首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prion protein (PrP) is the only known constituent of the agents (called prions) that cause fatal neurodegenerative diseases in animals and humans. PrP derives from a host protein encoded by a single copy gene having three known exons in mice, cattle and sheep but only two exons in hamsters and humans. We have identified and sequenced the missing exon from the hamster PrP gene. The new hamster PrP exon is 83% identical to mouse exon 2 and 76% identical to exon 2 from cattle and sheep. PrP mRNAs containing the new exon 2 (mRNA[1+2+3]) were expressed in the colliculi, frontal cortex and hippocampus of normal hamsters at ∼30% to ∼50% of the levels of the mRNA without exon 2 (mRNA[1+3]). Expression of PrP mRNA[1+2+3] was increased in the colliculi beginning 49 days after inoculation with scrapie prions and reached a level 2.5 times normal by day 77. Increased expression of PrP mRNA[1+2+3] in the colliculi correlated with expression of glial fibrillary acidic protein (GFAP) mRNA. Expression of GFAP and PrP mRNAs was not significantly increased in the hippocampus or the frontal cortex during the disease. Our study shows that exon 2 plays a role in regulating the cellular expression of hamster PrP and suggests that mRNA[1+2+3] may be preferentially expressed in hamster astrocytes. © 1997 Elsevier Science B.V. All rights reserved.  相似文献   

2.
Cellular prion protein localization in rodent and primate brain   总被引:9,自引:0,他引:9  
The presence of an abnormal, protease-resistant form of the prion protein (PrP) is the hallmark of various forms of transmissible spongiform encephalopathies (TSE) which can affect a number of mammalian species, including humans. The normal, cellular form of this protein, PrPc, while abundant in brain is also present in many tissues and a number of species. In order to address the unresolved question of the precise localization of normal cerebral PrPc, we used a free-floating immunohistochemistry procedure to localize the protein at both the light and the electron microscopic levels in the brain of three TSE-sensitive species: hamster, macaque and humans. This method shows that PrPc is abundant in synaptic terminal fields in olfactory bulb, limbic-associated structures and in the striato-nigral complex, whereas many other regions of the hamster brain are essentially devoid of immunoreactivity. With the striking exception of the olfactory nerve, in which axons are continually growing throughout life, PrPc is not abundant in fibre pathways. PrPc distribution in the primate hippocampus and cortex is very similar to the distribution observed in hamster. PrPc was present at synaptic profiles as shown by immunoelectron microscopy, but was not detectable in neuronal perikaryon either by light or electron microscopy. Our results show that PrPc is abundant in a number of brain structures known for ongoing plasticity, and are consistent with the hypothesis that the protein also plays a role in synaptic function.  相似文献   

3.
The vacuolation (spongiform change) and prion protein (PrP) deposition were quantified in the cerebral cortex, hippocampus and cerebellum of 11 patients with sporadic Creutzfeldt-Jakob disease (CJD). The density of the vacuolation, averaged over patients, was greatest in the occipital cortex and cerebellum and least in the dentate gyrus. The degree of PrP deposition was similar in the different cortical areas and in the cerebellum but significantly lower in the hippocampus and absent in the dentate gyrus. There were no significant differences in the extent of the vacuolation and PrP deposition in the upper and lower cortical laminae. Vacuolation and PrP deposition in the upper cortex were both positively correlated with corresponding levels in the lower cortex. In addition, in the parietal cortex and parahippocampal gyrus, the density of the vacuolation was positively correlated with the level of PrP deposition but no such correlations were observed in the remaining areas studied. This quantitative study suggested that: (1) the pathological changes were most severe in the occipital cortex and cerebellum, while the hippocampus was least affected, (2) the pathological changes affect the upper and lower cortical laminae, and (3) the degree of correlation between the density of the vacuolation and PrP deposition may be dependent on brain region.  相似文献   

4.
We report a Japanese case of sporadic Creutzfeldt‐Jakob disease (CJD) with particular clinical course and neuropathological findings. A 74‐year‐old female exhibited parkinsonism and later, dementia, myoclonus as well as visual hallucinations, lacking periodic synchronous discharges in the electroencephalogram. The duration of her illness was 2 years, longer than typical CJD cases which average 8 months’ duration. Gray matter was severely affected, the Ammon’s horn and subicular cortex were well preserved and many kuru plaques were observed in the cerebellum using routine histological stainings. Immunohistochemistry for prion protein (PrP) using both formic acid and hydrolytic autoclaving pretreatment revealed numerous prion plaques throughout the brain together with intense synaptic‐type deposition of PrPCJD (abnormal isoform of PrP) in all gray matter examined, particularly in the Ammon’s horn and subicular cortex. The definite combination of these two types of stain has never been reported previously in Japan other than in Gerstmann‐Sträussler– Scheinker syndrome. Relative resistance of the Ammon’s horn and subicular cortex to the PrPCJD deposition is also discussed.  相似文献   

5.
Vacuolation ("spongiform change") and prion protein (PrP) deposition were quantified in the cerebral cortex, hippocampus, dentate gyrus and molecular layer of the cerebellum in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). The density of vacuoles was greater in the cerebral cortex compared to the hippocampus, dentate gyrus and cerebellum. Within the cortex, vacuole density was significantly greater in the occipital compared to the temporal lobe and the density of surviving neurones was greatest in the occipital lobe. The density of the non-florid PrP plaques was greater in the cerebellum compared to the other brain areas. There were significantly more florid-type PrP plaques in the cerebral cortex compared to the hippocampus and the molecular layer of the cerebellum. No significant correlations were observed between the densities of the vacuoles and the PrP plaques. The densities of vacuoles in the parietal cortex and the non-florid plaques in the frontal cortex were positively correlated with the density of surviving neurones. The densities of the florid and the non-florid plaques were positively correlated in the parietal cortex, occipital cortex, inferior temporal gyrus and dentate gyrus. The data suggest: (i) vacuolation throughout the cerebral cortex, especially in the occipital lobe, but less evident in the hippocampus and molecular layer of the cerebellum; (ii) the non-florid plaques are more common than the florid plaques and predominate in the molecular layer of the cerebellum; and (iii) either the florid plaques develop from the non-florid plaques or both types are morphological variants resulting from the same degenerative process.  相似文献   

6.
In transmissible spongiform encephalopathies (TSEs) the prion protein (PrP) plays a central role in pathogenesis. The PrP gene (Prnp) has been described in a number of mammalian and avian species and its expression product, the cellular prion protein (PrPC), has been mapped in brains of different laboratory animals (rodent and non-human primates). However, mapping of PrPC expression in mammalian species suffering from natural (bovine and ovine) and experimental (swine) TSE or in species in which prion disease has never been reported (equine and canine) deserves further attention. Thus, localising the cellular prion protein (PrPC) distribution in brain may be noteworthy for the understanding of prion disease pathogenesis since lesions seem to be restricted to particular brain areas. In the present work, we analysed the distribution of PrPC expression among several brain structures of the above species. Our results suggest that the expression of PrPC, within the same species, differs depending on the brain structure studied, but no essential differences between the PrPC distribution patterns among the studied species could be established. Positive immunoreaction was found mainly in the neuropil and to a lesser extent in neuronal bodies which occasionally appeared strongly stained in discrete regions. Overall, the expression of PrPC in the brain was significantly higher in grey matter areas than in white matter, where accumulation of PrPSc is first observed in prion diseases. Therefore, other factors besides the level of expression of cellular PrP may account for the pathogenesis of TSEs  相似文献   

7.
We report an autopsy case of Creutzfeldt‐Jakob disease with a codon 180 point mutation of the prion protein gene (PRNP). A 77‐year‐old woman developed gait instability, followed by dementia and limb/truncal ataxia. She became akinetic and mute 18 months and died of pneumonia 26 months after the disease onset. Analysis of the PRNP gene revealed a codon 180 point mutation. Post‐mortem examination revealed marked spongiosis, neuronal loss, and astrocytic gliosis in the cerebral cortex. Mild to moderate spongiosis and neuronal loss were observed in the limbic cortex and basal ganglia. There was no spongiform change in the hippocampus, brain stem or cerebellum. Many senile plaques and neurofibrillary tangles were found, and the Braak stages were stage C and stage IV, respectively. Immunostaining for prion protein (PrP) revealed granular (synaptic‐type) and patchy PrP deposition in the cerebral cortex and especially in the hippocampus. Most patchy PrP deposits were colocalized with amyloid β plaques, but some of them were isolated. The relatively strong PrP deposition and coexistence of Alzheimer‐type pathology of this case are remarkable. We suppose that amyloid β plaques might act as a facilitating factor for PrP deposition.  相似文献   

8.
Sporadic, acquired, and genetic human prion diseases are characterized neuropathologically by distinct deposition patterns of the abnormal, disease-associated form of the prion protein (PrPsc). In addition to mutations in the prion protein gene (PRNP), PrPsc immunostaining patterns correlate with molecular phenotypes of prion diseases defined by the PRNP polymorphism at codon 129 and with protease-resistant PrP classified by Western blotting. Some point or insertional PRNP mutations share similar clinical and neuropathological phenotypes, whereas others show great variability even within the same family. Here we report a patient who presented clinically as sporadic Creutzfeldt-Jakob disease (CJD). Histologically moderate spongiform change was seen in cerebral and cerebellar cortical areas. Neuronal loss was restricted mainly to the occipital cortex and the basal ganglia. Surprisingly, numerous eosinophilic globular structures were noted in the molecular layer and the parahippocampal gyrus. These globules showed intense PrP immunopositivity using anti-PrP antibodies against different epitopes. They were stained with PAS but lacked congophilia and birefringence in polarized light. Ultrastructurally, globules were composed of 21-nm-thick intermingled filaments without dense core. Genetic analysis revealed a PRNP 144 base pair insertion. Our case reinforces the importance of molecular genetic diagnosis, especially in those patients who lack a family history of prion disease and show unusual neuropathological changes. It also widens the phenotypic spectrum of prion diseases. The phenotypic variability within the same mutation suggests further, yet uncharacterized, genetic or epigenetic influence on phenotype in these diseases.  相似文献   

9.
We studied the immunocytochemical distribution of the prion or proteinase-resistant protein (PrP) during the evolution of experimental Creutzfeldt-Jakob disease (CJD) in mice. Fifty-one brains were collected up to 22 weeks following intracerebral inoculation with the Fujisaki strain of the CJD agent. Slides were also immunostained for apolipoprotein E (apoE) and glial fibrillary acidic protein. Vacuolar changes with focal astrocytosis first occurred around the needle track at week 2 and later spread along white matter tracks. Until week 12, changes were asymmetrical, affecting more the side of inoculation. Spongiform change and astrogliosis spread subsequently to the gray matter. Time course and intensity of spongiform change and immunocytochemistry for PrP were discrepant: in most brain regions, severe vacuolation preceded immunocytochemically detectable PrP accumulation. PrP deposits in form of small dots were first detectable at week 6 in the area surrounding the needle track. After week 7, plaque-like amorphous PrP deposits were observed in white matter pathways. Finally, PrP was detectable also in basal ganglia and in the dorsal hippocampus (week 13) and in the neocortex (week 17), as the synaptic type of PrP immunopositivity. In the hippocampus, diffuse PrP deposits paralleled spongiform change, while in the cortex severe vacuolation was accompanied only by weak synaptic PrP deposits. Immunocytochemically detectable apoE was restricted to compact plaque-type PrP deposits after week 15. We conclude that disease-specific neuropathology spreads from the needle track along white matter pathways towards the gray matter; in this model, there is some discrepancy between development of tissue pathology and immunocytochemically detectable deposition of PrP. Immunocytochemically detectable apoE deposition follows PrP accumulation. Received: 22 December 1998 / Revised, accepted: 6 April 1999  相似文献   

10.
Abstract The objective was to test the hypothesis that the size frequency distributions of the prion protein (PrP) plaques in cases of variant Creutzfeldt-Jakob disease (vCJD) follow a power-law function. The design was a retrospective neuropathological study. The patients were 11 cases of clinically and neuropathologically verified vCJD. Size distributions of the diffuse and florid-type plaques were measured in several areas of the cerebral cortex and hippocampus from each case and a power-law function fitted to each distribution. The size distributions of the florid and diffuse plaques were fitted successfully by a powerlaw function in 100% and 42% of brain areas investigated respectively. Processes of aggregation/disaggregation may be more important than surface diffusion in the pathogenesis of the florid plaques. By contrast, surface diffusion may be a more significant factor in the development of the diffuse plaques.  相似文献   

11.
The spatial patterns of the prion protein (PrP) deposits were studied in immunostained sections of areas of the cerebral cortex, hippocampus, dentate gyrus, and the molecular layer of the cerebellum in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). Clustering of PrP deposits, with a regular distribution of the clusters parallel to the tissue boundary, was the most common spatial pattern observed. Two morphological types of PrP deposit were recognised, those consisting of a condensed core (florid deposits) and those deposits lacking a condensed core (non-florid deposits). The florid and non-florid PrP deposits exhibited a different profile of spatial patterns. First, the florid deposits exhibited a regularly distributed pattern of clusters more frequently than the non-florid deposits. Second, the florid deposits formed larger clusters (greater than 1,600 micro m in diameter) less frequently than the non-florid deposits. In the areas of the cerebral cortex that exhibited a regular distribution of PrP deposit clusters, the cluster size of the deposits approximated that of the groups of cells of the cortico-cortical pathway origin in only 12% of analyses. No significant differences in the frequency of the different types of spatial pattern were observed in different brain regions, or in the cerebral cortex between the upper and lower laminae. It was concluded that the spatial patterns of the PrP deposits in the cerebral cortex in vCJD are unlikely to reflect the degeneration of the cortico-cortical pathways as has been reported in sporadic CJD (sCJD). In addition, different factors could be involved in the development of the deposits with and without a condensed core.  相似文献   

12.
Glutamate plays a central role in the fast excitatory synaptic transmission and is a key neurotransmitter involved in several neurophysiological processes. Glutamate levels on the synaptic cleft are related to neural excitability, neuroplasticity, and neuronal damage associated with excitotoxicity. Mice lacking the cellular prion protein (PrP(c)) gene (Prnp) present a decreased astrocytic glutamate uptake in cultures, higher neuronal excitability in vitro and sensitivity to pro-convulsant drugs in vivo, and age-dependent memory impairment. Here, we investigate if PrP(c) might be involved in neuronal uptake and release of glutamate. For this purpose, we compared synaptosomal preparations from the cerebral cortex, entorhinal cortex, hippocampus, cerebellum, and olfactory bulb of 3- or 9-month-old PrP(c) null mice and with respective wild-type controls. Although we observed differences in synaptosomal glutamate release and uptake regarding the age of mice and the brain structure studied, these differences were similar for PrP(c) null mice and their respective wild-type controls. Therefore, despite a possible correlation between neuronal glutamate transporters, excitability, and neuronal damage, our results suggest that PrP(c) expression is not critical for neuronal glutamate transport.  相似文献   

13.
14.
A 68‐year‐old Japanese man gradually showed abnormal behavior and gait disturbance with bradykinesia. Slowly progressive dementia, including memory disturbance and disorientation, was also observed. Cerebral cortical hyperintensity on diffusion‐weighted MRI was observed 6 months after onset. The patient progressed to an akinetic mutism state with mild myoclonus, and atypical periodic sharp‐wave complexes were observed by electroencephalogram 13 months after onset. He was clinically suspected of having atypical CJD and died after 19 months total disease duration. The brain weighed 1160 g and showed mild atrophy of the cerebrum and cerebellum with ventricular dilatation. Spongiform changes with varying vacuole size and gliosis was extensive in the cerebral cortex and basal ganglia. Neuron loss in the cerebral cortex, basal ganglia and thalamus was relatively mild. The cerebellum showed mild spongiform changes of the molecular layer and mild neuron loss in the Purkinje cell layer. PrP immunostaining showed mainly coarse‐type combined with diffuse synaptic‐type PrP deposition in the cerebral gray matter. Some perivacuolar‐type PrP deposition was also present. Numerous plaque‐type PrP depositions were observed in the molecular layer of the cerebellum. Analysis of the PrP gene revealed a methionine‐to‐arginine (Met‐to‐Arg) substitution at codon 232 (M232R) with Met homozygosity at codon 129. Western blot analysis of protease‐resistant PrP indicated type 2 dominant PrP combined with type 1. Genetic CJD with M232R substitution in the PrP gene has only been reported in Japan. Although two clinical phenotypes (rapid‐type and slow‐type) were suggested in the M232R CJD cases (despite the presence of the same PrP genotype), the pathological and molecular backgrounds have not been well understood because there have only been a few autopsied case reports. This is the first case report of M232R CJD presenting with 1 + 2 PrP.  相似文献   

15.
Introduction: The cellular prion protein (PrPC) is commonly recognized as the precursor of prions, the infectious agents of the fatal transmissible spongiform encephalopathies, or prion diseases. Despite extensive effort, the physiological role of PrPC is still ambiguous. Evidence has suggested that PrPC is involved in different cellular functions, including peripheral nerve integrity and skeletal muscle physiology. Methods: We analyzed the age‐dependent influence of PrPC on treadmill test–based aerobic exercise capacity and on a series of morphological and metabolic parameters using wild‐type and genetically modified mice of different ages expressing, or knockout (KO) for, PrPC. Results: We found that aged PrP‐KO mice displayed a reduction in treadmill performance compared with PrP‐expressing animals, which was associated with peripheral nerve demyelination and alterations of skeletal muscle fiber type. Conclusion: PrP‐KO mice have an age‐dependent impairment of aerobic performance as a consequence of specific peripheral nerve and muscle alterations. Muscle Nerve 53: 269–279, 2016  相似文献   

16.
Prion disease is a neurodegenerative malady, which is believed to be transmitted via a prion protein in its abnormal conformation (PrPSc). Previous studies have failed to demonstrate that prion disease could be induced in wild-type animals using recombinant prion protein (rPrP) produced in Escherichia coli. Here, we report that prion infectivity was generated in Syrian hamsters after inoculating full-length rPrP that had been converted into the cross-β-sheet amyloid form and subjected to annealing. Serial transmission gave rise to a disease phenotype with highly unique clinical and neuropathological features. Among them were the deposition of large PrPSc plaques in subpial and subependymal areas in brain and spinal cord, very minor lesioning of the hippocampus and cerebellum, and a very slow progression of disease after onset of clinical signs despite the accumulation of large amounts of PrPSc in the brain. The length of the clinical duration is more typical of human and large animal prion diseases, than those of rodents. Our studies establish that transmissible prion disease can be induced in wild-type animals by inoculation of rPrP and introduce a valuable new model of prion diseases.  相似文献   

17.
The spatial pattern of the prion protein (PrP) deposits was studied in the cerebral cortex and cerebellum in 10 patients with sporadic Creutzfeldt–Jakob disease (CJD). In all patients the PrP deposits were aggregated into clusters and, in 90% of cortical areas and in 50% of cerebellar sections, the clusters exhibited a regular periodicity parallel to the tissue boundary; a spatial pattern also exhibited by β‐amyloid (Aß) deposits in Alzheimer's disease (AD). In the cerebral cortex, the incidence of regular clustering of the PrP deposits was similar in the upper and lower cortical laminae. The sizes of the PrP clusters in the upper and lower cortex were uncorrelated. No significant differences in mean cluster size of the PrP deposits were observed between brain regions. The size, location and distribution of the PrP deposit clusters suggest that PrP deposition occurs in relation to specific anatomical pathways and supports the hypothesis that prion pathology spreads through the brain via such pathways. In addition, the data suggest that there are similarities in the pathogenesis of extracellular protein deposits in prion disease and in AD.  相似文献   

18.
Cellular prion protein (PrP(c)) is a cell surface glycoprotein highly expressed in neurons, and a protease-resistant conformer of the protein accumulates in the brain parenchyma in prion diseases. In human prion diseases, visual cortex and visual function can be affected. We examined both the levels and the localization of PrP(c) in developing visual cortex of the common marmoset. Western blot analysis showed that PrP(c) increased from the day of birth through adulthood, and this increase correlated with the progression of synapse formation. Immunohistochemistry showed that PrP(c) was present in fiber tracts of the neonate, and this immunoreactivity was lost with maturation. Within the neuropil, the laminar distribution of PrP(c) changed with age. In the neonate, PrP(c) immunoreactivity was strongest in layer 1, where the earliest synapses form. At the end of the first postnatal week, layer 4C, as identified by its strong cytochrome oxidase activity, was noticeably lighter in terms of PrP(c) immunoreactivity than the adjacent layers. The contrast between the strong immunoreactivity in both supragranular and infragranular layers and weak immunoreactivity in layer 4C increased with age. Layers 2/3 and 5 contained more intense PrP(c) immunoreactivity; these layers receive thalamic input from the koniocellular division of the LGN, and these layers of the LGN also had strong PrP(c) immunoreactivity. Together, these results provide evidence for PrP(c) localization in an identified functional pathway and may shed some light on prion disease pathogenesis.  相似文献   

19.
Intraventricular infusion of pentosan polysulfate (PPS) as a treatment for various human prion diseases has been applied in Japan. To evaluate the influence of PPS treatment we performed pathological examination and biochemical analyses of PrP molecules in autopsied brains treated with PPS (one case of sporadic Creutzfeldt‐Jakob disease (sCJD, case 1), two cases of dura mater graft‐associated CJD (dCJD, cases 2 and 4), and one case of Gerstmann‐Sträussler‐Scheinker disease (GSS, case 3). Six cases of sCJD without PPS treatment were examined for comparison. Protease‐resistant PrP (PrPres) in the frontal lobe was evaluated by Western blotting after proteinase K digestion. Further, the degree of polymerization of PrP molecules was examined by the size‐exclusion gel chromatography assay. PPS infusions were started 3–10 months after disease onset, but the treatment did not achieve any clinical improvements. Postmortem examinations of the treated cases revealed symmetrical brain lesions, including neuronal loss, spongiform change and gliosis. Noteworthy was GFAP in the cortical astrocytes reduced in all treated cases despite astrogliosis. Immunohistochemistry for PrP revealed abnormal synaptic deposits in all treated cases and further plaque‐type PrP deposition in case 3 of GSS and case 4 of dCJD. Western blotting showed relatively low ratios of PrPres in case 2 of dCJD and case 3 of GSS, while in the treated sCJD (case 1), the ratio of PrPres was comparable with untreated cases. The indices of oligomeric PrP were reduced in one sCJD (case 1) and one dCJD (case 2). Although intraventricular PPS infusion might modify the accumulation of PrP oligomers in the brains of patients with prion diseases, the therapeutic effects are still uncertain.  相似文献   

20.
We describe a 68-year-old man with a 53-month history of progressive dementia and clinical features of a progressive supranuclear palsy-like syndrome and dysautonomia. In the late stage of his illness, the patient also developed generalized myoclonic seizures. There was no family history of similar disorders. Histological examination revealed neuronal loss and gliosis with spongiosis in the cerebral cortex. In addition, more severe neuronal loss and gliosis without spongiosis were observed in the thalamus, especially in the anterior ventral and mediodorsal nuclei, and the inferior olivary nucleus. There was also obvious loss of Purkinje cells. Immunohistochemically, no protease-resistant prion protein (PrPres)-positive structures were demonstrated. However, Western blotting revealed the presence of PrPres in the cerebral cortex. This patient had a wild type of PrP genotype. We initially considered this to be a case of the thalamic form of Creutzfeldt-Jakob disease (CJD) with a long duration. However, it is noteworthy that essentially similar pathology, albeit with less severe cerebral cortical changes, has also been reported in fatal familial insomnia, a newly identified phenotypically different prion disease with a mutation in the PrP gene. On the basis of clinicopathological features, we eventually felt that this patient was more likely to have been a sporadic case of fatal insomnia (FI) of long duration. The present case appears to draw further attention to the possible relationship between CJD and FI. Received: 18 July 1996 / Revised, accepted: 3 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号