首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five competitive cyclists were used to determine the effects of fluid intake (16 ml.kg-1) consisting of: (i) non-nutrient control (CON); (ii) fructose (1 g.kg-1) before exercise (FRU); (iii) caffeine (5 mg.kg-1) before exercise (CAF); (iv) glucose (1 g.kg-1) during exercise (GLU); and (v) fructose/caffeine before and glucose during exercise (CFG) on blood glucose, free fatty acids, muscle glycogen, and other parameters. Exercise consisted of 90 min of cycling at 65 to 70% VO2max. Following exercise, blood glucose was found to be significantly (P less than 0.05) higher for CFG and GLU (117 and 109 mg%) compared to CON, CAF, and FRU (92, 89, and 86 mg%). Blood free fatty acids rose (P less than 0.05) further for CON (1,336), CAF (1,126), and FRU (1,034) over CFG (737) and GLU (714 mumol.l-1). Muscle glycogen utilization was greater (P less than 0.05) for CON (91) vs CAF (63) and GLU (62 mumol/g-1 wet muscle weight). It was concluded that GLU and CAF decrease muscle glycogen utilization, FRU is likely to cause gastric upset, and ingestion of multiple substances produces the greatest variability in muscle glycogen utilization and may provide added endurance benefits in some individuals.  相似文献   

2.
3.
PURPOSE: To determine whether combined ingestion of maltodextrin and fructose during 150 min of cycling exercise would lead to exogenous carbohydrate oxidation rates higher than 1.1 g.min. METHODS: Eight trained cyclists VO2max: 64.1 +/- 3.1 mL.kg.min) performed three exercise trials in a random order. Each trial consisted of 150 min cycling at 55% maximum power output (64.2+/-3.5% VO2max) while subjects received a solution providing either 1.8 g.min of maltodextrin (MD), 1.2 g.min of maltodextrin + 0.6 g.min of fructose (MD+F), or plain water. To quantify exogenous carbohydrate oxidation, corn-derived MD and F were used, which have a high natural abundance of C. RESULTS: Peak exogenous carbohydrate oxidation (last 30 min of exercise) rates were approximately 40% higher with combined MD+F ingestion compared with MD only ingestion (1.50+/-0.07 and 1.06+/-0.08 g.min, respectively, P<0.05). Furthermore, the average exogenous carbohydrate oxidation rate during the last 90 min of exercise was higher with combined MD+F ingestion compared with MD alone (1.38+/-0.06 and 0.96+/-0.07 g.min, respectively, P<0.05). CONCLUSIONS: The present study demonstrates that with ingestion of large amounts of maltodextrin and fructose during cycling exercise, exogenous carbohydrate oxidation can reach peak values of approximately 1.5 g.min, and this is markedly higher than oxidation rates from ingesting maltodextrin alone.  相似文献   

4.
5.
Nine men were studied during three 4-h cycling bouts to determine the effect of frequency and dosage of solid carbohydrate (CHO) feedings (86 g) on muscle glycogen utilization and exercise performance. In the frequency trial (F), the subjects ingested 10.75 g of CHO along with 200 ml of water at 30-min intervals; in the dosage trial (D), the subjects ingested 21.5 g of CHO with 400 ml of water at 60-min intervals. During the control trial (C), the subjects ingested 400 ml of an artificially sweetened placebo at 60-min intervals. Respiratory exchange ratios were significantly elevated in both trials D and F (P less than 0.05). Blood glucose was significantly elevated in trial D 20 min post-feeding but had returned to control levels by 50 min. In trial F, blood glucose was maintained at a constant level throughout the entire 4 h. In trial C, blood glucose declined steadily during the entire 4 h. Despite the differences in blood glucose levels between the three trials, there were no significant differences in the rate of muscle glycogen utilization in any of the trials (D = 82.9 +/- 6.6 [SE] mmol X kg-1 vs C = 80.9 +/- 6.9 mmol X kg-1 vs F = 74.4 +/- 12.2 mmol X kg-1). In a sprint ride (100% VO2max) to exhaustion at the end of each trial, the subjects performed significantly longer in trial F compared to C (120.97 +/- 9.6 vs 81.0 +/- 7.1 s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The purpose of this study was to compare the physiological, sensory, and exercise performance responses to ingestion of 6% glucose, 6% fructose, and 6% sucrose solutions during cycling exercise. Twelve subjects completed three sessions consisting of 115 min of intermittent cycle ergometer exercise at 65-80% of VO2max followed by a timed performance bout requiring the completion of 600 pedal revolutions. During each of five 4-min rest periods, subjects consumed 3 ml.kg LBM-1 of one of the beverages. Beverages were presented in counterbalanced, double-blind fashion. Heart rate, VO2, plasma urate, plasma lactate, respiratory exchange ratio, and carbohydrate combustion rates changed similarly among beverage treatment. However, fructose was associated with lower plasma glucose and serum insulin, a larger loss of plasma volume, greater gastrointestinal distress and relative perceived exertion ratings, and higher plasma or serum concentrations of free fatty acids, fructose, and cortisol values than sucrose or glucose (P less than 0.05). Compared to sucrose and glucose, fructose feeding also resulted in lower lactate and HR values during the performance bout (P less than 0.05). Mean +/- SE cycling performance times were faster with sucrose and glucose than with fructose: 419.4 +/- 21.0 s, 423.9 +/- 21.2 s, and 488.3 +/- 21.1 s, respectively (P less than 0.05). Relative to 6% solutions of sucrose and glucose, ingestion of a 6% fructose beverage is associated with gastrointestinal distress, compromised physiological response, and reduced exercise capacity.  相似文献   

7.
This study examined the effect of carbohydrate (CHO) intake during a 4 h recovery from prolonged running on muscle glycogen metabolism during subsequent exercise. On 2 occasions, 7 male subjects ran for 90 min at 70 % maximum oxygen uptake VO(2 max) on a motorized treadmill (R1) followed by a 4 h rest period (REC) and a 15 min run (R2) consisting of 5 min at 60 % and 10 min at 70 % VO(2 max) During REC, each subject ingested a total of 2.7 l of an isotonic solution containing either 50 g of CHO (LOW) or 175 g of CHO (HIGH). Biopsy samples were obtained from the vastus lateralis immediately after R1, REC and R2. During REC, a higher muscle glycogen resynthesis was observed in HIGH when compared with LOW trial (75 +/- 20 vs. 31 +/- 11 mmol x kg dry matter (dm) -1, respectively; p < 0.01). Muscle glycogen utilization during R2 was similar between the HIGH and LOW trials (39 +/- 10 vs. 46 +/- 11 mmol x kg dm -1, respectively). These results suggest that ingestion of a large amount of CHO at frequent intervals during recovery from exercise does not affect the rate of muscle glycogen utilization during subsequent exercise.  相似文献   

8.
The purpose of this study was to examine differences in muscle glycogen storage during three successive days of running or cycling. In a crossover design, seven male subjects performed two 3-d trials of either running (trial R) or cycling (trial C) for 60 min at 75% VO2max. Biopsy samples were obtained before and after each day's exercise from the gastrocnemius (trial R) or vastus lateralis (trial C) muscle. Diets in the 2 d preceding and during each trial contained 5 g carbohydrate.kg-1.d-1 and 14,475 +/- 402 kJ.d-1. Mean pre-exercise glycogen content (mmol.kg-1 wet wt.) was significantly reduced in both trials on day 3 (103.4 +/- 6.0) when compared to day 1 and day 2 (119.9 +/- 6.8 and 116.4 +/- 5.7, respectively). Day 1 glycogen reduction was significantly greater in trial C (P less than 0.03), and glycogen restorage was greater (P less than 0.02) only in trial C between the 1st and 2nd d. On day 3, spectrophotometric analysis of PAS strains showed that pre-exercise glycogen content in either muscle group was significantly (P less than 0.01) less in Type I as compared to Type II fibers. This difference in fiber glycogen storage did not appear to be attributable to muscle damage as negligible leukocyte infiltration and low blood CK levels were obtained. No difference between modes were observed for CK values throughout the trials. These data suggest that the depressed glycogen storage before the 3rd d of exercise was due to the moderate carbohydrate intake.  相似文献   

9.
An investigation was made into the effects of physical exercise upon heart glycogen change in rats exposed to decreased barometric pressure in hypobaric chamber simulating the effects of 3,000 m and 5,000 m altitude. Blood and cardiac tissue samples were examined after 1 h and 5 h of treadmill running at sea level and at 3,000 m, and after 1 h at 5,000 m. At sea level, cardiac glycogen level showed a classic biphasic evolution which was not affected by running. At 3,000 m, 1 h of running promoted an initial increase of 16% from control values, while a secondary decrease of 15% was measured after 5 h of running. Running for 1 h at 5,000 m induced a total depletion in cardiac glycogen level, the latter being depressed by 90% from control values. Free fatty acid (FFA) plasma level was increased by physical exercise at all barometric pressures, but the response was gradually enhanced by hypoxia. These data indicate that heart glycogen utilization during prolonged physical exercise is stimulated by acute altitude exposure, which suppresses the sparing effect observed at sea level upon dependence of enhanced FFA availability. The great differences in cardiac glycogen utilization support the views that enhanced glycogenolysis during hypoxia is promoted by different parameters, thus affecting various pathways. The slight decrease at 3,000 m suggests a moderate increase in anaerobic metabolism while the exhaustion observed after 1 h of running at 5,000 m indicates a decrease in cellular respiration response and enhanced heart anaerobic metabolism.  相似文献   

10.
Ten men were studied during 4 h of cycling to determine the effect of solid carbohydrate (CHO) feedings on muscle glycogen utilization and exercise performance. In the experimental trial (E) the subjects ingested 43 g of sucrose in solid form along with 400 ml of water at 0, 1, 2 and 3 h of exercise. During the control trial (C) they received 400 ml of an artificially sweetened drink without solid CHO. No differences in VO2, heart rate, or total energy expenditure were observed between trials; however, respiratory exchange ratios were significantly (P less than 0.05) higher during E. Blood glucose was significantly (P less than 0.05) elevated 20 min post-feeding in E; however, by 50 min no differences were observed between trials until 230 min (E = 4.5 +/- 0.2 mmol X l-1 vs C = 3.9 +/- 0.2, means +/- SE; P less than 0.05). Muscle glycogen utilization was significantly (P less than 0.05) lower during E (100.7 +/- 10.2 mmol X kg-1 w.w.) than C (126.2 +/- 5.5). During a sprint (100% VO2max) ride to exhaustion at the end of each trial, subjects performed 45% longer when fed CHO (E = 126.8 +/- 24.7 s vs C = 87.2 +/- 17.5; P less than 0.05). It was concluded that repeated solid CHO feedings maintain blood glucose levels, reduce muscle glycogen depletion during prolonged exercise, and enhance sprint performance at the end of such activity.  相似文献   

11.
12.
PURPOSE: To determine the depletion of muscle glycogen during five consecutive days of endurance exercise in Alaskan sled dogs consuming a high-fat, low-carbohydrate diet. METHODS: Forty-two fit Alaskan sled dogs were used in the study, of which six dogs served as nonexercising control animals. The remaining 36 dogs ran 160 km x d(-1) for up to 5 d while consuming a diet providing approximately 50% of calories as fat and 15% as carbohydrate. Muscle biopsies were performed on six randomly selected dogs before feeding and within 4 h after each 160-km run was completed. Muscle samples were prepared for analysis of glycogen content and myosin ATPase staining. Serum creatine kinase (CK) activity was measured once before exercise and after each 160-km run. RESULTS: Thirty-three of 36 dogs completed the runs. Muscle glycogen concentration was highest in sedentary dogs (340 +/- 102 mmol x kg(-1) dry weight), declined to 73 +/- 16 after 160 km and subsequently increased to similar levels between 320 and 800 km (320 km: 177 +/- 34; 800 km: 213 +/- 44). Postexercise serum CK activity was significantly elevated throughout the study. CONCLUSION: Skeletal muscle in Alaskan sled dogs has remarkable glyconeogenic ability as demonstrated by repletion to greater than 50% of resting muscle glycogen concentrations after the second of five consecutive 160-km runs even when fed a low-carbohydrate, high-fat diet. Whether this finding is attributable to rapid repletion of muscle glycogen during brief recovery periods versus progressive utilization of alternative substrates remains to be investigated.  相似文献   

13.
Objectives: To investigate the effects of fluid ingestion on neuromuscular function during prolonged cycling exercise.

Methods: Eight well trained subjects exercised for 180 minutes in a moderate environment at a workload requiring ~60% maximal oxygen uptake. Two conditions, fluid (F) and no fluid (NF) ingestion, were investigated.

Results: During maximal voluntary isometric contraction (MVC), prolonged cycling exercise reduced (p<0.05) the maximal force generating capacity of quadriceps muscles (after three hours of cycling) and root mean square (RMS) values (after two hours of cycling) with no difference between the two conditions despite greater body weight loss (p<0.05) in NF. The mean power frequency (MPF) for vastus lateralis muscle was reduced (p<0.05) and the rate of force development (RFD) was increased (p<0.05) only during NF. During cycling exercise, integrated electromyographic activity and perceived exertion were increased in both conditions (p<0.05) with no significant effect of fluid ingestion.

Conclusions: The results suggest that fluid ingestion did not prevent the previously reported decrease in maximal force with exercise duration, but seems to have a positive effect on some indicators of neuromuscular fatigue such as mean power frequency and rate of force development during maximal voluntary contraction. Further investigations are needed to assess the effect of change in hydration on neural mechanisms linked to the development of muscular fatigue during prolonged exercise.

  相似文献   

14.
Muscles exercised before creatine (Cr) supplementation have a greater elevation of intramuscular Cr than nonexercised muscles. PURPOSE: To determine whether preferential increase of muscle thickness could be achieved by ingesting Cr immediately after exercise of specific muscles over 6 wk. Another purpose was to determine if the increase in lean tissue mass (LTM) with Cr supplementation is greater in males than females. METHODS: Subjects randomly assigned to Cr (six males, five females, 0.2 g Cr x kg(-1)) and placebo (PL; five males, five females) performed single-limb training with one side of the body two times per week and with the opposite limbs two times per week. Cr was consumed after training of one side of the body and PL after training the opposite side. Subjects on PL always consumed PL after exercise. Elbow flexors and knee extensors muscle thickness, LTM, fat, and bone mass, and single-limb bench and leg press one-repetition maximum (1-RM) were assessed before and after 6 wk. RESULTS: Within the Cr group, elbow flexors muscle thickness increased more in the limbs trained on days Cr was supplemented compared with limbs trained on days PL was supplemented (P < 0.02). All other measures changed to a similar extent between limbs. Males on Cr had the greatest increase in LTM (P < 0.05) with no difference between females on Cr and PL. Bench press 1-RM increased more in Cr than PL groups (P < 0.01). All other measures changed to a similar extent between groups. Males increased bone mass (P < 0.01) with no effect of Cr supplementation. CONCLUSION: Supplementing with Cr after training of the arms resulted in greater increase in muscle thickness of the arms. Males have a greater increase in LTM with Cr supplementation than females.  相似文献   

15.
Although it is often viewed as a homogenous substrate, glycogen is comprised of individual granules or 'glycosomes' that vary in their composition, subcellular localization, and metabolism. These differences result in additional levels of regulation allowing granules to be regulated individually or regionally within the cell during both rest and exercise.  相似文献   

16.
Twelve trained males, in a fed state, were studied to examine the effect of pre-exercise fructose ingestion on endurance capacity during prolonged cycling exercise. Sixty minutes prior to exercise, subjects ingested either 60 or 85 g fructose or a sweet placebo. Mean exercise intensity initially required 62% of the maximal aerobic power and thereafter increased to elicit 72 and 81% of maximal aerobic power at 90 and 120 min of exercise, respectively. Exercise time (mean +/- SE) to exhaustion was significantly increased after fructose ingestion, as compared to placebo ingestion (145 +/- 4 vs 132 +/- 3 min, P less than 0.01). During the exercise, no differences were observed between both trials for oxygen uptake, heart rate, or perceived exertion. Serum glucose and insulin levels between both trials were not significantly different throughout the experiment. There were also no significant differences in serum-free fatty acids and glycerol levels as well as respiratory exchange ratio between fructose and placebo trials during the exercise. The results suggest that fructose ingestion is of benefit before prolonged exercise, because it provides a carbohydrate source to contracting muscles without transient hypoglycemia and a depression of fat utilization, and thereby delays the fatigue.  相似文献   

17.
18.
19.
Introduction: In this study we examined the pacing strategy and the end muscle glycogen contents in eight cyclists, once when they were carbohydrate loaded and once when they were non-loaded.

Methods: Cyclists completed 2 hours of cycling at ~73% of maximum oxygen consumption, which included five sprints at 100% of peak sustained power output every 20 minutes, followed immediately by a 1 hour time trial. Muscle biopsies were performed before and immediately after exercise, while blood samples were taken during the 2 hour steady state rides and immediately after exercise.

Results: Carbohydrate loading improved mean power output during the 1 hour time trial (mean (SEM) 219 (17) v 233 (15) W; p<0.05) and enabled subjects to use significantly more muscle glycogen than during the trial following their normal diet. Significantly, the subjects, kept blind to all feedback except for time, started both time trials at similar workloads (~30 W), but after 1 minute of cycling, the workload average 14 W higher throughout the loaded compared with the non-loaded time trial. There were no differences in subjects' plasma glucose and lactate concentrations and heart rates in the carbohydrate loaded versus the non-loaded trial. Of the eight subjects, seven improved their time trial performance after carbohydrate loading. Finishing muscle glycogen concentrations in these seven subjects were remarkably similar in both trials (18 (3) v 20 (3) mmol/kg w/w), despite significantly different starting values and time trial performances (36.55 (1.47) v 38.14 (1.27) km/h; p<0.05). The intra-subject coefficient of variation (CV) for end glycogen content in these seven subjects was 10%, compared with an inter-subject CV of 43%.

Conclusions: As seven subjects completed the time trials with the same end exercise muscle glycogen concentrations, diet induced changes in pacing strategies during the time trials in these subjects may have resulted from integrated feedback from the periphery, perhaps from glycogen content in exercising muscles.

  相似文献   

20.
PURPOSE: The purpose of the study was to evaluate the effects of carbohydrate (CHO) supplementation on whole-body and net muscle substrate use during 10 h of discontinuous exercise, simulating occupational settings in men and women. METHODOLOGY: Recreationally trained subjects (N = 7 males, N = 6 females) performed a graded exercise test on a treadmill (TM) and cycle ergometer (CE) to determine ventilatory threshold (VT) and V O2peak. In a double-blind, randomized crossover design, subjects received either CHO [20% maltodextrin (0.6 g.kg FFM.h)] or flavored placebo (PLA) drink each hour across 10 h of exercise. Exercise intensity was 71.3 +/- 3% and 72.4 +/- 4% VT for TM and CE, respectively. Hourly exercise included 9 min of upper-body ergometery, 19 min of cycling, and 20 min of treadmill walking, with a 1-min transition between modes, followed by a 10-min rest and feeding period. The protocol was selected to simulate arduous occupational settings. Vastus lateralis biopsies were obtained before and after exercise. Expired gases were collected every other hour to establish average rates of whole-body CHO and fat oxidation. Blood glucose (BG) was measured continuously. RESULTS: Whole-body CHO oxidation was maintained during CHO trial compared with the PLA trial. Net muscle glycogen use was 52% higher for the PLA trial (176.0 +/- 16.7, 117.0 +/- 20.9 and 164.5 +/- 11.0, 133.8 +/- 10.9 mmol.kg w.w. for PLA and CHO, respectively, P < 0.05). There were no significant sex-specific differences in glycogen use, whole-body substrate oxidation, or BG values. CONCLUSION: The ingestion of CHO during long-duration exercise decreases net muscle glycogen use while better maintaining whole-body carbohydrate oxidation, and potentially increasing performance in field settings. There are limited differences in sex-specific substrate oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号