首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
NS-7 is a novel, voltage-dependent Na(+) and Ca(2+) channel blocker. This study evaluated the in vivo neuroprotective effect of NS-7 in a rat transient focal ischemic model when administered during occlusion. Left middle cerebral artery occlusion was induced in adult male Sprague-Dawley rats for 120 min using an intraluminal thread method. The rats received a single intravenous injection of NS-7 or saline (control group) just after the onset of ischemia, and at 30, 60 and 120 min after ischemia. Their brains were removed after 48 h reperfusion, sectioned, and stained with hematoxylin and eosin. Animals were evaluated by neurological examination at 120 min ischemia and 48 h reperfusion. Infarcted cortex and striatum were measured quantitatively and infarction volumes were calculated. Cortical infarction volumes were 128+/-74 (NS-7) and 214+/-64 mm(3) (control) immediately after the ischemia group, 155+/-48 (NS-7) and 225+/-12 mm(3) (control) after the 30 min group, 160+/-54 (NS-7) and 225+/-48 mm(3) (control) after the 60 min group, and 176+/-43 (NS-7) and 223+/-38 mm(3) (control) after the 120 min group. Cortices in NS-7-treated groups were significantly less infarcted than in control groups at all treatment times. There was no significant difference in the striatal infarction volume between the treatment and control groups. Neurological examination showed that hemiparesis and abnormal posture of the NS-7 groups were significantly more improved at 48 h reperfusion than those of the control groups without posture examination in the 120 min group. These observations suggest that NS-7 may be a new potential therapeutic agent for the acute phase of cerebral infarction.  相似文献   

3.
Binding of cyclic AMP to the regulatory subunit of cyclic AMP-dependent protein kinase (PKA) is an essential step in cyclic AMP-mediated intracellular signal transduction. This binding is, however, rapidly inhibited in the acute phase of cerebral ischemia, indicating that the signal transduction via PKA is very vulnerable to ischemia, although this signal pathway is very important for neuronal survival in the brain. Several lines of evidence suggest that the activation of voltage-sensitive Na+ and Ca(2+) channels is an important mediator of acute ischemic brain damage. In the present study, therefore, we examined the effect of a novel Na+ and Ca(2+) channel blocker, NS-7 (4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy) pyrimidine hydrochloride), on changes in the binding activity of PKA to cyclic AMP in permanent focal cerebral ischemia, which was induced by occlusion of the middle cerebral artery by the intraluminal suture method for 5 h in the rat. NS-7 (1 mg/kg) or saline was intravenously infused 5 min after occlusion. The binding activity of PKA to cyclic AMP and local cerebral blood flow were assessed by the in vitro [(3)H]cyclic AMP binding and the [(14)C]iodoantipyrine methods, respectively. NS-7 significantly suppressed inhibition of the binding activity of PKA to cyclic AMP in the ischemic regions such as the frontal and parietal cortices and the medial region of the caudate-putamen without affecting cerebral blood flow or arterial blood pressure. Infarct area measured in the brain slices stained with cresyl violet was significantly smaller in animals treated with NS-7 than in those treated with saline. Blockade of voltage-sensitive Na+ and Ca(2+) channels by NS-7 was expected to reduce ischemia-induced depolarization and thus prevent a massive formation of free radicals, which is known to inhibit the binding activity of PKA to cyclic AMP. These data clearly indicate that NS-7 provides very efficient neuroprotection in the acute phase of cerebral ischemia, and sustains the normal function of PKA.  相似文献   

4.
5.
The effect of a novel Na+/Ca2+ channel blocker NS-7 [4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride] on the cerebral infarction, edema and brain energy metabolism was investigated in rats after permanent middle cerebral artery occlusion (MCAO). The infarction and brain water content were evaluated at 48 h and 24 h after MCAO, respectively. A single bolus injection of NS-7 (0.03125–0.25 mg/kg) immediately after MCAO produced a dose-dependent reduction in the infarct volume as well as edema both in the cerebral cortex and striatum. Glycerol (4 g/kg) also decreased water content both in the occluded and non-occluded brain, but it did not reduce the size of cerebral infarction. Unlike glycerol, NS-7 did not change the water content in non-occluded brain. Moreover, a significant protective action was still observed even when NS-7 was injected once at 12 h after occlusion. In addition, NS-7 significantly reversed the decrease in tissue ATP content observed at 3 h but not at 0.5 h after MCAO. These findings suggest that a Na+/Ca2+ channel blocker NS-7 protects cerebral tissues against ischemic insults by improving the disturbance of cerebral energy metabolism and suppressing the cerebral edema.  相似文献   

6.
We have previously shown that NS-7 [4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride] reduces the size of cerebral infarction measured by 2,3,5-triphenyltetrazolium chloride staining at 48 h after permanent middle cerebral artery occlusion (MCAO) in rats. To determine whether NS-7 improves the pathological and behavioral changes at the chronic stage of MCAO, the effect of this compound on the cerebral infarction as well as the neurological and cognitive impairments was investigated 7 days after MCAO. Single or five daily injections of NS-7 (0.125–0.5 mg/kg, i.v.) significantly reduced the infarct volume and improved the neuronal dysfunction including the hind leg paralysis, walking disability and motor incoordination, and the deficit of passive avoidance task, although the neuroprotective efficacy was not different among these dosing regimens. On the other hand, the effects of single versus repeated injections of NS-7 at 0.1 or 0.2 mg/kg on the neurological symptoms were compared at 4 weeks after MCAO. At a lower dose, repeated but not single injection of NS-7 significantly improved the neurological symptoms, although the single injection was effective at a higher dose. From these findings, it is suggested that NS-7 reverses the behavioral and cognitive dysfunction observed at the chronic stage of cerebral ischemia by suppressing the cerebral infarction.  相似文献   

7.
Astrocytes exhibit three transmembrane Ca2+ influx pathways: voltage-gated Ca2+ channels (VGCCs), the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) class of glutamate receptors, and Na+/Ca2+ exchangers. Each of these pathways is thought to be capable of mediating a significant increase in Ca2+ concentration ([Ca2+]i); however, the relative importance of each and their interdependence in the regulation astrocyte [Ca2+]i is not known. We demonstrate here that 100 μM AMPA in the presence of 100 μM cyclothiazide (CTZ) causes an increase in [Ca2+]i in cultured cerebral astrocytes that requires transmembrane Ca2+ influx. This increase of [Ca2+]i is blocked by 100 μM benzamil or 0.5 μM U-73122, which inhibit reverse-mode operation of the Na+/Ca2+ exchanger by independent mechanisms. This response does not require Ca2+ influx through VGCCs, nor does it depend upon a significant Ca2+ influx through AMPA receptors (AMPARs). Additionally, AMPA in the presence of CTZ causes a depletion of thapsigargin-sensitive intracellular Ca2+ stores, although depletion of these Ca2+ stores does not decrease the peak [Ca2+]i response to AMPA. We propose that activation of AMPARs in astrocytes can cause [Ca2+]i to increase through the reverse mode operation of the Na+/Ca2+ exchanger with an associated release of Ca2+ from intracellular stores. This proposed mechanism requires neither Ca2+-permeant AMPARs nor the activation of VGCCs to be effective.  相似文献   

8.
The membrane potential hypothesis that the responses to hypercapnia of carotid chemosensory activity is mediated by voltage-gated Ca2+ channels was investigated by measuring directly the chemosensory output from rat and cat carotid bodies, perfused and superfused in vitro. We found that the inorganic and organic blockers of voltage-gated Ca2+ channels suppressed the hypercapnic responses, thereby supporting the membrane potential hypothesis.  相似文献   

9.
Compartmentalization of protein kinases and association of the enzyme with strategic cellular substrates may be important for regulating signal transduction in neurons. Cerebral ischemia produced by transient 20 min occlusion of common carotid and vertebral arteries in rats caused a dramatic (3-fold) increase in Ca2+/Calmodulin-dependent protein kinase II (CaM-KII) in the fraction enriched in postsynaptic density (PSDf), the compartment of the neuron that is involved in signal transduction. This change in compartmentalization was not reversible for up to 24 h after termination of the occlusion and was followed by reduction of CaM-KII to 50% of control content one week after the insult. The observed changes in CaM-KII content did not represent general protein redistribution in PSDf after ischemia since there were no parallel changes in PSDf actin concentration. The redistribution of CaM-KII coincided with gradual (up to 80%) reduction of its activity in PSDf as tested using specific peptide substrate and endogenous CaM-KII substrates. This work provides evidence that ischemia disturbs CaM-KII distribution and activity in PSDf and this may lead to long lasting disruption of signal transduction at the synaptic level.  相似文献   

10.
The plasma membrane Na+/Ca2+ exchanger is believed to play a role in the regulation of Ca2+ fluxes in neurons, though the lack of specific inhibitors has limited the delineation of its precise contribution. We recently reported the development of antibodies against a 36-kDa brain synaptic membrane protein which immunoprecipitated exchanger activity from solubilized membranes. In the present study we examined the kinetics of the Na+/Ca2+ exchanger in primary neurons in culture, in a neuronal hybrid cell line (NCB-20), and in a fibroblast-like cell line (CV-1) to see whether the level of exchanger activity correlated with the degree of immunostaining produced by our antibodies. The Vmax was determined for each cell type and found to be highest in primary neurons. Exchanger activity increased in primary neurons between days 1 and 6 in culture, but no such time-dependent change occurred in either of the cell lines. Immunoblot analysis of the three cell types probed with the anti-36-kDa protein antibodies revealed significantly greater immunostaining in the primary neurons compared with the other two cell types. Intensity of staining of neurons also increased significantly between days 1 and 6 in culture. Immunocytochemistry showed significant labelling of the primary neurons on the neuritic processes and points of contact between cells. The NCB-20 and CV-1 cells showed considerably lower levels of immunoreactivity. The antibodies immunoextracted 90% of the exchanger activity in the primary neurons and 70 and 50% of the activity in NCB-20 and CV-1 cells respectively. Thus the expression of the 36-kDa protein appears to be closely associated with the Na+/Ca2+ exchanger in neuronal cells and, possibly to a lesser extent, in non-neuronal cells.  相似文献   

11.
In cultured bovine adrenal chromaffin cells, NS-7 [4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy) pyrimidine hydrochloride], a newly-synthesized neuroprotective drug, inhibited nicotine-induced 22Na+ influx via nicotinic receptors (IC50=15.5 μM); the suppression by NS-7 was observed in the presence of ouabain, an inhibitor of Na+,K+-ATPase, and was not attenuated upon the washout of NS-7. NS-7 decreased nicotine-induced maximum influx of 22Na+ without altering the EC50 value of nicotine. Also, NS-7 diminished nicotine-induced 45Ca2+ influx via nicotinic receptors and voltage-dependent Ca2+ channels (IC50=14.1 μM) and catecholamine secretion (IC50=19.5 μM). These results suggest that NS-7 produces noncompetitive and long-lasting inhibitory effects on neuronal nicotinic receptors in adrenal chromaffin cells, and interferes with the stimulus-secretion coupling.  相似文献   

12.
The purpose of this study was to determine if nicardipine, a calcium ion channel blocker, affects pyruvate dehydrogenase (PDH) activity and improves energy metabolism during cerebral ischemia and reperfusion. Cerebral ischemia was induced, using the bilateral carotid artery occlusion method, for 60 min followed by reperfusion up to 120 min in gerbils. Nicardipine (1 mg/kg) or saline (vehicle-treated) was given to gerbils 30 min prior to the occlusion of the common carotid arteries. PDH activity and metabolites (ATP, PCr, and lactate) were measured in cortex prior to ischemia, immediately following ischemia, and after each reperfusion period. After 60 min ischemia, PDH activity increased in both groups, and was significantly higher in the nicardipine-treated group. After 20 min reperfusion, PDH activity in the nicardipine-treated group recovered to control levels, whereas, the PDH activity in the vehicle-treated group remained elevated, and was higher than the nicardipine-treated animals. At 60 and 120 min reperfusion, the activities in the vehicle-treated group were significantly below control levels, there were no differences, however, between the two groups. ATP and PCr concentrations were markedly depleted immediately after ischemia in both groups. ATP levels at 20 min reperfusion and PCr levels at 60 min reperfusion were significantly higher in the nicardipine-treated group. Lactate concentrations in both groups increased 7–8 fold, similarly, immediately after ischemia. During reperfusion, the lactate remained elevated in both groups, though the levels in the nicardipine-treated group were lower than those in the vehicle-treated group, but not significantly. Nicardipine treatment normalized PDH activity quickly and improved energy metabolism after reperfusion.  相似文献   

13.
In leech Retzius neurones the inhibition of the Na+–K+ pump by ouabain causes an increase in the cytosolic free calcium concentration ([Ca2+]i). To elucidate the mechanism of this increase we investigated the changes in [Ca2+]i (measured by Fura-2) and in membrane potential that were induced by inhibiting the Na+–K+ pump in bathing solutions of different ionic composition. The results show that Na+–K+ pump inhibition induced a [Ca2+]i increase only if the cells depolarized sufficiently in the presence of extracellular Ca2+. Specifically, the relationship between [Ca2+]i and the membrane potential upon Na+–K+ pump inhibition closely matched the corresponding relationship upon activation of the voltage-dependent Ca2+ channels by raising the extracellular K+ concentration. It is concluded that the [Ca2+]i increase caused by inhibiting the Na+–K+ pump in leech Retzius neurones is exclusively due to Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

14.
Yu SS  Yu K  Gu Y  Ruan DY 《Brain research bulletin》2005,66(3):134-267
The physiological role of taurine, an abundant free amino acid in the neural system, is still poorly understood. The aim of this study was to investigate its effect on TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) Na+ currents in enzymatically dissociated neurons from rat dorsal root ganglion (DRG) with conventional whole-cell recording manner under voltage-clamp conditions. A TTX-S Na+ current was recorded preferentially from large DRG neurons and a TTX-R Na+ current preferentially from small ones. For TTX-S Na+ channel, taurine of the concentration > or = 10 mM shifted the activation curve in the depolarizing direction and the inactivation curve in the hyperpolarizing direction. There was no change in the activation curve for TTX-R Na+ channel and the inactivation curve was shifted in the hyperpolarizing direction slightly in the presence of taurine > or = 20 mM. When the recovery kinetics was examined, the presence of taurine resulted in a slower recovery from inactivation of TTX-S currents and no change of TTX-R ones. All the effects of taurine were weakly concentration-dependent and partly recovered quite slowly after washout. Our data indicate that taurine alters the properties of Na+ currents in intact DRG neurons. These may contribute to the understanding of taurine as a natural neuroprotectant and the potential of taurine as a useful medicine for the treatment of sensory neuropathies.  相似文献   

15.
16.
In order to investigate the role of Na+,K(+)-ATPase in the development of neuronal necrosis following cerebral ischemia, ischemia was induced in gerbils by occluding the common carotid artery unilaterally for 10 min. A time-course analysis revealed that significant reductions of the Na+,K(+)-ATPase activity in the cerebral cortex and hippocampus were manifested at 15 min, 30 min, and 1 h, and returned to the control level one day following recirculation. No apparent alterations of the Mg(2+)-ATPase activity, on the other hand, were obtained throughout the experimental period. Furthermore, Scatchard analyses of [3H]ouabain binding to the cerebral cortex membranes disclosed that the Bmax values invariably decreased without any change of Kd values following ischemia. It has also been shown that treatment of the animals with an agent known to mitigate ischemic neuronal necrosis, i.e. BY-1949, significantly reversed such derangements. These results suggest that the recovery of decreased Na+,K(+)-ATPase activity shortly after ischemia exerts a protective effect against ischemic brain damage.  相似文献   

17.
目的探讨磷酸化cAMP反应元件结合蛋白(p-CREB)、CREB1活性调节转导子(TORC1)和脑源性神经影响因子(BDNF)在局灶性脑缺血大鼠脑皮质中的表达规律及意义。方法用线栓法分别制作雄性SD大鼠右侧大脑中动脉闭塞(MCAO)后3 h、6 h、12 h、24 h、48 h及72h模型,应用蛋白印迹法分别检测TORC1、BDNF和p-CREB在局灶性脑缺血皮质的蛋白表达水平,用聚合酶链反应技术检测TORC1和BDNF mRNA的相对表达水平。结果与正常组相比,TORC1的核累积和细胞表达的两个高峰为术后3 h和48 h,而p-CREB和BDNF的两个高峰分别为3 h和72 h,差异有统计学意义(P<0.05)。结论 TORC1可能在大鼠局灶性脑缺血后48 h前参与促进了顶叶皮质神经元细胞CREB/BDNF通路的活化,对皮质神经元具有保护作用。  相似文献   

18.
The Na(+)/H(+) exchanger (NHE) is activated during ischemia-reperfusion in an effort to restore intracellular pH to normal levels. The NHE is recognized to exist as a distinct protein in the plasma membranes of a variety of cells. We investigated the pharmacological effects of a Na(+)/H(+) exchanger inhibitor, SM-20220 (N-(aminoiminomethyl)-1-methyl-1-H-indole-2-carboxamide methanesulfonate), on ischemic brain damage, edema and neutrophil accumulation at 72 h after middle cerebral artery (MCA) occlusion in a rat MCA occlusion model. SM-20220 was intravenously administered as a bolus injection immediately after occlusion, followed by a continuous infusion over 2.5 h. At 72 h after occlusion, the infract area was measured using hematoxylin-eosin staining and, using the same slices, neutrophils in the brain were immuno-stained with anti-myeloperoxidase (n=11). In a separate study, rat behavior was scored and scaled, and brains removed for the determination of water content by the dry-weight method. SM-20220 significantly (P<0.05) attenuated cerebral infarct volume, water content, and the neutrophil accumulation at 72 h after the MCA occlusion, and ameliorated neurological deficits. SM-20220, an NHE inhibitor prevented the progress of cerebral ischemic damage and edema following MCA occlusion in rats though a possible mechanism that may be due to the inhibition of neutrophil accumulation. The NHE in neutrophils may enhance the progress of cerebral damage following cerebral ischemia-reperfusion.  相似文献   

19.
20.
Effect of the removal of extracellular Ca2+ on the response of cytosolic concentrations of Ca2+ ([Ca2+]i) to ouabain, an Na+/K+ exchanger antagonist, was examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2AM and microfluorometry. Application of ouabain (10 mM) induced a sustained increase in [Ca2+]i (mean±S.E.M.; 38±5% increase, n=16) in 55% of tested cells (n=29). The ouabain-induced [Ca2+]i increase was abolished by the removal of extracellular Na+. D600 (50 μM), an L-type voltage-gated Ca2+ channel antagonist, inhibited the [Ca2+]i increase by 57±7% (n=4). Removal of extracellular Ca2+ eliminated the [Ca2+]i increase, but subsequent washing out of ouabain in Ca2+-free solution produced a rise in [Ca2+]i (62±8% increase, n=6, P<0.05), referred to as a [Ca2+]i rise after Ca2+-free/ouabain. The magnitude of the [Ca2+]i rise was larger than that of ouabain-induced [Ca2+]i increase. D600 (5 μM) inhibited the [Ca2+]i rise after Ca2+-free/ouabain by 83±10% (n=4). These results suggest that ouabain-induced [Ca2+]i increase was due to Ca2+ entry involving L-type Ca2+ channels which could be activated by cytosolic Na+ accumulation. Ca2+ removal might modify the [Ca2+]i response, resulting in the occurrence of a rise in [Ca2+]i after Ca2+-free/ouabain which mostly involved L-type Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号