首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guo J  Wu T  Ping Q  Chen Y  Shen J  Jiang G 《Drug delivery》2005,12(1):35-39
The purpose of this study was to investigate the solubilization capacity of sodium cholate/lecithin-mixed micelles and to evaluate the potential of mixed micelles as a carrier of cyclosporine A for intravenous infusion. The mixed micelles were prepared by coprecipitation technique. The formulation components and preparation procedures, which may affect the solubilization of cyclosporine A, were studied. The dilution stability of cyclosporine A-containing mixed micelles was investigated. Pharmacokinetic behaviors of mixed micelles in rabbits after intravenous infusion were compared with Sandimmun. Results showed the strategies to increase the solubility of cyclosporine A include lowering the molar ratio of sodium cholate to lecithin, increasing the concentration of lecithin, and reducing the ionic strength of the dispersion medium and temperature. The largest solubility was found to be 5.42 +/- 0.16 mg/ml. The leakage of mixed micelles in 5% glucose (5.84%) was much less than that in saline solution (36.7%). The relative bioavailability of mixed micelles versus Sandimmun was 112 +/- 20%, and statistical analysis demonstrated both preparations were bioequivalent. Sodium cholate/lecithin-mixed micelles are promising carriers in the intravenous delivery of cyclosporine A, considering their capability of large-scale production and low-toxic property.  相似文献   

2.
胆酸钠/磷脂混合胶团对环孢素A的增溶作用研究   总被引:2,自引:0,他引:2       下载免费PDF全文
目的研究胆酸钠/磷脂混合胶团对难溶性多肽环孢素A(CyA)的增溶作用.方法采用共沉淀法制备胆酸钠/磷脂混合胶团,并对影响增溶作用的处方及工艺进行考查.结果相同胆酸钠浓度条件下,混合胶团对CyA的增溶能力远大于胆酸钠胶团,增大混合胶团中的磷脂用量或者降低胆酸钠/磷脂(摩尔比)均有利于提高混合胶团对药物的增溶能力.升高水合温度,增加水合介质的离子强度,加入抗氧化剂维生素E(VE)及胆固醇,均不同程度的降低了混合胶团的增溶能力.通过优化各个影响因素可获得最大的增溶量(>5mg/mL),增加CyA溶解度100倍以上.结论胆酸钠/磷脂混合胶团可以成为CyA等难溶性多肽药物的一种新型增溶载体.  相似文献   

3.
目的 为提高抗肿瘤药物多西他赛的水溶性,制备磷脂-胆酸钠-Soluplus?三元混合胶束包载多西他赛,结合分子对接仿真技术研究三元混合胶束的结构及形成机制.方法 采用薄膜分散法制备Soluplus?胶束、磷脂-胆酸钠二元混合胶束、磷脂-胆酸钠-Soluplus?三元混合胶束;采用芘荧光探针法测定不同胶束的临界胶束浓度值...  相似文献   

4.
The effect of trihydroxy (sodium cholate and sodium glycocholate) and dihydroxy (sodium deoxycholate and sodium glycodeoxycholate) bile salt micelles on the spectrophotometric properties and on the solubility of nitrazepam in aqueous solution, at 25.0 degrees C and at ionic strength 0.1 M in sodium chloride, has been assessed. From the results obtained it was possible to calculate the partition coefficients (Kp) of nitrazepam between aqueous and micellar phases. The partition coefficients of nitrazepam have also been determined in mixed micelles of cholate or deoxycholate with lecithin (egg yolk phosphatidylcholine), which were used as a model of the gastrointestinal tract. Drug partition was found to depend on the bile acid (number of hydroxyl groups and conjugation with glycine), and our data indicate further that addition of lecithin to bile salt micelles decreases the values of the partition coefficients in the mixed micelles at physiological pH.  相似文献   

5.
Mixed micelles made of polyvinylpyrrolidone (PVP), sodium cholate, and phospholipids were prepared to improve the solubility of poorly water-soluble drugs. Sylibin, a drug used in treating liver diseases, was incorporated into the mixed micelles. The formulation of sylibin containing PVP-sodium cholate-phospholipid mixed micelles with an optimized composition (PVP/sodium cholate/phospholipid/silybin = 3:3:4:1∼2 by weight) was obtained based on the study of pseudoternary phase diagrams. The critical micelle concentration was used to evaluate the micellar stability towards dilution. The results showed that addition of PVP to sodium-cholate-phospholipid mixed micelles increased stability. The solubility of sylibin in PVP-sodium cholate-phospholipid mixed micelles was higher than that in pure water or in sodium cholate-phospholipid mixed micelles. In a stability study, we found that PVP-sodium cholate-phospholipid mixed micelles showed good stability. After 3 months storage at 40°C, just 2.6% sylibin was lost with only minor changes of the particle size when compared to a reference formulation containing sodium cholate and phospholipid mixed micelles. In addition, the developed formulation significantly improved in vitro drug release. The time required to release 50% sylibin (t50%) from sodium cholate and phospholipid mixed micelles was 326 h, while the t50% from PVP-sodium cholate-phospholipid mixed micelles was only 51.1 h. Our results suggest that these mixed micelles might have significant potential application to the biomedical field.  相似文献   

6.
混合胶团增溶的环孢素A经小鼠皮肤的渗透作用   总被引:1,自引:0,他引:1  
目的研究由不同表面活性剂和磷脂所组成的混合胶团(mixedmicelles)对环孢素A经小鼠皮肤给药的渗透促进作用。方法将含药混合胶团溶液封闭性应用于离体或在体小鼠皮肤,测定接收介质和血液中环孢素A含量。结果离体条件下,不同表面活性剂和磷脂所形成的混合胶团的皮肤渗透作用强度为:胆酸钠-磷脂混合胶团>脱氧胆酸钠-磷脂混合胶团>TritonX-100-磷脂混合胶团>Tween-20-磷脂混合胶团。在体条件下,用胆酸钠-磷脂混合胶团后,5h血药浓度达峰值,随后血药浓度缓慢下降。结论混合胶团在水溶液状态下对大分子难溶药物环孢素A具有一定的皮肤促渗效果。  相似文献   

7.
The aim of this work was to produce a form of injectable liposomes containing amphotericin B derived from mixed micelle proliposomes. Mixed micelles were derived from a mixture of lecithin/sodium cholate in aqueous media. The solubility of amphotericin B in proliposomes was studied as a function of lipid composition (total lipid concentration, molar ratio of lecithin/sodium cholate), and the dispersion media (pH, ionic strength, presence or absence of human serum albumin), and the temperature. The data show that micelle-->liposome transformation occurs during the dilution of proliposomes containing amphotericin B. These transformations could be followed via transmission electron microscopy (TEM). Data related to dilution of proliposomes as well, show that under no circumstance there occurs any precipitation that might be assigned to the decreased solubility of amphotericin B. These indicate that the incorporated drug also participates during the transformation of the proliposomes into liposomes. It is thus concluded that mixed micelle proliposomes are prime candidates for the production of a form of injectable amphotericin B in liposomes.  相似文献   

8.

Aim:

To evaluate a mixed micellar drug delivery system composed of sodium cholate and phospholipid for oral administration of silybin, a promising hepatoprotectants.

Methods:

The optimum formulation of sodium cholate/phospholipid-mixed micelles containing silybin was obtained based on the study of pseudo-ternary phase diagram. The dissolution of silybin-mixed micelles was investigated. The pharmacokinetic characteristics and bioavailability after oral administration of silybin-mixed micelles and silybin-N-methylglucamine were compared in dogs.

Results:

The mean particle size of prepared mixed micelles was 75.9±4.2 nm. The largest solubility of silybin was found to be 10.0±1.1 mg/mL in the optimum formulation of mixed micelles. The silybin-sodium cholate/phospholipid-mixed micelles showed a very slow release of silybin 17.5% (w/w) within 72 h in phosphate buffer (pH 7.4) and 15.6% (w/w) in HCl solution (pH 1.2). After oral administration to dogs, the relative bioavailability of mixed micelles versus silybin-N-methylglucamine in dogs was 252.0%.

Conclusion:

Sodium cholate/phospholipid-mixed micelles are promising carriers in orally delivery of silybin, considering their capability of enhancing bioavailability and large-scale production.  相似文献   

9.
Biorelevant dissolution media containing bile salt and lecithin at concentrations appropriate for fed and fasted state are useful when testing oral solid formulations of poorly water-soluble drugs. Dilution of amphiphile solutions affects the aggregation state of the amphiphiles because bile salt is partitioned between the aqueous phase and the aggregates. The aim of the investigation was to study the effect of dilution on the size distribution of aggregates and its effect on the solubilization capacity. Clear buffered solutions of four intestinal amphiphiles (sodium glycocholate, lecithin, monoolein, and oleic acid) and a combination of these were prepared at high bile salt concentration. Micelles in the glycocholate solutions decreased in size when diluted. The addition of insoluble amphiphiles led to bigger micelles with no clear correlation between size of the micelles and amphiphile concentration. Dilution of the two- and four component media caused enlargement of the mixed micelles and formation of vesicles. The solubility of estradiol in the buffer solution was increased with addition of the amphiphiles. A good correlation (R(2) = 0.987) was found between estradiol solubility and mass concentration of the amphiphiles. The results demonstrate that, in the case of estradiol, the concentration of amphiphiles rather than the aggregation state determines the solubilization capacity of the medium.  相似文献   

10.
Mixed micelles prepared using sodium taurocholate (TA) and egg lecithin (LE) were previously found to be an effective carrier for sustained release of a poorly water-soluble drug in transscleral iontophoretic delivery. The objectives of the present study were to investigate the effects of drug lipophilicity upon micellar carrier solubilization potential and drug release profiles from the sclera after iontophoretic delivery of model lipophilic drugs dexamethasone (DEX), triamcinolone acetonide (TRIAM), and β-estradiol (E2β) with a mixed micellar carrier system of TA–LE (1:1 mole ratio). In this study, the micellar carrier system was characterized for drug solubilization. The micelles encapsulating these drugs were evaluated for transscleral passive and 2-mA iontophoretic delivery (both cathodal and anodal) and drug release from excised human sclera in vitro. The results show that drug solubility enhancement of the micellar carrier system increased with increasing drug lipophilicity. The more lipophilic drugs E2β and TRIAM displayed slower drug release from the sclera compared with the less lipophilic drug DEX after iontophoretic drug delivery with the mixed micelles. These results suggest that the combination of transscleral iontophoresis and micellar carriers is more effective in sustaining transscleral delivery of the more lipophilic drugs studied in this investigation. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:480–488, 2013  相似文献   

11.
Lecithin, a major phospholipid component of human bile, is instrumental in the formation of mixed micelles in vivo, with implications for the dissolution and absorption of poorly soluble compounds administered orally. Hydrocortisone, a poorly aqueous soluble drug (S aq = 1.08 × 10–3 M), was chosen to compare the rate and mechanism of dissolution in a NaTC/lecithin (mixed micelle) system with its NaTC-only (simple micelle) counterpart. Surface tension, solubility studies, contact angles, rotating disk dissolution rates, and powder dissolution rates were compared for hydrocortisone between solutions containing NaTC/lecithin (4:1) and NaTC-only under conditions representative of the small intestine (0–30 mM NaTC, pH 5.5, 0.1 M NaCl). At all concentrations, the solubility of hydrocortisone in NaTC/lecithin was slightly higher (up to twofold) than in the corresponding NaTC-only solutions. At low NaTC concentrations, initial powder dissolution rates were faster in the NaTC/lecithin solutions than in corresponding NaTC-only solutions. In contrast, at high NaTC concentrations, initial powder dissolution rates in the NaTC-only solutions were faster. Results indicated that in the NaTC-only system wetting effects predominated for dissolution, while in the NaTC/lecithin system, the dissolution rate of hydro-cortisone was enhanced mainly via solubilization.  相似文献   

12.
In order to interpret the clinical efficacy of conjugated ursodeoxycholate (UDC) in cholesterol (Ch) gallstone patients, the Ch solubilization in mixed micelles in 40:40:32 mM tauroursodeoxycholate (TUDC):taurochenodeoxycholate (TCDC):lecithin (L) and 80:32 mM TUDC:L systems was estimated by using a model of Ch binding to mixed micelles. The Ch solubilization limit in mixed TUDC:L micelles was found to be higher than that in mixed TUDC:TCDC:L micelles. In the 80:32 mM TUDC:L system, the dissolution of the Ch pellet decreased after vesicles (liposomes) formed on the surface of the Ch pellet whereas the dissolution of microcrystalline Ch was rapid before and after vesicle formation in the solution, indicating that the total surface area of solid Ch exposed to the solution may be another important factor in inducing the dissolution of Ch gallstones. These phenomena suggest that although vesicles, occasionally formed in the bile of patients under the therapy of conjugated UDC, make a contribution to the solubilization of Ch gallstones, the model of Ch binding to mixed TUDC:L micelles can be used to estimate Ch solubility in TUDC:L system.  相似文献   

13.
This study was designed to investigate the cytotoxicity of bile salt–lecithin mixed micelles on the Caco-2 cell model. Cell viability and proliferation after mixed micelles treatments were evaluated with the MTT assay, and the integrity of Caco-2 cell monolayer was determined by quantitating the transepithelial electrical resistance and the flux of tracer, FITC-dextran 4400. The apoptosis induced by mixed micelles treatments was investigated with the annexin V/PI protocol. The particle size of mixed micelles was all smaller than 100 nm. The mixed micelles with lower than 0.2 mM sodium deoxycholate (SDC) had no significant effects on cell viability and proliferation. When the level of SDC was higher than 0.4 mM and the lecithin/SDC ratio was lower than 2:1, the mixed micelles caused significant changes in cell viability and proliferation. Furthermore, the mixed micelles affected tight junctions in a composition-dependent manner. Specifically, the tight junctions were transiently opened rather than damaged by the mixed micelles with SDC of between 0.2 and 0.6 mM. The mixed micelles with more lecithin also induced less apoptosis. These results demonstrate that relatively higher concentrations of mixed micelles are toxic to Caco-2 cells, while phospholipids can attenuate the toxicity of the bile salts.  相似文献   

14.
Naphthalene solubility was determined in aqueous 0.15 M NaCl containing sodium cholate in the 0-0.05 M concentration range at 25 +/- 0.1 degrees. Sodium cholate tends to self-associate in aqueous solutions. Most often, the association pattern has been described in terms of a monomer-micellar model in which it is assumed that no association occurs below the critical micelle concentration. By comparison of the experimental solubilization curve with curves calculated on the basis of the monomer-micellar model, it was shown that this model is inappropriate for the self-association pattern of sodium cholate. The solubility data were consistent with a model that assumes that sodium cholate associates to form dimers, trimers, and higher aggregates with an average aggregation number of 7.63. Model calculations suggest that naphthalene is solubilized by dimers and higher aggregates. Solubilization of naphthalene by trimers appears to be negligible.  相似文献   

15.
The solubilization of vitamin K1 by bile salts (sodium deoxycholate, sodium cholate and their corresponding glycine conjugates) and phosphatidylcholine (egg)-bile salt mixed micelles has been investigated. The solubilization curves were not always linear with increasing bile salts, but the vitamin was appreciably solubilized in the region below their CMCs. In the bile salt solutions (20 mM, phosphate buffered saline, pH 7.5, ions strength 0.2), the solubilized vitamin ranged from 0.3 to 0.9 mM. With increasing phosphatidylcholine, the amount of vitamin solubilized was dramatically increased; at the molar ratio of 1:1 (both 20 mM), the amount of vitamin solubilized was about 25-30 times more than by the corresponding bile salts alone. There is a possibility that exogenous phospholipid given orally as liposomal forms assists the solubilization of vitamin K1, in the intestine. This characteristic is suggested as being responsible, in part, for the enhanced recovery of blood coagulation after oral administration of liposomal vitamin K1 to warfarin-treated rabbits.  相似文献   

16.
The significant inhibitory action of diclofenac formulated in mixed micelles of lecithin with cholate or deoxycholate was observed on the rat hind paw edema induced by carrageenan. In the primary stage, mixed micelle formulation of deoxycholate was more effective compared with that of cholate. However, in the final term, the inhibitory action was similar in both formulations. In a previous study, the flux of diclofenac was greater in the mixed micelle formulation of deoxycholate compared with that of cholate. It was suggested that the permeation rate of diclofenac through skin was proportional to the pharmacological activity. The hind paw edema was quickly inhibited when cyclic monoterpene such as d-limonene or l-menthol was included in the formulations. All the micelle formulations significantly decreased the value of AUC estimated the hind paw thickness-time profile. This suggests that the micelle formulation of cholate in addition to deoxycholate showed significant anti-inflammatory activity to hind paw edema of rats. Incorporation of d-limonene or l-menthol was more effective on the decrease of AUC. A pharmacological study revealed that micelle formulations were able to reduce the skin irritation of chemicals.  相似文献   

17.
This article presents the preparation and topical performance of some new lipid-based formulations of diclofenac, namely (a) a diclofenac aqueous gel containing mixed micelles (sodium cholate:egg lecithin molar ratio 0.55); (b) diclofenac lotion that contains soya lecithin, ethanol and buffer; and (c) diclofenac lipogel containing egg lecithin, isopropyl myristate, propylene glycol and ethanol. Gel formulations were prepared using Carbomer 934. Release of diclofenac from all formulations was monitored via dialysis through Spectra/por membrane into phosphate buffer (0.2 M pH=7.4) using a Franz cell. Drug release profile and diffusion coefficients were compared with brand formulation (Geigy's Vlotaren Emulgel). Statistical analysis of data show that the diffusion coefficient of the drug from these formulations rank according to the following order: Diclofenac lotion (D=5.308x10(-7) cm(2)/s) >lipogel (D=2.102 x 10(-7) cm(2)/s) >Voltaren Emulgel (1.518 x 10(-7) cm(2)/s) >aqueous gel mixed micelle (0.966 x 10(-7) cm(2)/s). These results show that diclofenac lotion and lipogel maybe more suitable formulations than the conventional topical dosage form.  相似文献   

18.
Mixed Micelles as Proliposomes for the Solubilization of Teniposide   总被引:5,自引:0,他引:5  
The aqueous solubility of teniposide in detergent and phospholipid mixed micelles was investigated as functions of the detergents and lipids composing the mixed micelles, the molar ratio of detergent to phospholipid, and the total lipid concentration of the system. The polarity, the charge of the phospholipid, and its saturation affected the solubilization potential of the micelles. Physical chemical factors such as the pH, ionic strength, and temperature of the dispersion medium also altered the solubilization capacity of the system. The results are explained by the changes occurring in the critical micelle concentration and packing arrangements of the aggregates. The desired solubility of teniposide can be achieved by adjusting the studied parameters to the optimum values. Teniposide-containing mixed micelles were spontaneously converted to drug-containing vesicles upon aqueous dilution; therefore, the precipitation of the drug was totally eliminated. In conclusion, mixed micelles as proliposomes can be a suitable drug carrier system for insoluble compounds such as teniposide.  相似文献   

19.
环孢素A混合胶束的制备与理化性质考察   总被引:2,自引:0,他引:2  
潘昊  李翔  张婧  王东凯 《中国药业》2011,20(11):32-33
目的制备环孢素A混合胶束并对其理化性质进行研究。方法通过正交设计筛选环孢素A混合胶束的最佳处方,并考察其形态、粒径、Zeta电位、载药量、包封率和体外释放情况。结果最佳处方为环孢素A与磷脂的质量比为1∶7、胆固醇硫酸酯钠与磷脂的质量比为1∶4、水合介质为双蒸水,由此制备出的胶束呈球形,平均粒径为(139.2±2.3)nm,Zeta电位为(-25.3±0.56)mV,胶束的载药量达(6.04±0.04)g/L,包封率为(94.5±0.46)%,24 h内体外累积释放(33.1±2.7)%。结论用优化处方制备的环孢素A混合胶束,其稳定性和分散性良好,具有一定缓释作用。  相似文献   

20.
The purpose of this review is to provide a critical examination of the reported solubilization of drugs by bile salt micelles. The underlying premise is that with better information regarding the inherent biological complexity, efforts to predict the oral bioavailability of drug will be enhanced. The common means of comparing the reported values was chosen to be the solubilization ratio. This is equal to the moles of drug solubilized per mole of bile salt. The values were segregated according to bile salt type, temperature, ionic strength, and the presence and absence of added lipids. Only segregation by bile salt type was pairwise statistically significant. From the solubilization ratios and the reported values of the aqueous solubility, the logarithms of the mole fraction micelle partition coefficients, log K(m/a), were calculated. The log K(m/w) was found to be correlated with the reported logarithm of the octanol/water partition coefficient. The rank order of slopes of the log K(m/a) as a function of log K(o/w) was cholate approximately taurodeoxycholate > glycocholate approximately taurocholate approximately glycodeoxycholate, with deoxycholate not being statistically different from the other data sets. The slope and intercept for the bile salt mixed micelle systems were 0.600 and 2.44, respectively, which were statistically indistinguishable from glycocholate, taurocholate, and glycodeoxycholate bile salt data. The existence of statistically significant correlations suggests that predicting the solubilization in the intestine may be possible with in vitro measurements if additional information is gathered in the appropriate micellar solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号