首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: Hypoxia, frequently found in the center of solid tumor, is associated with resistance to chemotherapy by activation of signaling pathways that regulate cell pro-liferation, angiogenesis, and apoptosis. We determined whether hypoxia can increase the resistance of human pancreatic carcinoma cells to gemcitabine-induced apoptosis by activation of phosphatidylinositol 3'-kinase (PI3K)/Akt, MEK/mitogen-activated protein kinase (extracellular signal-regulated kinase) [MAPK(Erk) kinase (MEK)], and nuclear factor kappa B (NF-kappa B) signaling pathways. EXPERIMENTAL DESIGN: We evaluated the phosphorylation of Akt and MAPK(Erk), DNA binding activity of NF-kappa B, and apoptosis induced by gemcitabine in L3.6pl human pancreatic cancer cells under normoxic and hypoxic conditions. We then examined the effects of the PI3K inhibitor LY294002, MEK inhibitor U0126, and the epidermal growth factor receptor tyrosine kinase inhibitor PKI 166 on these signaling pathways and induction of apoptosis. RESULTS: Hypoxic conditions increased phosphorylation of Akt and MAPK(Erk) and NF-kappa B DNA binding activity in L3.6pl cells. The activation of Akt and NF-kappa B was prevented by LY294002, whereas the activity of MAPK(Erk), but not NF-kappa B, was inhibited by U0126. The increased activation of Akt, NF-kappa B, and MAPK(Erk) was inhibited by PKI 166. Under hypoxic conditions, L3.6pl cells were resistant to apoptosis induced by gemcitabine. The addition of LY294002 or PKI 166 abrogated cell resistance to gemcitabine, whereas U0126 only partially decreased this resistance. CONCLUSIONS: These data demonstrate that hypoxia can induce resistance of pancreatic cancer cells to gemcitabine mainly through the PI3K/Akt/NF-kappa B pathways and partially through the MAPK(Erk) signaling pathway. Because PKI 166 prevented the activation of PI3K/Akt/NF-kappa B and MAPK(Erk) pathways, the combination of this tyrosine kinase inhibitor with gemcitabine should be an effective therapy for pancreatic cancer.  相似文献   

2.
Gemcitabine, an antitumor drug, is currently considered to be the standard of care for the treatment of advanced pancreatic cancer, but the clinical outcome is still not satisfactory. Although heat shock protein (HSP) 27 is implicated in the resistance to chemotherapy in several types of cancers, the precise role of phosphorylated HSP27 in cancer cells remains to be clarified. In this study, we investigated the relationship between the effect of gemcitabine and the phosphorylation status of HSP27 in pancreatic cancer cells, Panc1 and KP3. Gemcitabine suppressed pancreatic cancer cell growth and induced apoptosis. Gemcitabine caused activation of p38 mitogen-activated protein kinase (MAPK), MAPK-activated protein kinase 2 (MAPKAPK-2) and subsequently phosphorylation of HSP27 at Ser15, 78 and 82 without affecting total HSP27 levels. The inhibitions of p38 MAPK and MAPKAPK-2 reduced the phosphorylation of HSP27 and apoptosis in gemcitabine-treated cells. To further investigate the role of phosphorylated HSP27, we established Panc1 cell lines which were stably transfected with empty vector (empty cells), wild-type HSP27-encoding vector (WT cells) and 2 mutant HSP27-encoding vectors that mimic non-phosphorylated (3A), and phosphorylated (3D), respectively. In comparison of empty cells with WT cells, there was no difference in cell growth rate and the sensitivity to gemcitabine. Interestingly, cell growth of 3D cells was retarded as compared to that of 3A cells. Taken together, our results strongly suggest that phosphorylation status of HSP27 plays a key role in gemcitabine-induced growth suppression of pancreatic cancer.  相似文献   

3.
p8 is a new target of gemcitabine in pancreatic cancer cells.   总被引:8,自引:0,他引:8  
Gemcitabine is the only available chemotherapeutic treatment of pancreatic cancers. It is, however, moderately effective, showing a tumor response rate of only 12%. The aim of this work was to identify new pathways involved in the resistance of pancreatic cancer cells to gemcitabine, in the hope of developing new adjuvant strategies to enhance its therapeutic efficacy. Comparison of gene expression patterns of five human pancreatic cancer cell lines showing different degrees of resistance to gemcitabine revealed specific overexpression of several genes in the most resistant. One of them encoded the antiapoptotic p8 protein. We found that (a) knocking down p8 expression in gemcitabine-resistant cells promoted cell death and increased caspase-3 activity; (b) forced overexpression of p8 in gemcitabine-sensitive cells increased their resistance to gemcitabine-induced apoptosis; and (c) gemcitabine down-regulated p8 mRNA expression. These results suggest that, in pancreatic cancer cells, a large part of gemcitabine-induced apoptosis results from the inhibition of the constitutive antiapoptotic activity of p8. Hence, targeting the p8-associated pathway could be a new adjuvant therapy improving the response of patients with pancreatic cancer to gemcitabine treatment.  相似文献   

4.
Defects in apoptosis contribute to treatment resistance and poor outcome of pancreatic cancer, calling for novel therapeutic strategies. Here, we provide the first evidence that nuclear factor (NF) κB is required for Smac mimetic-mediated sensitization of pancreatic carcinoma cells for gemcitabine-induced apoptosis. The Smac mimetic BV6 cooperates with gemcitabine to reduce cell viability and to induce apoptosis. In addition, BV6 significantly enhances the cytotoxicity of several anticancer drugs against pancreatic carcinoma cells, including doxorubicin, cisplatin, and 5-fluorouracil. Molecular studies reveal that BV6 stimulates NF-κB activation, which is further increased in the presence of gemcitabine. Importantly, inhibition of NF-κB by overexpression of the dominant-negative IκBα superrepressor significantly decreases BV6- and gemcitabine-induced apoptosis, demonstrating that NF-κB exerts a proapoptotic function in this model of apoptosis. In support of this notion, inhibition of tumor necrosis factor α (TNFα) by the TNFα blocking antibody Enbrel reduces BV6- and gemcitabine-induced activation of caspase 8 and 3, loss of mitochondrial membrane potential, and apoptosis. By demonstrating that BV6 and gemcitabine trigger a NF-κB-dependent, TNFα-mediated loop to activate apoptosis signaling pathways and caspase-dependent apoptotic cell death, our findings have important implications for the development of Smac mimetic-based combination protocols in the treatment of pancreatic cancer.  相似文献   

5.
Gemcitabine is currently the best treatment available for pancreatic cancer (PaCa); however, patients with the disease develop resistance to the drug over time. Agents that can either enhance the effects of gemcitabine or overcome chemoresistance to the drug are required for the treatment of PaCa. Oridonin is one such agent which is safe and multitargeted, and has been linked with the suppression of survival, proliferation, invasion and angiogenesis of cancer. In this study, we investigated whether oridonin could sensitize PaCa to gemcitabine in vitro and in vivo. In vitro, oridonin inhibited the proliferation of the PaCa cell line, BxPC-3, potentiated the apoptosis induced by gemcitabine, induced G1 cell cycle arrest and activated p38 and p53; these results were significant when oridonin was combined with gemcitabine. In vivo, we found that oridonin significantly suppressed tumor growth and this effect was further enhanced by gemcitabine (P<0.05). Tumors from nude mice injected with BxPC-3 PaCa cells and treated with a combination of oridonin and gemcitabine showed a significant upregulation in p38 and p53 activation (P<0.05 vs. control, P<0.05 vs. gemcitabine or oridonin alone). Taken together, our results demonstrate that oridonin can potentiate the effects of gemcitabine in PaCa through the mitogen-activated protein kinase (MAPK)-p38 signaling pathway, which is dependent on p53 activation.  相似文献   

6.
Background and aim: It is reported that NF-κB is activated by chemotherapy in some cancer cell lines and NF-κB activation is one of the mechanisms by which tumors are induced to become resistant to chemotherapy. We reported that heat-treatment-induced heat shock protein 70 (Hsp70) could inhibit I-kappa-B kinase, resulting in the inhibition of NF-κB activation. Therefore, we speculated that activated NF-κB in a pancreatic cell line might be inhibited by heat treatment, resulting in the enhancement of gemcitabine-induced cytotoxicity.

Methods: We used the human pancreatic carcinoma cell lines AsPC-1 and MIAPaCa-2. Both cell lines were treated with various concentrations (0, 5, 10, 20, and 30 μM) of gemcitabine for 24 h. Heat treatment (43°C, 1 h) was performed at various times relative to gemcitabine treatment. The effect of gemcitabine and heat treatment on cell survival was determined by WST-8 assay. The status of NF-κB in carcinoma cells exposed to gemcitabine was investigated by electrophoretic mobility shift assay and immunocytochemistry. We analyzed apoptosis and necrosis in AsPC-1 and MIAPaCa-2 cells by flow cytometry. Furthermore, the levels of Hsp70, cyclin D1, caspase-3, and vascular endothelial growth factor in each treatment group were detected by western blotting.

Results: (1) Significant cytotoxicity was observed with gemcitabine. (2) Gemcitabine activated NF-κB binding activity in both cell lines. (3) Heat treatment inhibited the gemcitabine-induced activation of NF-κB. (4) Heat treatment enhanced the cytotoxicity of gemcitabine, especially when heat treatment was performed 24 h before gemcitabine was given. (5) The levels of Hsp70 were increased by heat treatment. Gemcitabine did not affect the protein level of Hsp70. The levels of pro-caspase-3 were decreased by heat treatment combined with gemcitabine.

Conclusions: Heat treatment inhibited gemcitabine-induced activation of NF-κB, resulting in the enhancement of the cytotoxicity of gemcitabine.  相似文献   

7.
This study investigates the role of caspase-8 and DN-FADD, an inhibitor of CD95-dependent caspase-8 activation, in gemcitabine-induced apoptosis of Colo357 pancreatic cancer cells. Gemcitabine-mediated apoptosis was monitored by the kinetics of caspase-8 activation and cytochrome c release. Gemcitabine treatment of Colo357 cells increased CD95 surface expression, raising the possibility of the involvement of CD95 in gemcitabine-mediated caspase-8 activation. However, ectopic expression of DN-FADD and treatment of cells with the antagonistic anti-CD95 antibody ZB4 both failed to suppress gemcitabine-induced apoptosis but substantially inhibited CD95-mediated apoptosis. DN-FADD, which surprisingly accumulated in nuclei of Colo357 cells, was unable to block caspase-8 activation mediated by either gemcitabine or CD95. These observations argue against a role of CD95 in gemcitabine-induced caspase-8 activation and reveal that the anti-apoptotic function of DN-FADD differs from caspase-8 inhibition in Colo357 cells.  相似文献   

8.
Kralova J  Dvorak M  Koc M  Kral V 《Oncogene》2008,27(21):3010-3020
In this study, we provide evidence that photostimulation of various cancer cells preloaded with a new photosensitizing compound, tetrakis-meso-(4-ethyleneglycol-2,3,5,6-tetrafluorophenyl) porphyrin (PORF-TEG), results in rapid activation of the cell death machinery. PORF-TEG, although primarily localized in lysosomes, induces mitochondria-driven apoptosis. The induction of apoptosis is accompanied by immediate and sustained activation of p38 mitogen-activated protein kinase (MAPK) and transient activation of c-Jun N-terminal kinase (JNK). Conversely, the inhibition of p38 by PD 169316 or SB202190 and by the p38alpha dominant-negative mutant as well as the deletion of the p38alpha gene (MEFs-KO) protected cells from apoptosis, whereas inhibition of JNK did not. Activation of the p38 signaling pathway occurs upstream of caspase activation. In addition, preincubation of cells with scavengers of reactive oxygen species attenuated p38 and caspase activation and increased cell survival, thus connecting reactive oxygen species formation with the activation of the p38 pathway. Later events included degradation of Bcl-2, activation of tBid, and cleavage of Bad and Mcl-1. The data suggest a key role for p38 MAPK in PORF-TEG-photoinduced apoptosis.  相似文献   

9.
Gemcitabine is a standard chemotherapeutic agent for locally advanced and metastatic pancreatic cancer. However, the chemoresistance of pancreatic cancer is the major barrier to efficient chemotherapy. Here, we reported that BRG1, a chromatin modulator, was exclusively overexpressed in human pancreatic ductal adenocarcinoma tissues. BRG1 knockdown inhibited PANC-1 and MIA PaCa-2 cell growth in vitro and in vivo, reduced the phosphorylation/activation of Akt and p21cip/waf, enhanced intrinsic and gemcitabine induced apoptosis and attenuated gemcitabine-induced downregulation of E-cadherin. Moreover, by establishing acquired chemoresistance of MIA PaCa-2 cells in vitro, we found that BRG1 knockdown effectively reversed the chemoresistance to gemcitabine. Surprisingly, inhibiting Akt phosphorylation resulted in BRG1 suppression in pancreatic cancer cells, indicating BRG1 as a new downstream target of Akt signalling. Taken together, our findings suggest that BRG1 promotes both intrinsic and acquired chemoresistance of pancreatic cancer cells, and BRG1 crosstalks with Akt signalling to form a positive feedback loop to promote pancreatic cancer development.  相似文献   

10.
Our previous studies demonstrated that manumycin A, a farnesyltransferase inhibitor, induced apoptosis of anaplastic thyroid cancer cells via the intrinsic apoptosis pathway and induced reactive oxygen species (ROS), which mediated DNA damage. In this study, we investigated the hypothesis that the mechanism of apoptosis induced by manumycin in anaplastic thyroid cancer cells fits the general pattern of the "xenobiotic apoptosis pathway," the hallmarks of which are induction of oxidative stress, mitogen-activated protein kinase (MAPK) signaling, and cytochrome c release, which activates the intrinsic apoptosis pathway. We found that manumycin reduced intracellular glutathione and generated ROS: nitric oxide and superoxide anions. Manumycin-induced apoptosis correlated with increase in ROS. Quenching of ROS with N-acetyl-L-cysteine prevented cytochrome c release by manumycin. Manumycin induced phosphorylation of p38 MAPK, which was blocked by N-acetyl-L-cysteine. p38 MAPK may be an important signaling mediator in the activation of the intrinsic apoptotic pathway by manumycin because the p38 MAPK inhibitor SB203580 inhibited cytochrome c release and activation of caspase-3 by manumycin. In conclusion, manumycin activated the intrinsic apoptosis pathway via activation of p38 MAPK by oxidative stress. The mechanism of apoptosis induced by manumycin fits the emerging general pattern for apoptosis induced by xenobiotics.  相似文献   

11.
12.
Soy isoflavone genistein exhibits growth inhibitory activity against human pancreatic cancer cell lines. We previously reported the potential of genistein to augment chemotherapeutic response of pancreatic cancer cells in vitro. In the present study, we investigated whether genistein pretreatment could be used as a novel strategy for gemcitabine-induced killing in vitro and enhanced antitumor activity in vivo using an orthotopic tumor model. We conducted our studies using paired isogenic human pancreatic cancer cell line with differences in metastatic behavior (COLO 357 and L3.6pl). In vitro studies were done to measure growth inhibition and degree of apoptotic cell death induced by either genistein alone, gemcitabine alone, or genistein followed by gemcitabine. Our results show that pretreatment of cells with genistein for 24 hours followed by gemcitabine resulted in 60% to 80% growth inhibition compared with 25% to 30% when gemcitabine was used alone. The overall growth inhibition was directly correlated with apoptotic cell death irrespective of the metastatic potential of cells. Several genes that are known to inhibit apoptosis and contribute to chemoresistance such as nuclear factor-kappaB (NF-kappaB) and Akt were assessed to investigate the basis for the observed chemosensitizing effects of genistein. Genistein potentiated the gemcitabine-induced killing by down-regulation of NF-kappaB and Akt. In contrast, Akt and NF-kappaB were found to be up-regulated when pancreatic cancer cells were exposed to gemcitabine alone, suggesting the potential mechanism of acquired chemoresistance. In addition to in vitro results, we show here for the first time, that genistein in combination with gemcitabine is much more effective as an antitumor agent compared with either agent alone in our orthotopic tumor model. But most importantly, our data also showed that a specific target, such as NF-kappaB, was inactivated in genistein-treated animal tumors and that gemcitabine-induced activation of NF-kappaB was completely inhibited in animal tumors treated with genistein and gemcitabine. These results provide strong molecular in vivo evidence in support of our hypothesis that inactivation of NF-kappaB signaling pathway by genistein could also abrogate gemcitabine-induced activation of NF-kappaB resulting in the chemosensitization of pancreatic tumors to gemcitabine, which is likely to be an important and novel strategy for the treatment of pancreatic cancer.  相似文献   

13.
目的:探讨滋肾固髓汤对结直肠癌HCT-116细胞凋亡的影响及其分子机制。方法:制备滋肾固髓汤含药血清,首先采用不同体积分数滋肾固髓汤含药血清处理HCT-116细胞,噻唑蓝(MTT)检测细胞增殖活性;再将HCT-116细胞分为空白组、滋肾固髓汤低、中、高剂量组、SB203580(p38MAPK抑制剂)组和高剂量滋肾固髓汤+SB203580组,分别加入相应药物进行干预后,Hoechst 33258染色观察细胞凋亡的形态学变化;Annexin V-FITC流式细胞术检测细胞的凋亡水平;Western blot检测细胞中p38MAPK、磷酸化(p)-p38MAPK(Thr180/Tyr182)、鼠双微染色体2(MDM2)、p53、Cleaved caspase-3、Bax和Bcl-2等蛋白表达水平。结果:滋肾固髓汤可抑制HCT-116细胞增殖活性,并呈时间和浓度依赖性。不同浓度滋肾固髓汤处理可诱导HCT-116细胞呈现核聚集、皱缩或碎裂等凋亡形态变化,促进细胞凋亡,上调p-p38MAPK、p53、Bax和Cleaved caspase-3等蛋白表达水平,下调MDM2和Bcl-2蛋白表达水平。S...  相似文献   

14.
Kim HJ  Oh JE  Kim SW  Chun YJ  Kim MY 《Cancer letters》2008,260(1-2):88-95
Ceramide induces apoptosis through caspase activation, cytochrome c release, and Bax translocation in HL-60 cells. However, the upstream signal transduction pathways that induce Bax translocation during ceramide-mediated apoptosis have not been well defined yet. In this study, the activation of p38 mitogen-activated protein kinase (MAPK) was found to be critical for the induction of apoptosis and subcellular redistribution of Bax. Pharmacological inhibition of p38 MAPK with SB203580 or expression of a dominant-negative p38 MAPK attenuated DNA fragmentation, caspase-3 activation, and Bax translocation in response to ceramide. Overexpression of Akt also led to suppression of Bax translocation to mitochondria during ceramide-induced apoptosis in HL-60 cells. We also provide evidence for cross-talk between p38 MAPK and Akt pathways. Expression of myr-Akt or inhibition of phosphatidylinositol 3-kinase (PI3K) with LY294002 had no effect on p38 MAPK activation by ceramide as assessed by phosphorylation, while inhibition of p38 MAPK by a pharmacological inhibitor or a dominant-negative p38 inhibited Akt dephosphorylation in response to ceramide, suggesting that ceramide-induced p38 MAPK activation negatively regulates the Akt pathway.  相似文献   

15.
PURPOSE: Gemcitabine-containing regimens are among standard therapies for the treatment of advanced non-small cell lung,pancreatic, or bladder cancers. Gemcitabine is a nucleoside analogue and its cytotoxicity is correlated with incorporation into genomic DNA and concomitant inhibition of DNA synthesis. However, it is still unclear by which mechanism(s) gemcitabine incorporation leads to cell death. EXPERIMENTAL DESIGN: We used purified oligodeoxynucleotides to study the effects of gemcitabine incorporation on topoisomerase I (top1) activity and tested the role of top1 poisoning in gemcitabine-induced cytotoxicity in cancer cells. RESULTS: We found that top1-mediated DNA cleavage was enhanced when gemcitabine was incorporated immediately 3' from a top1 cleavage site on the nonscissile strand. This position-specific enhancement was attributable to an increased DNA cleavage by top1 and was likely to have resulted from a combination of gemcitabine-induced conformational and electrostatic effects. Gemcitabine also enhanced camptothecin-induced cleavage complexes. We also detected top1 cleavage complexes in human leukemia CEM cells treated with gemcitabine and a 5-fold resistance of P388/CPT45 top1-deficient cells to gemcitabine, indicating that poisoning of top1 can contribute to the antitumor activity of gemcitabine. CONCLUSIONS: The present results extend our recent finding that incorporation of 1-beta-D-arabinofuranosylcytosine into DNA can induce top1 cleavage complexes [P. Pourquier et al. Proc. Natl. Acad. Sci. USA, 97: 1885-1890, 2000]. The enhancement of camptothecin-induced top1 cleavage complexes may, at least in part, contribute to the synergistic or additive effects of gemcitabine in combination with topotecan and irinotecan in human breast or lung cancer cells.  相似文献   

16.
17.
18.
Gemcitabine is a new standard chemotherapeutic agent used in the treatment of pancreatic cancer, but the mechanisms of gemcitabine sensitivity are still controversial. In our study to determine a mechanism that regulates gemcitabine sensitivity, we carried out molecular analysis on the susceptibility of the pancreatic cancer cells. Using a gemcitabine-sensitive pancreatic cancer cell line KLM1, we established a resistant cell line KLM1-R exhibiting a 20-fold IC50-value (the concentration of gemcitabine causing 50% growth inhibition). Microarray analysis of genes showed specific expression of selenoprotein P, one of the anti-oxidants, in the KLM1-R cell line but not in the KLM1 cell line. Administration of selenoprotein P inhibited the gemcitabine-induced cytotoxicity in the pancreatic cell lines. The levels of intracellular reactive oxygen species (ROS) were increased in the KLM1 cells by gemcitabine, but selenoprotein P suppressed the gemcitabine-induced ROS levels. Furthermore interferon-gamma suppressed the expression of selenoprotein P mRNA and increased intracellular ROS level, leading to the recovery of the gemcitabine sensitivity in KLM1-R. These results suggest a novel mechanism that selenoprotein P reduces the intracellular ROS levels, resulting in the insusceptibility to gemcitabine.  相似文献   

19.
In the present study, we examined the role of Src in gemcitabine-induced cell growth suppression in human pancreatic cancer cell lines. In two human pancreatic cancer cell lines, PK-9 and MIA PaCa-2, we found that a selective Src protein tyrosine kinase inhibitor, PP2, inhibited gemcitabine-induced cell growth suppression. When dominant negative src cDNA was constitutively expressed in PK-9 cells (PK-9-Src-DN), the degree of gemcitabine-induced cell growth suppression was decreased compared with that of mock-transfected PK-9 cells. The mechanism of the inhibitory effect of gemcitabine-induced cytotoxicity was found to be the suppression of apoptosis, which was downregulated in PK-9-Src-DN cells. These results indicate that Src mediates signals that culminate in suppressing cell growth and survival in the presence of gemcitabine, at least in particular cell lines.  相似文献   

20.
Notch3 is one of the four Notch receptors identified in mammal, but its role in human pancreatic cancer remains poorly characterized. In this study, we sought to determine the effect of suppressing Notch3 expression on the chemosensitivity to gemcitabine in human pancreatic cancer cell lines BxPC-3 and PANC-1. RNA interference was used to suppress Notch3 expression. Gemcitabine-induced cytotoxicity was determined by MTT. Cell apoptosis was measured by flow cytometry. Caspase 3 activity was assayed using a Caspase Fluorescent Assay Kit. The effect of Notch3-specific siRNA on PI3K/Akt activity was also quantified. Notch3-specific siRNA suppressed Notch3 expression, and furthermore increased gemcitabine-induced, caspase-mediated apoptosis. The suppression of Notch3 expression decreased the average IC50 in BxPC-3 and PANC-1 cells treated with gemcitabine. PI3K/Akt activity was decreased by the suppression of Notch3 expression. Taken together, these data demonstrated that Notch3 is a potential therapeutic target for pancreatic cancer, and PI3K/Akt is a key signaling component by which activation of the Notch3 signal transduction pathway protects pancreatic cancer cells from chemotherapy-induced cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号