首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《药学学报(英文版)》2020,10(11):2054-2074
Cancer immunotherapy has veered the paradigm of cancer treatment. Despite recent advances in immunotherapy for improved antitumor efficacy, the complicated tumor microenvironment (TME) is highly immunosuppressive, yielding both astounding and unsatisfactory clinical successes. In this regard, clinical outcomes of currently available immunotherapy are confined to the varied immune systems owing in large part to the lack of understanding of the complexity and diversity of the immune context of the TME. Various advanced designs of nanomedicines could still not fully surmount the delivery barriers of the TME. The immunosuppressive TME may even dampen the efficacy of antitumor immunity. Recently, some nanotechnology-related strategies have been inaugurated to modulate the immunosuppressive cells within the tumor immune microenvironment (TIME) for robust immunotherapeutic responses. In this review, we will highlight the current understanding of the immunosuppressive TIME and identify disparate subclasses of TIME that possess an impact on immunotherapy, especially those unique classes associated with the immunosuppressive effect. The immunoregulatory cell types inside the immunosuppressive TIME will be delineated along with the existing and potential approaches for immunosuppressive cell modulation. After introducing the various strategies, we will ultimately outline both the novel therapeutic targets and the potential issues that affect the efficacy of TIME-based nanomedicines.  相似文献   

2.
The complex tumor microenvironment is a most important factor in cancer development. The biological microenvironment is composed of a variety of barriers including the extracellular matrix and associated cells such as endothelia cells, pericytes, and cancer-associated fibroblasts. Different strategies can be utilized to enhance nanoparticle-based drug delivery and distribution into tumor tissues addressing the extracellular matrix or cellular components. In addition to the biological microenvironment, the immunological conditions around the tumor tissue can be very complicated and cancer cells have various ways of evading immune surveillance. Nanoparticle drug delivery systems can enhance cancer immunotherapy by tuning the immunological response and memory of various immune cells such as T cells, B cells, macrophages, and dendritic cells. In this review, the main components in the tumor biological and immunological environment are discussed. The focus is on recent advances in nanoparticle-based drug delivery systems towards targets within the tumor microenvironment to improve cancer chemotherapy and immunotherapy.  相似文献   

3.
Cancer immunotherapy can effectively inhibit cancer progression by activating the autoimmune system, with low toxicity and high effectiveness. Some of cancer immunotherapy had positive effects on clinical cancer treatment. However, cancer immunotherapy is still restricted by cancer heterogeneity, immune cell disability, tumor immunosuppressive microenvironment and systemic immune toxicity. Cell membrane-coated nanoparticles (CMCNs) inherit abundant source cell-relevant functions, including “self” markers, cross-talking with the immune system, biological targeting, and homing to specific regions. These enable them to possess preferred characteristics, including better biological compatibility, weak immunogenicity, immune escaping, a prolonged circulation, and tumor targeting. Therefore, they are applied to precisely deliver drugs and promote the effect of cancer immunotherapy. In the review, we summarize the latest researches of biomimetic CMCNs for cancer immunotherapy, outline the existing specific cancer immune therapies, explore the unique functions and molecular mechanisms of various cell membrane-coated nanoparticles, and analyze the challenges which CMCNs face in clinical translation.  相似文献   

4.
肿瘤微环境的靶向和重塑策略   总被引:1,自引:0,他引:1  
杨蒙蒙  韩晓鹏  秦超  杨磊  尹莉芳 《药学学报》2022,(1):98-108+276
肿瘤微环境(tumor microenvironment, TME)由异常的肿瘤血管、细胞外基质组分、内皮细胞、周细胞、肿瘤相关成纤维细胞、平滑肌细胞和免疫细胞组成。TME在肿瘤的发生、生长和转移中起着至关重要的作用。TME中异常的肿瘤血管系统、细胞外基质组分及丰富的间质细胞等,影响了药物在肿瘤组织的分布和渗透,其免疫抑制状态也是导致包括免疫治疗在内的多种抗肿瘤失败的重要原因之一。近年来,许多研究致力于通过靶向和重塑TME以提高治疗效果。本文综述了基于乏氧状态、肿瘤血管系统、肿瘤相关成纤维细胞、细胞外基质组分、肿瘤相关巨噬细胞和树突细胞的靶向和重塑策略最新研究进展,并对其中存在的问题及未来的发展进行讨论。  相似文献   

5.
杨雨琦  巩飞  柏上  程亮 《药学学报》2021,(2):465-475
肿瘤在生长与恶化的过程中,伴随着具有乏氧、低pH值、氧化应激增加、高浓度谷胱甘肽(glutathione,GSH)及过表达的酶等一系列异常特征的微环境.这些因素虽然影响或限制了肿瘤的治疗,但同时为针对癌症的诊断与新型治疗策略提供了可能的途径.近年来,根据肿瘤微环境(tumor microenvironment,TME)...  相似文献   

6.
《药学学报(英文版)》2022,12(1):467-482
Tumor metastasis is responsible for most mortality in cancer patients, and remains a challenge in clinical cancer treatment. Platelets can be recruited and activated by tumor cells, then adhere to circulating tumor cells (CTCs) and assist tumor cells extravasate in distant organs. Therefore, nanoparticles specially hitchhiking on activated platelets are considered to have excellent targeting ability for primary tumor, CTCs and metastasis in distant organs. However, the activated tumor-homing platelets will release transforming growth factor-β (TGF-β), which promotes tumor metastasis and forms immunosuppressive microenvironment. Therefore, a multitalent strategy is needed to balance the accurate tumor tracking and alleviate the immunosuppressive signals. In this study, a fucoidan-functionalized micelle (FD/DOX) was constructed, which could efficiently adhere to activated platelets through P-selectin. Compared with the micelle without P-selectin targeting effect, FD/DOX had increased distribution in both tumor tissue and metastasis niche, and exhibited excellent anti-tumor and anti-metastasis efficacy on 4T1 spontaneous metastasis model. In addition, due to the contribution of fucoidan, FD/DOX treatment was confirmed to inhibit the expression of TGF-β, thereby stimulating anti-tumor immune response and reversing the immunosuppressive microenvironment. The fucoidan-functionalized activated platelets-hitchhiking micelle was promising for the metastatic cancer treatment.  相似文献   

7.
Introduction: Malignant tumors often escape surveillance and eventual destruction by the host immune system through a variety of strategies including production of transforming growth factor (TGF)-β. Because of its generally immunosuppressive role, TGF-β has emerged as a promising therapeutic target in cancer immunotherapy.

Areas covered: This article looks at specific mechanisms of how TGF-β controls the function of various immune cell subsets in the tumor microenvironment and focusses on T-cells. Various inhibition tools of TGF-β signaling and potential targets of therapeutic intervention are assessed along with the recent progress in combining TGF-β blockade and immune-mediated therapies. To round off the article, a summary of results from clinical trials is provided in which TGF-β blockade has shown therapeutic benefit for patients.

Expert opinion: Data from preclinical models have shown that blocking TGF-β signaling can overcome resistance mechanisms and in combination with immune-checkpoint therapies, can yield additive or synergistic anti-tumor responses. The future of immunooncology will therefore be based on combination trials. Since response rates may critically depend on both cancer type and stage, selection of only those patients who can benefit from combinatorial immunotherapy regimens is of utmost importance.  相似文献   


8.
Small molecule inhibitors have proven useful in the treatment of a variety of tumors, but they are often limited by unsustainable benefits and confer resistance quickly. Immunotherapy can result in durable clinical responses, but activity only occurs in a minority of patients. The unfavorable tumor microenvironment (TME) is an important factor limiting immunotherapy. An appropriate understanding of how small molecule inhibitors modulate the TME may optimize the combination of targeted treatment and immunotherapy in managing tumors. In this study, we found that transient treatment with sunitinib malate inhibited the disorganized extension of tumor vessels, pericytes and collagen IV but increased the relative ratio of pericyte-wrapping blood vessels with alleviated hypoxia in tumors, which resulted from tumor vascular normalization. Sunitinib malate increased infiltration of CD8+ T cells and decreased regulatory T cells (Tregs), accompanied by inhibited expression of TGF-β1 and IL-10 and increased CCL-28, IFN-γ and IL-12, but no significant inhibition of myeloid-derived suppressor cells (MDSCs) was observed. In addition, sunitinib malate increased the levels of PD-1 and PD-L1 in TME, combined with anti-PD-1 therapy showed a significant reduction in tumor burden compared with either monotherapy, suggesting that anti-PD-1 therapy is reasonable after sunitinib malate treatment.  相似文献   

9.
The unique characteristics of the tumor microenvironment (TME) could be exploited to develop antitumor nanomedicine strategies. However, in many cases, the actual therapeutic effect is far from reaching our expectations due to the notable tumor heterogeneity. Given the amplified characteristics of TME regulated by vascular disrupting agents (VDAs), nanomedicines may achieve unexpected improved efficacy. Herein, we fabricate platelet membrane-fusogenic liposomes (PML/DP&PPa), namely “platesomes”, which actively load the hypoxia-activated pro-prodrug DMG-PR104A (DP) and physically encapsulate the photosensitizer pyropheophorbide a (PPa). Considering the different stages of tumor vascular collapse and shutdown induced by a VDA combretastatin-A4 phosphate (CA4P), PML/DP&PPa is injected 3 h after intraperitoneal administration of CA4P. First, CA4P-mediated tumor hemorrhage amplifies the enhanced permeation and retention (EPR) effect, and the platesome-biological targeting further promotes the tumor accumulation of PML/DP&PPa. Besides, CA4P-induced vascular occlusion inhibits oxygen supply, followed by photodynamic therapy-caused acute tumor hypoxia. This prolonged extreme hypoxia contributes to the complete activation of DP and then high inhibitory effect on tumor growth and metastasis. Thus, such a combining strategy of artificially-regulated TME and bio-inspired platesomes pronouncedly improves tumor drug delivery and boosts tumor hypoxia-selective activation, and provides a preferable solution to high-efficiency cancer therapy.  相似文献   

10.
《药学学报(英文版)》2022,12(1):353-363
Nucleic acid drugs are highly applicable for cancer immunotherapy with promising therapeutic effects, while targeting delivery of these drugs to disease lesions remains challenging. Cationic polymeric nanoparticles have paved the way for efficient delivery of nucleic acid drugs, and achieved stimuli-responsive disassembly in tumor microenvironment (TME). However, TME is highly heterogeneous between individuals, and most nanocarriers lack active-control over the release of loaded nucleic acid drugs, which will definitely reduce the therapeutic efficacy. Herein, we have developed a light-controllable charge-reversal nanoparticle (LCCN) with controlled release of polyinosinic-polycytidylic acid [Poly(I:C)] to treat triple negative breast cancer (TNBC) by enhanced photodynamic immunotherapy. The nanoparticles keep suitably positive charge for stable loading of Poly(I:C), while rapidly reverse to negative charge after near-infrared light irradiation to release Poly(I:C). LCCN-Poly(I:C) nanoparticles trigger effective phototoxicity and immunogenic cell death on 4T1 tumor cells, elevate antitumor immune responses and inhibit the growth of primary and abscopal 4T1 tumors in mice. The approach provides a promising strategy for controlled release of various nucleic acid-based immune modulators, which may enhance the efficacy of photodynamic immunotherapy against TNBC  相似文献   

11.
颜雯璐  郎天群  尹琦  李亚平 《药学学报》2022,(1):46-63+275-276
近年来,免疫疗法在肿瘤临床治疗方面已取得巨大进展,但在免疫治疗药物体内递送过程中仍存在肿瘤特异性差、肿瘤深部渗透率低和细胞摄取率低等问题,导致其疗效和安全性较差,严重限制了免疫疗法的临床效果。通过表面偶联的抗体或配体与靶细胞膜受体间的相互作用,设计构建主动靶向肿瘤的纳米递药系统(aNDDS)可提高药物在靶细胞内的浓度,为实现特异高效的药物递送提供了可行的策略。此外,一些特定类型的细胞膜因具有天然的靶向能力被用于仿生纳米载体的构建,进而提高药物的递送效率。基于主动靶向肿瘤纳米载体的诸多优势,科研人员也设计了一系列用于促进抗肿瘤免疫应答的aNDDS,并证明其可以提高免疫治疗的有效性和安全性。本文回顾了近年来aNDDS改善肿瘤免疫治疗的研究进展,并对该领域的主要挑战和未来的发展进行了展望。  相似文献   

12.
《药学学报(英文版)》2022,12(11):4204-4223
As a promising modality for cancer therapy, photodynamic therapy (PDT) still acquired limited success in clinical nowadays due to the extremely serious hypoxia and immunosuppression tumor microenvironment. To ameliorate such a situation, we rationally designed and prepared cascade two-stage re-oxygenation and immune re-sensitization BSA-MHI148@SRF nanoparticles via hydrophilic and hydrophobic self-assembly strategy by using near-infrared photodynamic dye MHI148 chemically modified bovine serum albumin (BSA-MHI148) and multi-kinase inhibitor Sorafenib (SRF) as a novel tumor oxygen and immune microenvironment regulation drug. Benefiting from the accumulation of SRF in tumors, BSA-MHI148@SRF nanoparticles dramatically enhanced the PDT efficacy by promoting cascade two-stage tumor re-oxygenation mechanisms: (i) SRF decreased tumor oxygen consumption via inhibiting mitochondria respiratory. (ii) SRF increased the oxygen supply via inducing tumor vessel normalization. Meanwhile, the immunosuppression micro-environment was also obviously reversed by two-stage immune re-sensitization as follows: (i) Enhanced immunogenic cell death (ICD) production amplified by BSA-MHI148@SRF induced reactive oxygen species (ROS) generation enhanced T cell infiltration and improve its tumor cell killing ability. (ii) BSA-MHI148@SRF amplified tumor vessel normalization by VEGF inhibition also obviously reversed the tumor immune-suppression microenvironment. Finally, the growth of solid tumors was significantly depressed by such well-designed BSA-MHI148@SRF nanoparticles, which could be potential for clinical cancer therapy.  相似文献   

13.
《药学学报(英文版)》2022,12(1):107-134
The immune system is involved in the initiation and progression of cancer. Research on cancer and immunity has contributed to the development of several clinically successful immunotherapies. These immunotherapies often act on a single step of the cancer–immunity cycle. In recent years, the discovery of new nanomaterials has dramatically expanded the functions and potential applications of nanomaterials. In addition to acting as drug-delivery platforms, some nanomaterials can induce the immunogenic cell death (ICD) of cancer cells or regulate the profile and strength of the immune response as immunomodulators. Based on their versatility, nanomaterials may serve as an integrated platform for multiple drugs or therapeutic strategies, simultaneously targeting several steps of the cancer–immunity cycle to enhance the outcome of anticancer immune response. To illustrate the critical roles of nanomaterials in cancer immunotherapies based on cancer–immunity cycle, this review will comprehensively describe the crosstalk between the immune system and cancer, and the current applications of nanomaterials, including drug carriers, ICD inducers, and immunomodulators. Moreover, this review will provide a detailed discussion of the knowledge regarding developing combinational cancer immunotherapies based on the cancer–immunity cycle, hoping to maximize the efficacy of these treatments assisted by nanomaterials.  相似文献   

14.
Macrophages have a leading position in the tumor microenvironment (TME) which paves the way to carcinogenesis. Initially, monocytes and macrophages are recruited to the sites where the tumor develops. Under the guidance of different microenvironmental signals, macrophages would polarize into two functional phenotypes, named as classically activated macrophages (M1) and alternatively activated macrophages (M2). Contrary to the anti-tumor effect of M1, M2 exerts anti-inflammatory and tumorigenic characters. In progressive tumor, M2 tumor-associated macrophages (TAMs) are in the majority, being vital regulators reacting upon TME. This review elaborates on the role of TAMs in tumor progression. Furthermore, prospective macrophage-focused therapeutic strategies, including drugs not only in clinical trials but also at primary research stages, are summarized followed by a discussion about their clinical application values. Nanoparticulate systems with efficient drug delivery and improved antitumor effect are also summed up in this article.  相似文献   

15.
目的:对临床肿瘤治疗新策略——化学治疗和免疫治疗联合应用的最新研究进展加以综述。方法:借助于Pubmed、Highwire等数据库对2000年后化学治疗和免疫治疗相结合的治疗策略和方法进行搜索,并对联合治疗原则、方法、机制和优势进行归纳和总结。结果:化疗药物按一定原则可以与免疫治疗联合使用,作用机制主要为通过对T细胞免疫系统和肿瘤内细胞因子网络的调控,达到比单独进行化疗或免疫治疗更好的治疗效果。结论:化疗药物可以与免疫治疗联合使用,具有减少毒副作用,抑制癌症复发和转移,降低耐药性等优势。  相似文献   

16.
胡川  宋钰珺  高会乐 《药学进展》2022,46(7):485-494
在过去的几十年里,癌症免疫治疗取得了巨大的进步,但不尽如人意的患者应答率及潜在的免疫相关不良事件仍是临床上的主要挑战。纳米递药系统在癌症治疗方面具有独特的优势。基于肿瘤微环境缺氧、弱酸性、蛋白酶异常表达等特点,研究者们进一步设计了刺激响应性纳米递药系统,其已被广泛研究用于提高抗肿瘤免疫应答的效果和减少免疫相关的副作用。介绍了肿瘤微环境响应性纳米递药系统用于肿瘤免疫治疗的研究进展,并讨论了该类递药系统的应用前景和面临的挑战。  相似文献   

17.
Monoclonal antibodies can be produced against virtually any molecule, and unlike polyclonal anti-sera, they are highly specific. There has been great improvement in the monoclonal antibody production technique since its inception in 1975. The idea behind using monoclonals to direct cancer treatments is based on the fact that surfaces of tumor contain a wide variety of proteins, some of which are specific to the tumor type. Monoclonal antibodies that bind to such tumor-specific antigens could be used, either alone or as conjugates of drugs and toxins (immunoconjugates), to selectively seek out and destroy these tumor cells. Targeted drug delivery therapy of tumor using monoclonals or their conjugates has been reported by many investigators, and the early results are quite promising. However, many obstacles still have to be overcome before immunoconjugates become a valuable agent in the treatment of human diseases including cancer.  相似文献   

18.
《药学学报(英文版)》2022,12(6):2695-2709
Cancer immunotherapy is impaired by the intrinsic and adaptive immune resistance. Herein, a bispecific prodrug nanoparticle was engineered for circumventing immune evasion of the tumor cells by targeting multiple immune resistance mechanisms. A disulfide bond-linked bispecific prodrug of NLG919 and JQ1 (namely NJ) was synthesized and self-assembled into a prodrug nanoparticle, which was subsequently coated with a photosensitizer-modified and tumor acidity-activatable diblock copolymer PHP for tumor-specific delivery of NJ. Upon tumor accumulation via passive tumor targeting, the polymeric shell was detached for facilitating intracellular uptake of the bispecific prodrug. NJ was then activated inside the tumor cells for releasing JQ1 and NLG919 via glutathione-mediated cleavage of the disulfide bond. JQ1 is a bromodomain-containing protein 4 inhibitor for abolishing interferon gamma-triggered expression of programmed death ligand 1. In contrast, NLG919 suppresses indoleamine-2,3-dioxygenase 1-mediated tryptophan consumption in the tumor microenvironment, which thus restores robust antitumor immune responses. Photodynamic therapy (PDT) was performed to elicit antitumor immunogenicity by triggering immunogenic cell death of the tumor cells. The combination of PDT and the bispecific prodrug nanoparticle might represent a novel strategy for blockading multiple immune evasion pathways and improving cancer immunotherapy.  相似文献   

19.
《药学学报(英文版)》2023,13(5):2176-2187
Intelligent responsive drug delivery system opens up new avenues for realizing safer and more effective combination immunotherapy. Herein, a kind of tumor cascade-targeted responsive liposome (NLG919@Lip-pep1) is developed by conjugating polypeptide inhibitor of PD-1 signal pathway (AUNP-12), which is also a targeted peptide that conjugated with liposome carrier through matrix metalloproteinase-2 (MMP-2) cleavable peptide (GPLGVRGD). This targeted liposome is prepared through a mature preparation process, and indoleamine-2,3-dioxygenase (IDO) inhibitor NLG919 was encapsulated into it. Moreover, mediated by the enhanced permeability and retention effect (EPR effect) and AUNP-12, NLG919@Lip-pep1 first targets the cells that highly express PD-L1 in tumor tissues. At the same time, the over-expressed MMP-2 in the tumor site triggers the dissociation of AUNP-12, thus realizing the precise block of PD-1 signal pathway, and restoring the activity of T cells. The exposure of secondary targeting module II VRGDC-NLG919@Lip mediated tumor cells targeting, and further relieved the immunosuppressive microenvironment. Overall, this study offers a potentially appealing paradigm of a high efficiency, low toxicity, and simple intelligent responsive drug delivery system for targeted drug delivery in breast cancer, which can effectively rescue and activate the body's anti-tumor immune response and furthermore achieve effective treatment of metastatic breast cancer.  相似文献   

20.
In the last decade, considerable attention has been devoted to the use of biodegradable polymeric materials as potential drug delivery carriers. However, bioavailability and drug release at the disease site remain uncontrollable even with the use of polymeric nanocarriers. To address this issue, successful methodologies have been developed to synthesize polymeric nanocarriers incorporated with regions exhibiting a response to stimuli such as redox potential, temperature, pH, and light. The resultant stimuli-responsive polymeric nanocarriers have shown tremendous promise in drug delivery applications, owing to their ability to enhance the bioavailability of drugs at the disease site. In such systems, drug release is controlled in response to specific stimuli, either exogenous or endogenous. This review reports recent advances in the design of stimuli-responsive nanocarriers for drug delivery in cancer therapy. In particular, the synthetic methodologies investigated to date to introduce different types of stimuli-responsive elements within the biomaterials are described. The sufficient understanding of these stimuli-responsive nanocarriers will allow the development of a better drug delivery system that will allow us to solve the challenges encountered in targeted cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号