共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA replication of dengue virus (DENV) requires an RNA-RNA mediated circularization of the viral genome, which includes at least three sets of complementary RNA sequences on both ends of the genome. The 5′ and the 3′ untranslated regions form several additional RNA elements that are involved in regulation of translation and required for RNA replication. Communication between the genomic termini results in a structural reorganization of the RNA elements, forming a functional RNA panhandle structure. Here we report that the sequence composition downstream of the 5′ CS element in the capsid gene, designated as downstream CS (dCS) sequence - but not the capsid protein - also influences the ability of the viral genome to circularize and hence replicate by modulating the topology of the 5′ end. These results provide insights for the design of reporter sub-genomic and genomic mosquito-borne flavivirus constructs and contribute to the understanding of viral RNA replication. 相似文献
2.
A reporting replicon of West Nile virus (WN) was used to distinguish between the function of the 3' untranslated region (UTR) in viral translation and RNA replication. Deletions of various regions of the 3' UTR of the replicon did not significantly affect viral translation, but abolished RNA replication. A systematic mutagenesis showed that the flavivirus-conserved penta-nucleotide (5'-CACAG-3' located at the top of the 3' stem-loop of the genome) requires a specific sequence and structure for WN RNA synthesis, but not for viral translation. (i) Basepair structure and sequence at the 1st position of the penta-nucleotide are critical for RNA replication. (ii) The conserved nucleotides at the 2nd, 3rd, and 5th positions, but not at the 4th position of the penta-nucleotide, are essential for RNA synthesis. (iii) The nucleotide U (which is partially conserved in the genus Flavivirus) immediately downstream of the penta-nucleotide is not essential for viral replication. 相似文献
3.
Role of RNA structures present at the 3'UTR of dengue virus on translation, RNA synthesis, and viral replication 总被引:6,自引:0,他引:6
We have developed a dengue virus replicon system that can be used to discriminate between translation and RNA replication. Using this system, we analyzed the functional role of well-defined RNA elements present at the 3'UTR of dengue virus in mammalian and mosquito cells. Our results show that deletion of individual domains of the 3'UTR did not significantly affect translation of the input RNA but seriously compromised or abolished RNA synthesis. We demonstrated that complementarity between sequences present at the 5' and 3' ends of the genome is essential for dengue virus RNA synthesis, while deletion of domains A2 or A3 within the 3'UTR resulted in replicons with decreased RNA amplification. We also characterized the vaccine candidate rDEN2Delta30 in the replicon system and found that viral attenuation is caused by inefficient RNA synthesis. Furthermore, using both the replicon system and recombinant viruses, we identified an RNA region of the 3'UTR that enhances dengue virus replication in BHK cells while is dispensable in mosquito cells. 相似文献
4.
Genome cyclization is essential for flavivirus replication. We used RNases to probe the structures formed by the 5′-terminal 190 nucleotides and the 3′-terminal 111 nucleotides of the West Nile virus (WNV) genomic RNA. When analyzed individually, the two RNAs adopt stem-loop structures as predicted by the thermodynamic-folding program. However, when mixed together, the two RNAs form a duplex that is mediated through base-pairings of two sets of RNA elements (5′CS/3′CSI and 5′UAR/3′UAR). Formation of the RNA duplex facilitates a conformational change that leaves the 3′-terminal nucleotides of the genome (position − 8 to − 16) to be single-stranded. Viral NS5 binds specifically to the 5′-terminal stem-loop (SL1) of the genomic RNA. The 5′SL1 RNA structure is essential for WNV replication. The study has provided further evidence to suggest that flavivirus genome cyclization and NS5/5′SL1 RNA interaction facilitate NS5 binding to the 3′ end of the genome for the initiation of viral minus-strand RNA synthesis. 相似文献
5.
We report a genetic interplay among three pairs of long-distance RNA interactions that are involved in West Nile virus (WNV) genome cyclization and replication: 5′CS/3′CSI (conserved sequence), 5′UAR/3′UAR (upstream AUG region), and 5′DAR/3′DAR (downstream AUG region). Deletion of the complete 3′CSI element is lethal for WNV replication, but the replication of the 3′CSI deletion virus could be rescued by second site mutations. Functional analysis, using a genome-length RNA and replicon, mapped the compensatory mutations to the 5′UAR/3′UAR and 5′DAR/3′DAR regions. Biochemical analysis showed that the 3′CSI deletion abolished the 5′ and 3′ RNA interaction of the genome; the compensatory mutations could partially restore the 5′ and 3′ genome cyclization. These results demonstrate, for the first time, that a flavivirus without 3′CSI could restore genome cyclization and viral replication through enhancement of the 5′UAR/3′UAR and 5′DAR/3′DAR interactions. 相似文献
6.
Hoenninger VM Rouha H Orlinger KK Miorin L Marcello A Kofler RM Mandl CW 《Virology》2008,377(2):419-430
The 3'-noncoding region (3'-NCR) of the flavivirus genome includes a variable region that tolerates the insertion of heterologous genetic information. Natural isolates of tick-borne encephalitis virus (TBEV) have particularly long variable regions, which, for some strains, include an internal poly(A) tract. We constructed luciferase reporter replicons of TBEV to analyze the impact of various manipulations of the 3'-NCR on viral RNA translation and replication. The choice of the reporter gene, its position and processing within the viral polyprotein, and the choice of standards were found to be important for obtaining a sensitive and reliable test system. We observed that truncation or complete removal of the internal poly(A) tract, or even the entire variable region, had no significant impact on translation and replication of the RNA in mammalian cell culture. Substitution of the variable region with foreign genetic elements impaired RNA replication to various degrees but generally had no influence on viral translation. Expression cassettes driven by an IRES element inhibited RNA replication more strongly than did repetitive protein-binding elements derived from a bacteriophage, even when the ligand that binds these elements was co-expressed in the cells. Previously identified mutations in the IRES partially relieved this inhibition when introduced into the reporter replicon but provided no evidence for intramolecular competition for translation factors. Impairment of replication appeared to depend more on the type of foreign insert than on its length. These results provide a rational basis for the construction of TBEV-based vectors or vaccines as well as molecular tools for studying flavivirus replication. 相似文献
7.
Flavivirus RNA replication involves cyclization of the viral genome. A model for this process includes a promoter element at the 5' end of the genome and long-range RNA-RNA interactions. Two pairs of complementary sequences present at the ends of the viral RNA, known as 5'-3'CS and 5'-3'UAR, have been proposed to be involved in dengue virus genome cyclization. The requirement of 5'-3'CS complementarity for viral replication has been experimentally demonstrated for dengue and other mosquito borne flaviviruses. Here, we performed a functional analysis to study the role of 5'-3'UAR sequences using genomic and subgenomic dengue virus RNAs. We found that single mutations disrupting 5'-3' complementarity greatly compromised viral RNA synthesis. Although in most of the cases incorporation of compensatory mutations re-established viral RNA replication, certain nucleotides were found to be involved in alternative secondary structures also important for viral replication. In addition, mutations within 5' or 3'UAR in the context of an infectious dengue virus RNA resulted in spontaneous mutations that restored UAR base pairings. Together, we propose that specific UAR nucleotides as well as 5'-3'UAR complementarity constitute cis-acting signals involved in amplification of the dengue virus genome. 相似文献
8.
West Nile virus genome cyclization and RNA replication require two pairs of long-distance RNA interactions 总被引:2,自引:0,他引:2
West Nile virus (WNV) genome cyclization and replication require two pairs of long-distance RNA interactions. Besides the previously reported 5'CS/3'CSI (conserved sequence) interaction, a 5'UAR/3'UAR (upstream AUG region) interaction also contributes to genome cyclization and replication. WNVs containing mutant 5'UARs capable of forming the 5'/3' viral RNA interaction were replicative. In contrast, WNV containing a 5'UAR mutation that abolished the 5'/3' viral RNA interaction was non-replicative; however, the replication defect could be rescued by a single-nucleotide adaptation that restored the 5'/3' RNA interaction. The 5'UAR/3'UAR interaction is critical for RNA synthesis, but not for viral translation. Antisense oligomers targeting the 5'UAR/3'UAR interaction effectively inhibited WNV replication. Phylogenic analysis showed that the 3'UAR could alternate between pairing with the 5'UAR or with the 3' end of the flaviviral genome. Therefore, the 5'UAR/3'UAR pairing may release the 3' end of viral genome (as a template) during the initiation of minus-strand RNA synthesis. 相似文献
9.
The genus Flavivirus is a group of single‐stranded, positive‐sense RNA viruses that includes numerous human pathogens with global impact, such as dengue virus (DENV), yellow fever virus (YFV), West Nile virus (WNV), and Zika virus (ZIKV). The approximately 11‐kilobase genome is flanked by highly structured untranslated regions (UTRs), which contain various cis‐acting RNA elements with unique structures and functions. Moreover, local RNA elements circularize the genome non‐covalently through long‐range interactions. Interestingly, many flavivirus cis‐acting RNA elements contain group‐specific motifs or are specific for the given phylogenetic groups, suggesting their potential association with flavivirus evolution and diversification. In this review, we summarize recent advances about the structure and function of cis‐acting RNA elements in flavivirus genomes and highlight the potential implications for flavivirus evolution. Finally, the scientific questions remained to be answered in the field are also discussed. 相似文献
10.
Inhibition of dengue virus translation and RNA synthesis by a morpholino oligomer targeted to the top of the terminal 3' stem-loop structure 总被引:1,自引:0,他引:1
Dengue virus (DEN) is a major public health problem worldwide and causes a spectrum of diseases, for which no antiviral treatments exist. Peptide-conjugated phosphorodiamidate morpholino oligomers (P-PMOs) complementary to the DEN 5' stem-loop (5'SL) and to the DEN 3' cyclization sequence (3'CS) inhibit DEN replication, presumably by blocking critical RNA-RNA or RNA-protein interactions involved in viral translation and/or RNA synthesis. Here, a third P-PMO, complementary to the top of the 3' stem-loop (3'SLT), inhibited DEN replication in BHK cells. Using a novel DEN2 reporter replicon and a DEN2 reporter mRNA, we determined that the 5'SL P-PMO inhibited viral translation, the 3'CS P-PMO blocked viral RNA synthesis but not viral translation, and the 3'SLT P-PMO inhibited both viral translation and RNA synthesis. These results show that the 3'CS and the 3'SL domains regulate DEN translation and RNA synthesis and further demonstrate that P-PMOs are potentially useful as antiviral agents. 相似文献
11.
The West Nile virus (WNV) genome contains a single RNA-dependent RNA polymerase (RdRp) gene, which is responsible for replication of the viral genome and, as such, is an important target for antiviral therapy. Viral RdRps are known to lack proofreading capabilities and as a result viruses such as WNV exist as a mixture of viral genotypes within an infection, enabling the virus to readily emerge and adapt to new host environments. To test the consequences of subtle structural alterations remote from the RdRp active-site, the following single point mutations were engineered in the WNV NS5 RdRp coding region: T363N, A365N, and T537I; these mutations were selected in an effort to stabilize the secondary structural elements near the rNTP binding pocket of the RdRp. Mutant viruses were tested in vitro on Vero, C6/36, Culex tarsalis and DF-1 cell types and in vivo in one day old chickens and Culex pipiens mosquitoes. Plaque morphology was affected by each mutation and growth and RNA replication kinetics were altered as well. Our results demonstrate that subtle alteration of the RdRp protein away from the active site can have a significant overall biological effect on WNV fitness, and that this effect can be host-dependent. 相似文献
12.
13.
RNA-RNA recombination salvages viral RNAs and contributes to their genomic variability. A recombinationally-active subgenomic promoter (sgp) has been mapped in Brome mosaic bromovirus (BMV) RNA3 (Wierzchoslawski et al., 2004. J. Virol.78, 8552-8864) and mRNA-like 5′ sgRNA3a was characterized (Wierzchoslawski et al., 2006. J. Virol. 80, 12357-12366). In this paper we describe sgRNA3a-mediated recombination in both in vitro and in vivo experiments. BMV replicase-directed co-copying of (−) RNA3 with wt sgRNA3a generated RNA3 recombinants in vitro, but it failed to when 3′-truncated sgRNA3a was substituted, demonstrating a role for the 3′ polyA tail. Barley protoplast co-transfections revealed that (i) wt sgRNA3a recombines at the 3′ and the internal sites; (ii) 3′-truncated sgRNA3as recombine more upstream; and (iii) 5′-truncated sgRNA3 recombine at a low rate. In planta co-inoculations confirmed the RNA3-sgRNA3a crossovers. In summary, the non-replicating sgRNA3a recombines with replicating RNA3, most likely via primer extension and/or internal template switching. 相似文献
14.
Using cell-free reactions, we investigated the role of the 5′ cloverleaf (5′CL) and associated C-rich sequence in Coxsackievirus B3 RNA replication. We showed that the binding of poly(C) binding protein (PCBP) to the C-rich sequence was the primary determinant of RNA stability. In addition, inhibition of negative-strand synthesis was only observed when PCBP binding to both stem-loop ‘b’ and the C-rich sequence was inhibited. Taken together, these findings suggest that PCBP binding to the C-rich sequence was sufficient to support RNA stability and negative-strand synthesis. Mutational analysis of the three conserved structural elements in stem-loop ‘d’ showed that they were required for efficient negative- and positive-strand synthesis. Finally, we showed an RNA with a 5′ terminal deletion (Δ49TD RNA), which was previously isolated from persistently infected cells, replicated at low but detectable levels in these reactions. Importantly, the critical replication elements identified in this study are still present in the Δ49TD RNA. 相似文献
15.
West Nile virus methyltransferase catalyzes N7 and 2'-O methylations of the viral RNA cap (GpppA-RNA-->m(7)GpppAm-RNA). The two methylation events are independent, as evidenced by efficient N7 methylation of GpppA-RNA-->m(7)GpppA-RNA and GpppAm-RNA-->m(7)GpppAm-RNA, and by the 2'-O methylation of GpppA-RNA-->GpppAm-RNA and m(7)GpppA-RNA-->m(7)GpppAm-RNA. However, the 2'-O methylation activity prefers substrate m(7)GpppA-RNA to GpppA-RNA, thereby determining the dominant methylation pathway as GpppA-RNA-->m(7)GpppA-RNA-->m(7)GpppAm-RNA. Mutant enzymes with different methylation defects can trans complement one another in vitro. Furthermore, sequential treatment of GpppA-RNA with distinct methyltransferase mutants generates fully methylated m(7)GpppAm-RNA, demonstrating that separate molecules of the enzyme can independently catalyze the two cap methylations in vitro. 相似文献
16.
Flavivirus gene expression is modulated by RNA secondary structure elements at the terminal ends of the viral RNA molecule. For tick-borne encephalitis virus (TBEV), four stem-loop (SL) elements have been predicted in the first 180 nucleotides of the viral genome: 5′-SL1, 5′-SL2, 5′-SL3 and 5′-SL4. The last three of these appear to be unique to tick-borne flaviviruses. Here, we report their characterization by mutagenesis in a TBEV luciferase reporter system. By manipulating their thermodynamic properties, we found that an optimal stability of the 5′-SL2 is required for efficient RNA replication. 5′-SL3 formation is also important for viral RNA replication, but although it contains the viral start codon, its formation is dispensable for RNA translation. 5′-SL4 appears to facilitate both RNA translation and replication. Our data suggest that maintenance of the balanced thermodynamic stability of these SL elements is important for temporal regulation of its different functions. 相似文献
17.
Spatial and temporal organization of tick-borne encephalitis flavivirus replicated RNA in living cells 总被引:1,自引:0,他引:1
Flaviviruses are positive RNA viruses that assemble the replication complex in the cytoplasm of the infected cells. In order to get a dynamic view of the formation and distribution of flavivirus genomes in living cells we engineered a tick-borne encephalitis virus (TBEV) replicon with an array of binding sites for the phage MS2 core protein. The modified TBEV replicons were competent for RNA replication and allowed the visualization of replicated genomic RNA that accumulated in cytoplasmic structures with a distinct subcellular localization. Sites of TBEV replicated RNA accumulation were enriched in non-structural viral proteins and co-localized with the markers of the rough endoplasmic reticulum protein disulphide isomerase (PDI). In contrast no co-localization was observed with the markers CD-71 and EEA-1 for recycling vesicles, ERGIC53 for the intermediate compartment and TGN-46 for the trans-Golgi network. In human HOS cells, but not in hamster BHK21 cells, replicated TBEV RNA was found also associated with the marker Giantin for the Golgi indicating differences according to the cellular background.This study confirms and extends previous observations on the subcellular localization of flavivirus RNA and provides a useful tool to monitor the formation and distribution of flavivirus RNA genomes in living cells. 相似文献
18.
Replication of Tomato ringspot virus (ToRSV) occurs in association with endoplasmic reticulum (ER)-derived membranes. We have previously shown that the putative nucleotide triphosphate-binding protein (NTB) of ToRSV is an ER-targeted protein and that an intermediate polyprotein containing the domains for NTB and for the genome-linked viral protein (VPg) is associated with the replication complex. We now report the detection of a 95-kDa polyprotein that contains the domains for the RNA-dependent RNA polymerase (Pol), the proteinase (Pro) and the VPg. This polyprotein appears to be a truncated version of the full-length 111-kDa VPg-Pro-Pol polyprotein and was termed VPg-Pro-Pol'. A subpopulation of VPg-Pro-Pol' was peripherally associated with ER-derived membranes active in viral replication. However, the VPg, Pro and Pol domains did not target to membranes in the absence of viral infection. We propose a model in which VPg-Pro-Pol' is brought to the site of replication through interaction with a viral membrane protein. 相似文献
19.
Plus-strand RNA virus replication occurs in tight association with cytoplasmic host cell membranes. Both, viral and cellular factors cooperatively generate distinct organelle-like structures, designated viral replication factories. This compartmentalization allows coordination of the different steps of the viral replication cycle, highly efficient genome replication and protection of the viral RNA from cellular defense mechanisms. Electron tomography studies conducted during the last couple of years revealed the three dimensional structure of numerous plus-strand RNA virus replication compartments and highlight morphological analogies between different virus families. Based on the morphology of virus-induced membrane rearrangements, we propose two separate subclasses: the invaginated vesicle/spherule type and the double membrane vesicle type. This review discusses common themes and distinct differences in the architecture of plus-strand RNA virus-induced membrane alterations and summarizes recent progress that has been made in understanding the complex interplay between viral and co-opted cellular factors in biogenesis and maintenance of plus-strand RNA virus replication factories. 相似文献
20.
Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases
Selisko B Dutartre H Guillemot JC Debarnot C Benarroch D Khromykh A Desprès P Egloff MP Canard B 《Virology》2006,351(1):145-158
Flavivirus protein NS5 harbors the RNA-dependent RNA polymerase (RdRp) activity. In contrast to the RdRps of hepaci- and pestiviruses, which belong to the same family of Flaviviridae, NS5 carries two activities, a methyltransferase (MTase) and a RdRp. RdRp domains of Dengue virus (DV) and West Nile virus (WNV) NS5 were purified in high yield relative to full-length NS5 and showed full RdRp activity. Steady-state enzymatic parameters were determined on homopolymeric template poly(rC). The presence of the MTase domain does not affect the RdRp activity. Flavivirus RdRp domains might bear more than one GTP binding site displaying positive cooperativity. The kinetics of RNA synthesis by four Flaviviridae RdRps were compared. In comparison to Hepatitis C RdRp, DV and WNV as well as Bovine Viral Diarrhea virus RdRps show less rate limitation by early steps of short-product formation. This suggests that they display a higher conformational flexibility upon the transition from initiation to elongation. 相似文献