首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adoption of the concept that asthma is primarily a disease most frequently associated with elaboration of T-helper 2 (Th2)-type inflammation has led to the widely held concept that its origins, exacerbation, and persistence are allergen driven. Taking aside the asthma that is expressed in non-allergic individuals leaves the great proportion of asthma that is associated with allergy (or atopy) and that often has its onset in early childhood. Evidence is presented that asthma is primarily an epithelial disorder and that its origin as well as its clinical manifestations have more to do with altered epithelial physical and functional barrier properties than being purely linked to allergic pathways. In genetically susceptible individuals, impaired epithelial barrier function renders the airways vulnerable to early life virus infection, and this in turn provides the stimulus to prime immature dendritic cells toward directing a Th2 response and local allergen sensitization. Continued epithelial susceptibility to environmental insults such as viral, allergen, and pollutant exposure and impaired repair responses leads to asthma persistence and provides the mediator and growth factor microenvironment for persistence of inflammation and airway wall remodeling. Increased deposition of matrix in the epithelial lamina reticularis provides evidence for ongoing epithelial barrier dysfunction, while physical distortion of the epithelium consequent upon repeated bronchoconstriction provides additional stimuli for remodeling. This latter response initially serves a protective function but, if exaggerated, may lead to fixed airflow obstruction associated with more severe and chronic disease. Dual pathways in the origins, persistence, and progression of asthma help explain why anti-inflammatory treatments fail to influence the natural history of asthma in childhood and only partially does so in chronic severe disease. Positioning the airway epithelium as fundamental to the origins and persistence of asthma provides a rationale for pursuit of therapeutics that increase the resistance of the airways to environmental insults rather than concentrating all effort on suppressing inflammation.  相似文献   

2.
There are complex interactions between airway allergy and viral infection. Available evidence suggests that viral respiratory infection can initiate, maintain and activate exacerbation of allergic conditions in respiratory tract. Innate and inflammatory responses to acute viral infection play important roles in its relationship to allergic reactions. On the other hand, biased immune responses toward Th2 caused by an allergic reaction may make the immune response ineffective in combating viral infection. It was previously shown that allergy can increase the expression level of rhinovirus receptors on mucosal epithelial cells. This suggests that airway allergy may increase the risk of rhinovirus infection. We have recently shown that allergy may also increase the expression level of influenza virus receptors. This suggests that airway allergy and viral infection may have a reciprocal interaction. The effect of allergy on the risk and outcome of viral infection needs to be further confirmed in clinical studies and its potential implication for clinical practice should be considered.  相似文献   

3.
Allergic asthma is a chronic disease of the lung characterized by underlying Th2- and IgE-mediated inflammation, structural alterations of the bronchial wall, and airway hyperresponsiveness. Initial allergic sensitization and later development of chronic disease are determined by close interactions between lung structural cells and the resident and migratory immune cells in the lung. Epithelial cells play a crucial role in allergic sensitization by directly influencing dendritic cells induction of tolerant or effector T cells and production of type 2 cytokines by innate immune cells. During chronic disease, the bronchial epithelium, stroma, and smooth muscle become structurally and functionally altered, contributing to the perpetuation of tissue remodeling. Thus, targeting tissue-driven pathology in addition to inflammation may increase the effectiveness of asthma treatment.  相似文献   

4.
BACKGROUND: Respiratory viral infections can influence the course of asthma at different time points. Severe respiratory viral infections during early age are associated with a higher prevalence of asthma in later childhood. In established asthma, viral infections are a frequent cause of asthma exacerbation. OBJECTIVES: The present review focuses on epidemiological and experimental animal data that can illuminate the mechanisms by which viral infections can lead to sensitization to antigen, and exacerbate ongoing allergic airway inflammation and focuses on the role played by dendritic cells (DCs). RESULTS: In experimental rodent models of asthma, respiratory viral infection at the time of a first inhaled antigen exposure is described to induce Th2 sensitization and to enhance the allergic response to a second encounter with the same antigen. Virus infections can modulate airway dendritic cell function by upregulation of costimulatory molecule expression, enhanced recruitment, and by inducing an inflammatory environment, all leading to an enhanced antigen presentation and possibly changing the normal tolerogenic response to inhaled antigen into an immunogenic response. In established asthma, respiratory viral infections attract several inflammatory cells, alter receptor expression on airway smooth muscle and modulate neuroimmune mechanisms, possibly leading to exacerbation of disease. CONCLUSIONS: Animal data suggest that the link between respiratory viral infections and increased asthma is causally related, the viral infection acting on the immune and structural cells to enhance antigen presentation and inflammatory cell recruitment.  相似文献   

5.
Asthma is a complex heterogeneous disease of the airways characterized by lung inflammation, airway hyperreactivity (AHR), mucus overproduction, and remodeling of the airways. Group 2 innate lymphoid cells (ILC2s) play a crucial role in the initiation and propagation of type 2 inflammatory programs in allergic asthma models, independent of adaptive immunity. In response to allergen, helminths or viral infection, damaged airway epithelial cells secrete IL-33, IL-25, and thymic stromal lymphopoietin (TSLP), which activate ILC2s to produce type 2 cytokines such as IL-5, IL-13, and IL-9. Furthermore, ILC2s coordinate a network of cellular responses and interact with numerous cell types to propagate the inflammatory response and repair lung damage. ILC2s display functional plasticity in distinct asthma phenotypes, enabling them to respond to very different immune microenvironments. Thus, in the context of non-allergic asthma, triggered by exposure to environmental factors, ILC2s transdifferentiate to ILC1-like cells and activate type 1 inflammatory programs in the lung. In this review, we summarize accumulating evidence on the heterogeneity, plasticity, regulatory mechanisms, and pleiotropic roles of ILC2s in allergic inflammation as well as mechanisms for their suppression in the airways.  相似文献   

6.
Asthma was previously defined as an allergic Th2‐mediated inflammatory immune disorder. Recently, this paradigm has been challenged because not all pathological changes observed in the asthmatic airways are adequately explained simply as a result of Th2‐mediated processes. Contemporary thought holds that asthma is a complex immune disorder involving innate as well as adaptive immune responses, with the clinical heterogeneity of asthma perhaps a result of the different relative contribution of these two systems to the disease. Epidemiological studies show that exposure to certain environmental substances is strongly associated with the risk of developing asthma. The airway epithelium is first barrier to interact with, and respond to, environmental agents (pollution, viral infection, allergens), suggesting that it is a key player in the pathology of asthma. Epithelial cells play a key role in the regulation of tissue homeostasis by the modulation of numerous molecules, from antioxidants and lipid mediators to growth factors, cytokines, and chemokines. Additionally, the epithelium is also able to suppress mechanisms involved in, for example, inflammation in order to maintain homeostasis. An intrinsic alteration or defect in these regulation mechanisms compromises the epithelial barrier, and therefore, the barrier may be more prone to environmental substances and thus more likely to exhibit an asthmatic phenotype. In support of this, polymorphisms in a number of genes that are expressed in the bronchial epithelium have been linked to asthma susceptibility, while environmental factors may affect epigenetic mechanisms that can alter epithelial function and response to environmental insults. A detailed understanding of the regulatory role of the airway epithelium is required to develop new therapeutic strategies for asthma that not only address the symptoms but also the underlining pathogenic mechanism(s) and prevent airway remodelling.  相似文献   

7.
Allergic asthma is a chronic inflammatory disease mediated by Th2 cell immune responses. Currently, immunotherapies based on immune deviation are attractive, preventive, and therapeutic strategies for asthma. Many studies have shown that intracellular bacterial infections such as mycobacteria and their components can suppress asthmatic reactions by enhancing Th1 responses, while helminth infections and their proteins can inhibit allergic asthma via immune regulation. However, some helminth proteins such as SmP40, the major egg antigen of Schistosoma mansoni, are found as Th1 type antigens. Using a panel of overlapping peptides, we identified T‐cell epitopes on SjP40 protein of Schistosoma japonicum, which can induce Th1 cytokine and inhibit the production of Th2 cytokines and airway inflammation in a mouse model of allergic asthma. These results reveal a novel form of immune protective mechanism, which may play an important role in the modulating effect of helminth infection on allergic asthmatic reactions.  相似文献   

8.
Chronic asthma is an inflammatory disease of the airway wall that leads to bronchial smooth muscle hyperreactivity and airway obstruction, caused by inflammation, goblet cell metaplasia, and airway wall remodeling. In response to allergen presentation by airway DCs, T‐helper lymphocytes of the adaptive immune system control many aspects of the disease through secretion of IL‐4, IL‐5, IL‐13, IL‐17, and IL‐22, and these are counterbalanced by cytokines produced by Treg cells. Many cells of the innate immune system such as mast cells, basophils, neutrophils, eosinophils, and innate lymphoid cells also play an important role in disease pathogenesis. Barrier epithelial cells are being ever more implicated in disease pathogenesis than previously thought, as these cells have in recent years been shown to sense exposure to allergens via pattern recognition receptors and to activate conventional and inflammatory‐type DCs and other innate immune cells through the secretion of thymic stromal lymphopoietin, granulocyte‐macrophage colony stimulating factor, IL‐1, IL‐33, and IL‐25. Understanding this cytokine crosstalk between barrier epithelial cells, DCs, and immune cells provides important insights into the mechanisms of allergic sensitization and asthma progression as discussed in this review.  相似文献   

9.
Asthma has been associated with an exaggerated T-helper type 2 (Th2) over Th1 responses to allergic and nonallergic stimuli, which leads to chronic airway inflammation and airway remodeling. In the present article, we propose that many of the genes involved in IgE synthesis and airways (re)modeling in asthma are persistent or reminiscent fetal genes which may not be silenced during early infancy (or late pregnancy). Genes of the embryologic differentiation of ectodermic and endodermic tissues may explain some of the patterns of airway remodeling in asthma. In utero programming leads to gene expression, the persistence of which may be associated with epigenetic inheritance phenomena induced by nonspecific environmental factors. Clear delineation of these issues may yield new information on the mechanisms of asthma and new targets for therapeutic intervention and primary prevention.  相似文献   

10.
BACKGROUND: Eosinophil-epithelial cell interactions make a major contribution to asthmatic airway inflammation. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and other members of the neurotrophin family, originally defined as a class of neuronal growth factors, are now recognized to support the survival and activation of immune cells. Neurotrophin levels are increased in bronchoalveolar lavage fluid during allergic asthma. OBJECTIVE: We sought to investigate the role of neurotrophins as inflammatory mediators in eosinophil-epithelial cell interactions during the allergic immune response. METHODS: Neurotrophin expression in the lung was investigated by means of immunohistochemistry and ELISA in a mouse model of chronic experimental asthma. Coculture experiments were performed with airway epithelial cells and bronchoalveolar lavage fluid eosinophils. RESULTS: Neurotrophin levels increased continuously during chronic allergic airway inflammation, and airway epithelial cells were the major source of NGF and BDNF within the inflamed lung. Epithelial neurotrophin production was upregulated by IL-1beta, TNF-alpha, and T(H)2 cytokines. Lung eosinophils expressed the BDNF and NGF receptors tropomyosin-related kinase (Trk) A and TrkB, and coculture with airway epithelial cells resulted in enhanced epithelial neurotrophin production, as well as in prolonged survival of eosinophils. Eosinophil survival was completely abolished in the presence of the neurotrophin receptor Trk antagonist K252a. CONCLUSION: During allergic inflammation, airway epithelial cells express increased amounts of NGF and BDNF that promote the survival of tissue eosinophils. Controlling epithelial neurotrophin production might be an important therapeutic target to prevent allergic airway eosinophilia. CLINICAL IMPLICATIONS: Attenuating the release of inflammatory mediators from the activated airway epithelium will become an important strategy to disrupt the pathogenesis of chronic allergic asthma.  相似文献   

11.
Ma L  Xiang X 《Medical hypotheses》2011,77(5):832-833
Allergic asthma is a chronic inflammatory disease of airway and immune disorder is an acknowledged mechanism. Numerous data demonstrate Th1/Th2 cells play an important role in the development of allergic asthma. Atrial natriuretic peptide (ANP) is a multifunctional hormone secreted by cardiac atria, lung, and so forth, which has been recognized for several decades due to its general effects on cardiovascular system, and natriuretic peptide receptor A (NPRA) is the major effecting receptor for ANP. In recent years, more and more studies suggest that ANP/NPRA signaling pathway is implicated in modulation of immnue and inflammatory reaction. Moreover, there are some reports about significant changes of ANP production in peripheral blood from asthmatics in acute exacerbation compared with patients during the remission and the healthy. Nevertheless, it is unknown that why ANP shows an observable change and what role ANP plays in asthma until now. We propose that ANP/NPRA signaling pathway is involved in immune dysfunction and airway inflammation of allergic asthma based on our experimental results, which suggests ANP/NPRA signaling pathway may be a potential therapeutic target for allergic asthma.  相似文献   

12.
The cardinal features of asthma include pulmonary inflammation and airway hyperresponsiveness (AHR). Classically, asthma, specifically allergic asthma, has been attributed to a hyperactive Th2 cell immune response. However, the Th2 cell-mediated inflammation model has failed to adequately explain many of the clinical and molecular aspects of asthma. In addition, the outcomes of Th2-targeted therapeutic trials have been disappointing. Thus, asthma is now believed to be a complex and heterogeneous disorder, with several molecular mechanisms underlying the airway inflammation and AHR that is associated with asthma. The original classification of Th1 and Th2 pathways has recently been expanded to include additional effector Th cell subsets. These include Th17, Th9 and Treg cells. Emerging data highlight the involvement of these new Th cell subsets in the initiation and augmentation of airway inflammation and asthmatic responses. We now review the roles of these recently classified effector Th cell subsets in asthmatic inflammation and the insights they may provide in addition to the traditional Th2 paradigm. The hope is that a clearer understanding of the inflammatory pathways involved and the mediators of inflammation will yield better targeted therapeutics.  相似文献   

13.
BRP-39 and its human homolog YKL-40 have been regarded as a prototype of chitinase-like proteins (CLP) in mammals. Exaggerated levels of YKL-40 protein and/or mRNA have been noted in a number of diseases characterized by inflammation, tissue remodeling, and aberrant cell growth. Asthma is an inflammatory disease characterized by airway hyperresponsiveness and airway remodeling. Recently, the novel regulatory role of BRP-39/YKL-40 in the pathogenesis of asthma has been demonstrated both in human studies and allergic animal models. The levels of YKL-40 are increased in the circulation and lungs from asthmatics where they correlate with disease severity, and CHI3L1 polymorphisms correlate with serum YKL-40 levels, asthma and abnormal lung function. Animal studies using BRP-39 null mutant mice demonstrated that BRP-39 was required for optimal allergen sensitization and Th2 inflammation. These studies suggest the potential use of BRP-39 as a biomarker as well as a therapeutic target for asthma and other allergic diseases. Here, we present an overview of chitin/chitinase biology and summarize recent findings on the role of BRP-39 in the pathogenesis of asthma and allergic responses.  相似文献   

14.
《Mucosal immunology》2015,8(4):863-873
Allergic asthma is a chronic, inflammatory lung disease. Some forms of allergic asthma are characterized by T helper type 2 (Th2)-driven eosinophilia, whereas others are distinguished by Th17-driven neutrophilia. Stimulation of Toll-like receptor 4 (TLR4) on hematopoietic and airway epithelial cells (AECs) contributes to the inflammatory response to lipopolysaccharide (LPS) and allergens, but the specific contribution of TLR4 in these cell compartments to airway inflammatory responses remains poorly understood. We used novel, conditionally mutant Tlr4fl/fl mice to define the relative contributions of AEC and hematopoietic cell Tlr4 expression to LPS- and allergen-induced airway inflammation. We found that Tlr4 expression by hematopoietic cells is critical for neutrophilic airway inflammation following LPS exposure and for Th17-driven neutrophilic responses to the house dust mite (HDM) lysates and ovalbumin (OVA). Conversely, Tlr4 expression by AECs was found to be important for robust eosinophilic airway inflammation following sensitization and challenge with these same allergens. Thus, Tlr4 expression by hematopoietic and airway epithelial cells controls distinct arms of the immune response to inhaled allergens.  相似文献   

15.
Viral infections of the respiratory tract are the most common precipitants of acute asthma exacerbations. Exacerbations are only poorly responsive to current asthma therapies and new approaches to therapy are needed. Viruses, most frequently human rhinoviruses (RV), infect the airway epithelium, generate local and systemic immune responses, as well as neural responses, inducing inflammation and airway hyperresponsiveness. Using in vitro and in vivo experimental models the role of various proinflammatory or anti-inflammatory mediators, antiviral responses and molecular pathways that lead from infection to symptoms has been partly unravelled. In particular, mechanisms of susceptibility to viral infection have been identified and the bronchial epithelium appeared to be a key player. Nevertheless, additional understanding of the integration between the diverse elements of the antiviral response, especially in the context of allergic airway inflammation, as well as the interactions between viral infections and other stimuli that affect airway inflammation and responsiveness may lead to novel strategies in treating and/or preventing asthma exacerbations. This review presents the current knowledge and highlights areas in need of further research.  相似文献   

16.
Virus infection may contribute to asthma pathogenesis. In turn, a Th2-polarized pulmonary environment may increase host susceptibility to infection. We used a cockroach antigen (CRA) model of allergic airway disease to test the hypothesis that Th2 cytokine overproduction increases susceptibility to mouse adenovirus type 1 (MAV-1). CRA sensitization led to upregulated lung expression of IL-4 and IL-13, lung cellular inflammation, and exaggerated airway mucus production. Following intranasal MAV-1 infection, lung cellular inflammation was more pronounced in CRA-sensitized mice than in unsensitized mice at 7 days post-infection but not at a later time point. CRA sensitization did not significantly suppress lung IFN-γ expression, and lung IFN-γ expression was upregulated in both CRA-sensitized mice and unsensitized mice over the course of MAV-1 infection. Despite CRA-induced differences in pulmonary inflammation, MAV-1 viral loads in lung and spleen and MAV-1 gene expression in the lung did not differ between CRA-sensitized and unsensitized mice. Our data therefore suggest that MAV-1 pathogenesis is not affected directly or indirectly by the Th2 polarization associated with allergic airway disease.  相似文献   

17.
ABSTRACT: BACKGROUND: Antigen-specific immunotherapy (SIT) has been widely practiced in treating allergic diseases such as asthma. However, this therapy may induce a series of allergic adverse events during treatment. Peptide immunotherapy (PIT) was explored to overcome these disadvantages. We confirmed that multiple antigen peptides (MAPs) do not cause autoimmune responses, which led to the presumption that MAPs intervention could alleviate allergic airway inflammation without inducing adverse effects. RESULTS: In this study, synthesized OVA323-339MAP octamers were subcutaneously injected into ovalbumin (OVA)-sensitized and -challenged Balb/c mice to observe its effect on allergic airway inflammation, Th2 immune response, and immune regulating function. It was confirmed that OVA sensitization and challenge led to significant peritracheal inflammatory, cell infiltration, and intensive Th2 response. Treatment of OVA323-339MAP octomers in the airway inflammation mice model increased CD4+CD25+Foxp3+ T regulatory (Treg) cells and their regulatory function in peripheral blood, mediastinal draining lymph nodes, and the spleen. Furthermore, OVA323-339MAP increased IL-10 levels in bronchial alveolar lavage fluid (BALF); up-regulated the expression of IL-10,membrane-bound TGF-beta1, as well as Foxp3 in lung tissues; and up-regulated programmed death-1 (PD-1) and cytotoxic T lymphocyte associated antigen 4 (CTLA-4) on the surface of Treg cells. These results were further correlated with the decreased OVA specific immunoglobulin E (sIgE) level and the infiltration of inflammatory cells such as eosinophils and lymphocytes in BALF. However, OVA323-339 peptide monomers did not show any of the mentioned effects in the same animal model. CONCLUSIONS: Our study indicates that OVA323-339MAP had significant therapeutic effects on mice allergic airway inflammation by regulating the balance of Th1/Th2 response through Treg cells in vivo. Key words Allergic airway inflammation; Specific immunotherapy; Multiple antigen peptide.  相似文献   

18.
While asthma is considered an inflammatory disorder of the conducting airways, it is becoming increasingly apparent that the disease is heterogeneous with respect to immunopathology, clinical phenotypes, response to therapies, and natural history. Once considered purely an allergic disorder dominated by Th2-type lymphocytes, IgE, mast cells, eosinophils, macrophages, and cytokines, the disease also involves local epithelial, mesenchymal, vascular and neurologic events that are involved in directing the Th2 phenotype to the lung and through aberrant injury-repair mechanisms to remodeling of the airway wall. Structural cells provide the necessary "soil" upon which the "seeds" of the inflammatory response are able to take root and maintain a chronic phenotype and upon which are superimposed acute and subacute episodes usually driven by environmental factors such as exposure to allergens, microorganisms, pollutants or caused by inadequate antiinflammatory treatment. Greater consideration of additional immunologic and inflammatory pathways are revealing new ways of intervening in the prevention and treatment of the disease. Thus increased focus on environmental factors beyond allergic exposure (such as virus infection, air pollution, and diet) are identifying targets in structural as well as immune and inflammatory cells at which to direct new interventions.  相似文献   

19.
My research career has focused on the causes of asthma and its treatment. After establishing the key role that mast cells play in the inflammatory response in asthma, attention was turned towards understanding disease chronicity and variability across the lifecourse. Through a combination of studies on airway biopsies and primary cell cultures we have established that asthma is primarily an epithelial disease driven by increased environmental susceptibility to injury and an altered repair response as depicted by sustained activation of the epithelial mesenchymal trophic unit (EMTU) that is invoked in foetal branching morphogenesis. Varied activation of the EMTU connects the origins of asthma to its progression over time with involvement of epithelial susceptibility through impaired barrier and innate immune functions and altered mesenchymal susceptibility as exemplified by polymorphisms of the metalloprotease gene, ADAM33. Taken together these observations have led to a fundamental re-evaluation of asthma pathogenesis. Rather than placing allergic inflammation as the prime abnormality, it is proposed that the airway epithelium lies at the center of asthma pathogenesis, and that in conjunction with the underlying mesenchyme, it is the principle orchestrator of both the induction of asthma and its evolution over the lifecourse. This concept has provided ''the basis for a new preventative and therapeutic approach focused more on increasing the airways resistance to environmental insults rather than suppressing downstream inflammation once it is established.  相似文献   

20.
Early-life respiratory viral infections are linked to subsequent development of allergic asthma in children. We assessed the underlying immunological mechanisms in a novel model of the induction phase of childhood asthma. BALB/c mice were infected neonatally with pneumonia virus of mice, then sensitized intranasally with ovalbumin following recovery. Animals were challenged with low levels of aerosolized ovalbumin for 4 weeks to induce changes of chronic asthma, then received a single moderate-level challenge to elicit mild acute allergic inflammation. To inhibit the initial induction of a T helper type 2 (Th2) response, we administered neutralizing antibodies against interleukin (IL)-4 or IL-25, then assessed development of airway inflammation and remodelling. Anti-IL-4 administered during chronic challenge prevented development of chronic and acute allergic inflammation, as well as goblet cell hyperplasia/metaplasia, but features of remodelling such as subepithelial fibrosis and epithelial hypertrophy were unaffected. In contrast, anti-IL-25 had limited effects on the airway inflammatory response but prevented key changes of remodelling, although it had no effect on goblet cells. Both antibodies suppressed development of a Th2 response, while anti-IL-25 also promoted a Th17 response. In further experiments, anti-IL-25 was administered in early life alone, and again had limited effects on airway inflammation, but prevented development of airway wall remodelling. We conclude that in this murine model of childhood asthma, administration of anti-IL-4 or anti-IL-25 prevents development of some key features of asthma, suggesting that suppression of development of a Th2 response during the neonatal period or later in childhood could be effective for primary prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号