首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herb-drug interactions (HDI) has become important due to the increasing popularity of natural health product consumption worldwide. HDI is difficult to predict as botanical drugs usually contain complex phytochemical-mixtures, which interact with drug metabolism. Currently, there is no specific pharmacological tool to predict HDI since almost all in vitro-in vivo-extrapolation (IVIVE) Drug-Drug Interaction (DDI) models deal with one inhibitor-drug and one victim-drug. The objectives were to modify-two IVIVE models for the prediction of in vivo interaction between caffeine and furanocoumarin-containing herbs, and to confirm model predictions by comparing the DDI predictive results with actual human data. The models were modified to predict in vivo herb-caffeine interaction using the same set of inhibition constants but different integrated dose/concentration of furanocoumarin mixtures in the liver. Different hepatic inlet inhibitor concentration ([I]H) surrogates were used for each furanocoumarin. In the first (hybrid) model, the [I]H was predicted using the concentration-addition model for chemical-mixtures. In the second model, the [I]H was calculated by adding individual furanocoumarins together. Once [I]H values were determined, the models predicted an area-under-curve-ratio (AUCR) value of each interaction. The results indicate that both models were able to predict the experimental AUCR of herbal products reasonably well. The DDI model approaches described in this study may be applicable to health supplements and functional foods also.  相似文献   

2.
Alcoholic liver disease (ALD) is a broad-spectrum disorder, covering fatty liver, cirrhosis, alcoholic hepatitis and in extreme untreated condition hepatocellular carcinoma (HCC) may also develop. Cladonia rangiferina (CR) is a class of lichen having a broad spectrum of pharmacological activity. It is used like traditional natural sources in ancient times in India, China, Sri Lanka, etc. Folkloric record about CR has reported their use as an antimicrobial, antitumor, antioxidant, anti-inflammatory activities, etc. Hence, the present study was requested to ascertain the effect of the ethanolic extract of Cladonia rangiferina (CRE) on alcohol-induced hepatotoxicity. The animals were evaluated for the estimation of the liver in vivo biochemical antioxidant parameters. The liver tissues were further evaluated histopathologically and western blotting examination for localization of apoptotic gene expression that plays a pivotal role in hepatotoxicity. The results of this study reveal that CRE proves to be helpful in the treatment of alcohol-induced hepatotoxicity and oxidative stress. Results of different markers have shown that among all, CRE has demonstrated the best hepatoprotective activity. These observations say about the importance of the components of the extract. The ameliorative action of CRE in alcoholic liver damage may exist due to antioxidant, anti-inflammatory, and anti-apoptotic activities.  相似文献   

3.
Common marmoset (Callithrix jacchus) is an attractive animal model primate species for potential use in drug metabolism and pharmacokinetic studies. In this study, marmoset cytochrome P450 (P450) 2S1, 4V2, 7A1, 7B1, 8B1, 24A1, 26A1, 26C1, 27A1, 39A1, and 51A1 cDNAs were isolated from marmoset tissues (brains, lungs, livers, kidneys, and jejunums). Deduced amino acid sequences (89–98% homologous) of the marmoset P450 gene suggested similarity of molecular characteristics of marmoset P450s to human counterparts, compared with those of pig, rabbit, and rodents. Phylogenetic analysis using amino acid sequences indicated 11 marmoset P450 forms clustered with those of human and other primate counterparts, suggesting marmoset P450s have an evolutionary close relationship to human and other primate counterparts. Tissue expression patterns of these P450 mRNAs except for P450 7B1 mRNA were generally similar to those of human P450s in the five tissue types analyzed. These results suggest similarity of molecular characteristics for P450 2S1, 4V2, 7A1, 7B1, 8B1, 24A1, 26A1, 26C1, 27A1, 39A1, and 51A1 between marmosets and humans, in addition to the orthologs of human P450 1, 2, 3, and 4 families previously identified and characterized in marmosets.  相似文献   

4.
5.
The hepatic endoplasmic reticulum (ER)-anchored cytochromes P450 (P450s) are mixed-function oxidases engaged in the biotransformation of physiologically relevant endobiotics as well as of myriad xenobiotics of therapeutic and environmental relevance. P450 ER-content and hence function is regulated by their coordinated hemoprotein syntheses and proteolytic turnover. Such P450 proteolytic turnover occurs through a process known as ER-associated degradation (ERAD) that involves ubiquitin-dependent proteasomal degradation (UPD) and/or autophagic-lysosomal degradation (ALD). Herein, on the basis of available literature reports and our own recent findings of in vitro as well as in vivo experimental studies, we discuss the therapeutic and pathophysiological implications of altered P450 ERAD and its plausible clinical relevance. We specifically (i) describe the P450 ERAD-machinery and how it may be repurposed for the generation of antigenic P450 peptides involved in P450 autoantibody pathogenesis in drug-induced acute hypersensitivity reactions and liver injury, or viral hepatitis; (ii) discuss the relevance of accelerated or disrupted P450-ERAD to the pharmacological and/or toxicological effects of clinically relevant P450 drug substrates; and (iii) detail the pathophysiological consequences of disrupted P450 ERAD, contributing to non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) under certain synergistic cellular conditions.  相似文献   

6.
Since accelerated metabolism produces much higher levels of reactive oxygen species (ROS) in cancer cells compared to ROS levels found in normal cells, human MutT homolog 1 (MTH1), which sanitizes oxidized nucleotide pools, was recently demonstrated to be crucial for the survival of cancer cells, but not required for the proliferation of normal cells. Therefore, dozens of MTH1 inhibitors have been developed with the aim of suppressing cancer growth by accumulating oxidative damage in cancer cells. While several inhibitors were indeed confirmed to be effective, some inhibitors failed to kill cancer cells, complicating MTH1 as a viable target for cancer eradication. In this review, we summarize the current status of developing MTH1 inhibitors as drug candidates, classify the MTH1 inhibitors based on their structures, and offer our perspectives toward the therapeutic potential against cancer through the targeting of MTH1.  相似文献   

7.
8.
Psoriasis is a chronic inflammatory skin disease featured by excessive proliferation of keratinocytes, clearly defined round erythema and dry, scaly plaques, long-term inflammatory cells infiltration in skin lesions. However, the physiopathological mechanism of psoriasis is still not clearly understood. Neuropeptides, a class of peptides secreted by the nervous system, may play important roles in promoting excessive proliferation of keratinocyte, enhancing angiogenesis, vasodilation, plasma extravasation and chemotaxis of inflammatory cells during the development of psoriasis. To understand the pathogenesis of neuropeptides in psoriasis, we summarized the function of several common neuropeptides in psoriasis and hypothesize neuropeptides may serve as therapeutic potential novel targets in psoriasis.  相似文献   

9.
Multiple sclerosis (MS) is an autoimmune disease that involves demyelination of axons in the central nervous system (CNS) and affects patients worldwide. It has been demonstrated that ligand-activated aryl hydrocarbon receptor (Ahr) ameliorates experimental autoimmune encephalomyelitis (EAE), a murine model of MS, by increasing CD4+FoxP3+ T cells. Recent evidence indicates that AT-rich interactive domain-containing protein 5a (Arid5a) is required for EAE pathogenesis by stabilizing Il6 and OX40 mRNAs. However, the differential modulation of Ahr and Arid5a in autoimmunity as a therapeutic strategy is unexplored. Herein, an in silico, in vitro and in vivo approach identified Flavipin (3,4,5-trihydroxy-6-methylphthalaldehyde) as an Ahr agonist that induces the expression of Ahr downstream genes in mouse CD4+ T cells and CD11b+ macrophages. Interestingly, Flavipin inhibited the stabilizing function of Arid5a and its counteracting effects on Regnase-1 on the 3′ untranslated region (3′UTR) of target mRNAs. Furthermore, it inhibited the stabilizing function of Arid5a on Il23a 3′UTR, a newly identified target mRNA. In EAE, Flavipin ameliorated disease severity, with reduced CD4+IL-17+ T cells, IL-6 and TNF-α and increased CD4+FoxP3+ T cells. Moreover, EAE amelioration was concomitant with reduced CD4+OX40+ and CD4+CD45+ T cells in the CNS. RNA interference showed that the modulatory effects of Flavipin on pro- and anti-inflammatory mediators in CD4+ T cells and macrophages were Ahr- and/or Arid5a-dependent. In conclusion, our findings reveal differential modulation of Ahr and Arid5a as a new therapeutic strategy for MS.  相似文献   

10.
Acute respiratory distress syndrome (ARDS) is characterized by the severe inflammation and destruction of the lung air–blood barrier, leading to irreversible and substantial respiratory function damage. Patients with coronavirus disease 2019 (COVID-19) have been encountered with a high risk of ARDS, underscoring the urgency for exploiting effective therapy. However, proper medications for ARDS are still lacking due to poor pharmacokinetics, non-specific side effects, inability to surmount pulmonary barrier, and inadequate management of heterogeneity. The increased lung permeability in the pathological environment of ARDS may contribute to nanoparticle-mediated passive targeting delivery. Nanomedicine has demonstrated unique advantages in solving the dilemma of ARDS drug therapy, which can address the shortcomings and limitations of traditional anti-inflammatory or antioxidant drug treatment. Through passive, active, or physicochemical targeting, nanocarriers can interact with lung epithelium/endothelium and inflammatory cells to reverse abnormal changes and restore homeostasis of the pulmonary environment, thereby showing good therapeutic activity and reduced toxicity. This article reviews the latest applications of nanomedicine in pre-clinical ARDS therapy, highlights the strategies for targeted treatment of lung inflammation, presents the innovative drug delivery systems, and provides inspiration for strengthening the therapeutic effect of nanomedicine-based treatment.  相似文献   

11.
Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity. Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted.  相似文献   

12.
13.
Freezing is a common process applied in the pharmaceutical industry to store and transport biotherapeutics. Herewith, multi-scale molecular dynamics simulations of Lactate dehydrogenase (LDH) protein in phosphate buffer with/without ice formation performed to uncover the still poorly understood mechanisms and molecular details of protein destabilization upon freezing. Both fast and slow ice growing conditions were simulated at 243 K from one or two-side of the simulation box, respectively. The rate of ice formation at all-atom simulations was crucial to LDH stability, as faster freezing rates resulted in enhanced structural stability maintained by a higher number of intramolecular hydrogen bonds, less flexible protein's residues, lower solvent accessibility and greater structural compactness. Further, protein aggregation investigated by coarse-grained simulations was verified to be initiated by extended protein structures and retained by electrostatic interactions of the salt bridges between charged residues and hydrogen bonds between polar residues of the protein. Lastly, the study of free energy of dissociation through steered molecular dynamics simulation revealed LDH was destabilized by the solvation of the hydrophobic core and the loss of hydrophobic interactions. For the first time, experimentally validated molecular simulations revealed the detailed mechanisms of LDH destabilization upon ice formation and cryoconcentration of solutes.  相似文献   

14.
《药学学报(英文版)》2022,12(6):2683-2694
Remodeling the tumor microenvironment through reprogramming tumor-associated macrophages (TAMs) and increasing the immunogenicity of tumors via immunogenic cell death (ICD) have been emerging as promising anticancer immunotherapy strategies. However, the heterogeneous distribution of TAMs in tumor tissues and the heterogeneity of the tumor cells make the immune activation challenging. To overcome these dilemmas, a hybrid bacterium with tumor targeting and penetration, TAM polarization, and photothermal conversion capabilities is developed for improving antitumor immunotherapy in vivo. The hybrid bacteria (B.b@QDs) are prepared by loading Ag2S quantum dots (QDs) on the Bifidobacterium bifidum (B.b) through electrostatic interactions. The hybrid bacteria with hypoxia targeting ability can effectively accumulate and penetrate the tumor tissues, enabling the B.b to fully contact with the TAMs and mediate their polarization toward M1 phenotype to reverse the immunosuppressive tumor microenvironment. It also enables to overcome the intratumoral heterogeneity and obtain abundant tumor-associated antigens by coupling tumor penetration of the B.b with photothermal effect of the QDs, resulting in an enhanced immune effect. This strategy that combines B.b-triggered TAM polarization and QD-induced ICD achieved a remarkable inhibition of tumor growth in orthotopic breast cancer.  相似文献   

15.
《药学学报(英文版)》2021,11(9):2655-2669
Peptide inhibition of the interactions of the tumor suppressor protein P53 with its negative regulators MDM2 and MDMX activates P53 in vitro and in vivo, representing a viable therapeutic strategy for cancer treatment. Using phage display techniques, we previously identified a potent peptide activator of P53, termed PMI (TSFAEYWNLLSP), with binding affinities for both MDM2 and MDMX in the low nanomolar concentration range. Here we report an ultrahigh affinity, dual-specificity peptide antagonist of MDM2 and MDMX obtained through systematic mutational analysis and additivity-based molecular design. Functional assays of over 100 peptide analogs of PMI using surface plasmon resonance and fluorescence polarization techniques yielded a dodecameric peptide termed PMI-M3 (LTFLEYWAQLMQ) that bound to MDM2 and MDMX with Kd values in the low picomolar concentration range as verified by isothermal titration calorimetry. Co-crystal structures of MDM2 and of MDMX in complex with PMI-M3 were solved at 1.65 and 3.0 Å resolution, respectively. Similar to PMI, PMI-M3 occupied the P53-binding pocket of MDM2/MDMX, which was dominated energetically by intermolecular interactions involving Phe3, Tyr6, Trp7, and Leu10. Notable differences in binding between PMI-M3 and PMI were observed at other positions such as Leu4 and Met11 with MDM2, and Leu1 and Met11 with MDMX, collectively contributing to a significantly enhanced binding affinity of PMI-M3 for both proteins. By adding lysine residues to both ends of PMI and PMI-M3 to improve their cellular uptake, we obtained modified peptides termed PMI-2K (KTSFAEYWNLLSPK) and M3-2K (KLTFLEYWAQLMQK). Compared with PMI-2K, M3-2K exhibited significantly improved antitumor activities in vitro and in vivo in a P53-dependent manner. This super-strong peptide inhibitor of the P53-MDM2/MDMX interactions may become, in its own right, a powerful lead compound for anticancer drug development, and can aid molecular design of other classes of P53 activators as well for anticancer therapy.  相似文献   

16.
《药学学报(英文版)》2020,10(7):1163-1174
Coronaviruses (CoVs), a family of enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, unusually large RNA genome, and unique replication capability. CoVs are known to cause various potentially lethal human respiratory infectious diseases, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the very recent coronavirus disease 2019 (COVID-19) outbreak. Unfortunately, neither drug nor vaccine has yet been approved to date to prevent and treat these diseases caused by CoVs. Therefore, effective prevention and treatment medications against human coronavirus are in urgent need. In the past decades, many natural compounds have been reported to possess multiple biological activities, including antiviral properties. In this article, we provided a comprehensive review on the natural compounds that interfere with the life cycles of SARS and MERS, and discussed their potential use for the treatment of COVID-19.  相似文献   

17.
UDP-Glucuronosyltransferase (UGT) 2A3 belongs to a UGT superfamily of phase II drug-metabolizing enzymes that catalyzes the glucuronidation of many endobiotics and xenobiotics. Previous studies have demonstrated that UGT2A3 is expressed in the human liver, small intestine, and kidney at the mRNA level; however, its protein expression has not been determined. Evaluation of the protein expression of UGT2A3 would be useful to determine its role at the tissue level. In this study, we prepared a specific antibody against human UGT2A3 and evaluated the relative expression of UGT2A3 in the human liver, small intestine, and kidney. Western blot analysis indicated that this antibody is specific to UGT2A3 because it did not cross-react with other human UGT isoforms or rodent UGTs. UGT2A3 expression in the human small intestine was higher than that in the liver and kidney. Via treatment with endoglycosidase, it was clearly demonstrated that UGT2A3 was N-glycosylated. UGT2A3 protein levels were significantly correlated with UGT2A3 mRNA levels in a panel of 28 human liver samples (r = 0.64, p < 0.001). In conclusion, we successfully prepared a specific antibody against UGT2A3. This antibody would be useful to evaluate the physiological, pharmacological, and toxicological roles of UGT2A3 in human tissues.  相似文献   

18.
Accurate determination of fraction unbound in plasma is required for the interpretation of pharmacology and toxicology data, in addition to predicting human pharmacokinetics, dose, and drug-drug interaction potential. A trend, largely driven by changing target space and new chemical modalities, has increased the occurrence of compounds beyond the traditional rule of 5 physicochemical property space, meaning many drugs under development have high lipophilicity. This can present challenges for ADME assays, including non-specific binding to labware, low dynamic range and solubility. When determining unbound fraction, low recovery, due to non-specific binding, makes bioanalytical sensitivity limiting and prevents determination of free fraction for highly bound compounds. Here, mitigation of non-specific binding through the addition of 0.01% v/v of the excipient Solutol® to an equilibrium dialysis assay has been explored. Solutol® prevented non-specific binding to the dialysis membrane and showed no significant binding to plasma proteins. A test set of compounds demonstrates that this method gives comparable values of fraction unbound. In conclusion, the use of Solutol® as an additive in equilibrium dialysis formats could provide a method of mitigating non-specific binding, enabling the determination of fraction unbound values for highly lipophilic compounds.  相似文献   

19.
Cancer cells reprogram their gene expression to promote growth, survival, proliferation, and invasiveness. The unique expression of certain uptake transporters in cancers and their innate function to concentrate small molecular substrates in cells make them ideal targets for selective delivering imaging and therapeutic agents into cancer cells. In this review, we focus on several solute carrier (SLC) transporters known to be involved in transporting clinically used radiopharmaceutical agents into cancer cells, including the sodium/iodine symporter (NIS), norepinephrine transporter (NET), glucose transporter 1 (GLUT1), and monocarboxylate transporters (MCTs). The molecular and functional characteristics of these transporters are reviewed with special emphasis on their specific expressions in cancers and interaction with imaging or theranostic agents [e.g., I-123, I-131, 123I-iobenguane (mIBG), 18F-fluorodeoxyglucose (18F-FDG) and 13C pyruvate]. Current clinical applications and research areas of these transporters in cancer diagnosis and treatment are discussed. Finally, we offer our views on emerging opportunities and challenges in targeting transporters for cancer imaging and treatment. By analyzing the few clinically successful examples, we hope much interest can be garnered in cancer research towards uptake transporters and their potential applications in cancer diagnosis and treatment.  相似文献   

20.
《药学学报(英文版)》2020,10(1):171-185
The prevalence of obesity-associated conditions raises new challenges in clinical medication. Although altered expression of drug-metabolizing enzymes (DMEs) has been shown in obesity, the impacts of obese levels (overweight, obesity, and severe obesity) on the expression of DMEs have not been elucidated. Especially, limited information is available on whether parental obese levels affect ontogenic expression of DMEs in children. Here, a high-fat diet (HFD) and three feeding durations were used to mimic different obese levels in C57BL/6 mice. The hepatic expression of five nuclear receptors (NRs) and nine DMEs was examined. In general, a trend of induced expression of NRs and DMEs (except for Cyp2c29 and 3a11) was observed in HFD groups compared to low-fat diet (LFD) groups. Differential effects of HFD on the hepatic expression of DMEs were found in adult mice at different obese levels. Family-based dietary style of an HFD altered the ontogenic expression of DMEs in the offspring older than 15 days. Furthermore, obese levels of parental mice affected the hepatic expression of DMEs in offspring. Overall, the results indicate that obese levels affected expression of the DMEs in adult individuals and that of their children. Drug dosage might need to be optimized based on the obese levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号