% after 1 week, and remained stable thereafter. CONCLUSIONS: PCM structure and composition around cells in a hydrogel scaffold may be different than that in native cartilage, with potential implications for mass transport, mechanotransduction, and ultimately, the success of tissue engineering approaches.  相似文献   

9.
Expression of type VI collagen in normal and osteoarthritic human cartilage   总被引:1,自引:0,他引:1  
OBJECTIVE: This study was undertaken in order to study the expression of type VI collagen in normal and osteoarthritic human knee cartilage. METHODS: Seventy-two osteoarthritic cartilage/bone samples were obtained form 29 patients with primary OA undergoing surgery for a total knee replacement. Normal cartilage was collected from five human knees at the time of autopsy. Type VI collagen protein was localized using a polyclonal anti human type VI collagen antibody, the corresponding mRNA was detected with an 310 base antisense probe, specific for the alpha2(VI) collagen chain. RESULTS: In normal cartilage, type VI collagen protein is concentrated pericellularly around the chondrocytes of all cartilage zones. In the middle and deep zones, type VI collagen was also found in the interterritorial matrix. Type VI collagen mRNA expression was detected in chondrocytes of all cartilage zones. In moderately affected osteoarthritic cartilage, type VI collagen expression was increased. An intensive immunohistological interterritorial staining for type VI collagen was observed in the middle and deep cartilage zones. Specific mRNA signals were also increased especially in the middle and deep cartilage zone. In the superficial zone and calcified cartilage of these samples, type VI collagen mRNA expression was restricted to focal areas. In severe osteoarthritic cartilage, an intensive staining for type VI collagen mRNA was found in clusters of proliferating chondrocytes and in the deep cartilage zone. Type VI collagen was localized pericellularly and in the matrix of chondrocyte clusters. Furthermore, chondrocytes from the deep zone showed a territorial distribution of type VI collagen. CONCLUSIONS: These results demonstrate that in normal and osteoarthritic cartilage, type VI collagen is expressed in a zone specific pattern. The observed increase of type VI collagen expression in osteoarthritis suggests a potential role in the disease process.  相似文献   

10.
OBJECTIVE: Chondrocytes in articular cartilage are surrounded by a narrow pericellular matrix (PCM), which together with the enclosed cell(s) are termed the "chondron". Although the precise function of this tissue region is unknown, previous studies provide indirect evidence that the PCM plays an important role in governing the local mechanical environment of chondrocytes. In particular, theoretical models of the chondron under mechanical loading suggest that the shape, size, and biomechanical properties of the PCM significantly influence the stress-strain and fluid flow environment of the cell. The goal of this study was to quantify the three-dimensional morphology of chondron in situ using en bloc immunolabeling of type VI collagen coupled with fluorescence confocal microscopy. METHODS: Three-dimensional reconstructions of intact, fluorescently labeled chondrons were made from stacks of confocal images recorded in situ from the superficial, middle, and deep zones of porcine articular cartilage of the medial femoral condyle. RESULTS: Significant variations in the shape, size, and orientation of chondrocytes and chondrons were observed with depth from the tissue surface, revealing flattened discoidal chondrons in the superficial zone, rounded chondrons in the middle zone, and elongated, multicellular chondrons in the deep zone. CONCLUSIONS: The shape and orientation of the chondron appear to reflect the local collagen architecture of the interterritorial matrix, which varies significantly with depth. Quantitative measurements of morphology of the chondron and its variation with site, disease, or aging may provide new insights into the influence of this structure on physiology and the pathology of articular cartilage.  相似文献   

11.
12.

Objective  

Mechanical loading of cartilage influences chondrocyte metabolism and gene expression. The gene encoding type X collagen is expressed specifically by hypertrophic chondrocytes and up regulated during osteoarthritis. In this study we tested the hypothesis that the mechanical microenvironment resulting from higher levels of local strain in a three dimensional cell culture construct would lead to an increase in the expression of type X collagen mRNA by chondrocytes in those areas.  相似文献   

13.
Early osteoarthritis (OA) is poorly understood, but abnormal chondrocyte morphology might be important. We studied IL‐1β and pericellular collagen type VI in morphologically normal and abnormal chondrocytes. In situ chondrocytes within explants from nondegenerate (grade 0/1) areas of human tibial plateaus (n = 21) were fluorescently labeled and visualized [2‐photon laser scanning microscopy (2PLSM)]. Normal chondrocytes exhibited a “smooth” membrane surface, whereas abnormal cells were defined as demonstrating ≥1 cytoplasmic process. Abnormal chondrocytes were further classified by number and average length of cytoplasmic processes/cell. IL‐1β or collagen type VI associated with single chondrocytes were visualized by fluorescence immuno‐histochemistry and confocal laser scanning microscopy (CLSM). Fluorescence was quantified as the number of positive voxels (i.e., 3D pixels with fluorescence above baseline)/cell. IL‐1β‐associated fluorescence increased between normal and all abnormal cells in the superficial (99.7 ± 29.8 [11 (72)] vs. 784 ± 382 [15 (132)]; p = 0.04, positive voxels/cell) and deep zones (66.5 ± 29.4 [9 (64)] vs. 795 ± 224 [9 (56)]; p = 0.006). There was a correlation (r2 = 0.988) between the number of processes/cell (0–5) and IL‐1β, and an increase particularly with short processes (≤5 µm; p = 0.022). Collagen type VI coverage and thickness decreased (p < 0.001 and p = 0.005, respectively) with development of processes. Abnormal chondrocytes in macroscopically nondegenerate cartilage demonstrated a marked increase in IL‐1β and loss of pericellular type VI collagen, changes that could lead to cartilage degeneration. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1507–1514, 2010  相似文献   

14.
INTRODUCTION: Chondrocytes in articular cartilage utilize mechanical signals to regulate their metabolic activity. A fundamental step in determining the role of various biophysical factors in this process is to characterize the local mechanical environment of the chondrocyte under physiological loading. METHODS: A combined experimental and theoretical approach was used to quantify the in-situ mechanical environment of the chondrocyte. The mechanical properties of enzymatically-isolated chondrocytes and their pericellular matrix (PCM) were determined using micropipette aspiration. The values were used in a finite element model of the chondron (the chondrocyte and its PCM) within articular cartilage to predict the stress-strain and fluid flow microenvironment of the cell. The theoretical predictions were validated using three-dimensional confocal microscopy of chondrocyte deformation in situ. RESULTS: Chondrocytes were found to behave as a viscoelastic solid material with a Young's modulus of approximately 0.6 kPa. The elastic modulus of the PCM was significantly higher than that of the chondrocyte, but several orders of magnitude lower than that of the extracellular matrix. Theoretical modeling of cell-matrix interactions suggests the mechanical environment of the chondrocyte is highly non-uniform and is dependent on the viscoelastic properties of the PCM. Excellent agreement was observed between the theoretical predictions and the direct measurements of chondrocyte deformation, but only if the model incorporated the PCM. CONCLUSIONS: These findings imply that the PCM plays a functional biomechanical role in articular cartilage, and alterations in PCM properties with aging or disease will significantly affect the biophysical environment of the chondrocyte.  相似文献   

15.
OBJECTIVE: The anabolic cytokine insulin-like growth factor I (IGF-I) stimulates chondrocyte synthesis of matrix macromolecules and several lines of evidence suggest that it has a major role in maintaining articular cartilage and possibly in cartilage repair. Despite the apparent importance of IGF-I in articular cartilage metabolism and its potential importance in joint diseases, little is known about the regulation of IGF-I activity within the tissue. Insulin-like growth factor binding proteins (IGFBPs) bind IGF-I and can modify its activity. At least three IGFBPs are expressed by chondrocytes: IGFBP-3, -4 and -5. Localization of IGFPBs in the articular cartilage extracellular matrix (ECM) could create reservoirs of IGF-I within the articular cartilage ECM and thereby regulate local IGF-I levels. We hypothesized that ECM molecules bind and concentrate IGFPBs in the pericellular/territorial matrix. DESIGN: Semi-quantitative immunohistological measures of co-localization were used to compare the spatial distribution of IGFBP-3, -4, and -5 with the distributions of three peri-cellularly-enriched matrix molecules fibronectin, tenascin-C, and type VI collagen in osteoarthritic and non-osteoarthritic human articular cartilage. Purified proteins were used in an agarose diffusion assay to compare IGFBP-3 binding to the same three matrix proteins. RESULTS: IGFBP-3 associated with fibronectin in the pericellular/territorial matrix (approximately 40% co-localization) but not with tenascin-C, or type VI collagen (approximately 6% and approximately 15% co-localization respectively, P< 0.05). Neither IGFBP-4, nor IGFBP-5 were associated with any of the three ECM proteins (P< 0.05). In agarose diffusion assays IGFBP-3 interacted with fibronectin and heparan sulfate proteoglycan but not with type VI collagen or tenascin-C. CONCLUSIONS: Direct binding between purified IGFBP-3 and fibronectin and the strong co-localization the two proteins in the cartilage matrix support the hypothesis that IGFPB-3 and fibronectin help regulate local IGF-I levels.  相似文献   

16.
OBJECTIVE: For autologous chondrocyte transplantation (ACT) chondrocytes are expanded in vitro. During expansion these cells may dedifferentiate. This change in phenotype is characterized by a raised expression of type I collagen and a decrease in type II collagen expression. Since high expression of type II collagen is of central importance for the properties of hyaline cartilage, we investigated if the growth factor bone morphogenetic protein-2 (BMP-2) may modulate the chondrogenic phenotype in monolayer cell cultures and in three-dimensional culture systems. DESIGN: Chondrocytes from articular knee cartilage of 11 individuals (average age: 39.8 years) with no history of joint disease were isolated and seeded either in monolayer cultures or embedded in alginate beads in presence or absence of human recombinant BMP-2 (hr-BMP-2). Then, cells were harvested and analysis of the chondrogenic phenotype was performed using quantitative RT-PCR, immunocytochemistry and ELISA. RESULTS: Addition of BMP-2 to chondrocytes expanded in two-dimensional (2D) cultures during the first subculture (P1) had no effect on mRNA amounts encoding type II collagen and interleukin-1beta (IL-1beta). In contrast, seeding chondrocytes in three-dimensional (3D) alginate cultures raised type II collagen expression significantly and addition of BMP-2 enhanced this effect. CONCLUSIONS: We conclude that chondrocytes during expansion for ACT may benefit from BMP-2 activation only when seeded in an appropriate 3D culture system.  相似文献   

17.
Nonlinear optical microscopy of articular cartilage   总被引:2,自引:0,他引:2  
OBJECTIVE: To assess the ability of nonlinear optical microscopy (NLOM) to image ex vivo healthy and degenerative bovine articular cartilage. METHOD: Fresh bovine femoral-tibial joints were obtained from an abattoir. Articular cartilage specimens were harvested from the tibial plateau. Normal and degenerative specimens were imaged by NLOM and subsequently fixed and processed for histological examination. RESULTS: NLOM provided high resolution images of articular cartilage at varying depths with high sensitivity to tissue morphology and high specificity to tissue components without fixing, sectioning or staining. Spectroscopic segmentation of nonlinear optical signals isolated the collagen matrix from the chondron (chondrocyte and non-collagen pericellular matrix). Images from the superficial zone were consistent with the presence of a matrix composed of both elastin-like and collagen fibers distributed in a depth-dependent morphological arrangement, whereas only collagen was demonstrated in the middle and deep zones. Alterations of collagen matrix associated with advanced degenerative joint disease (fibrocartilage) were observed with NLOM. Individual chondrocytes were imaged and demonstrated intracellular fluorescence consistent with the presence of products of intracellular biochemical processes. CONCLUSION: Thin images of living articular cartilage using NLOM may be obtained with (sub-)cellular resolution at varying depths without fixing, sectioning or staining. Extracellular matrical collagen and chondron may be imaged separately in native tissue using spectrally distinct, endogenous, nonlinear optical signals. NLOM was sensitive to macromolecular composition and pathologic changes in articular cartilage matrix. Advances in instrumentation may lead to the application of NLOM to study articular cartilage in vivo.  相似文献   

18.
19.
During osteoarthritis, chondrocytes change their spatial arrangement from single to double strings, then to small and big clusters. This change in pattern has recently been established as an image-based biomarker for osteoarthritis. The pericellular matrix (PCM) appears to degrade together alongside cellular reorganization. The aim of this study was to characterize this PCM-degradation based on different cellular patterns. We additionally wanted to identify the earliest time point of PCM-breakdown in this physiopathological model. To this end, cartilage samples were selected according to their predominant cellular pattern. Qualitative analysis of PCM degradation was performed immunohistochemically by analysing five main PCM components: collagen type VI, perlecan, collagen type III, biglycan, and fibrillin-1 (n = 6 patients). Their protein content was quantified by enzyme-linked immunosorbent assay (127 patients). Accompanying spatial cellular rearrangement, the PCM is progressively destroyed, with a pericellular signal loss in fluorescence microscopy for collagen type VI, perlecan, and biglycan. This loss in protein signal is accompanied by a reduction in total protein content from single strings to big clusters (P < .001 for collagen type VI, P = .003 for perlecan, and P < .001 for biglycan). As a result of an increase in the number of cells from single strings to big clusters, the amount of protein available per cell also decreases for collagen type III and fibrillin-1, where total protein levels remain constant. Biochemical changes of the PCM and cellular rearrangement are thus highly interconnected hallmarks of osteoarthritis. Interestingly, the earliest point in time for a relevant PCM impairment appears to be at the transition to small clusters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号