首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous animal studies have suggested the rapid development of opiate dependency in 24 hours or less. However, the development of dependence on opioids within twenty-four hours has yet to be demonstrated in previously opiate-free human or nonhuman primate subjects. Following naloxone administration, cable-restrained monkeys which received intravenous morphine hourly for only six hours exhibited a behavioral syndrome characteristic of opioid withdrawal in this particular species. These data indicate that acute physical dependence on morphine may be induced after six hours in a primate species.  相似文献   

2.
3.
The role of extracellular glutamate, within the locus coeruleus, in mediation of the behavioral signs elicited by electrical stimulation of the nucleus paragigantocellularis (PGi) was investigated in conscious, opioid-naive rats. Each rat was prepared with a chronically implanted unilateral electrode within the PGi and a microdialysis guide cannula directed at the ipsilateral locus coeruleus. Opioid withdrawal-like behaviors (rearing, teeth-chattering, wet-dog shakes, etc.) and increases in extracellular glutamate concentrations within the locus coeruleus were evoked, in a frequency-dependent (0.5-50 Hz) manner, during PGi stimulation. Reverse dialysis perfusion of the locus coeruleus with the nonspecific glutamate receptor antagonist, kynurenic acid (0.1, 1 mM), reduced the intensity of stimulation-induced behaviors by roughly 50%, but had no effect on the corresponding increases in glutamate concentrations. Perfusion of the locus coeruleus with the glutamate transporter inhibitor, L-trans-pyrrolidine dicarboxylic acid, at 1, but not at 0.1, mM significantly increased glutamate levels in dialysates. Neither concentration of the transporter inhibitor altered the behavioral score. The results indicate that the opioid withdrawal-like behaviors elicited by electrical stimulation of the brainstem at the site of the PGi are positively correlated with locus coeruleus levels of glutamate, and suggest further that the behaviors are partially mediated by release of glutamate within the locus coeruleus or its immediate vicinity.  相似文献   

4.
Sensitization to the rate-decreasing effects of opioid antagonists induced by acute pretreatment with opioid agonists has been suggested to reflect initial changes in opioid systems that underlie physical dependence. Glutamate receptors are implicated in the development and expression of opioid dependence, and antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors have been shown repeatedly to attenuate the severity of opioid withdrawal. The present study evaluated the ability of a competitive NMDA receptor antagonist, D-CPPene (SDZ EAA 494; 3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid), to affect morphine-induced sensitization to naloxone in rats trained to lever-press on a multiple-trial, fixed-ratio 10 schedule of food reinforcement. D-CPPene (0.3-3 mg/kg) was administered either 4 h or 30 min prior to the test session. Morphine (10 mg/kg) or its vehicle was administered 4 h before naloxone challenge (0.3-3 mg/kg). D-CPPene failed to prevent morphine-induced potentiation of the naloxone-produced decrement in operant performance. Thus, these results suggest that agonist-induced sensitization to behavioral effects of opioid antagonists may be insensitive to NMDA receptor blockade.  相似文献   

5.
The nucleus paragigantocellularis (PGi) has been hypothesized to play an important role in the development of physical dependence on opioids, including the prototype mu-opioid receptor agonist, morphine, and the mixed agonist/antagonist, butorphanol, which shows selective kappa-opioid receptor agonist activity, in rats. In confirmation of previous work, electrical stimulation of the PGi in opioid-nai;ve rats induced stimulus-intensity-related, withdrawal-like behaviors similar to those observed during naloxone-precipitated withdrawal from dependence upon butorphanol. Novel findings were made in rats surgically implanted with cannulae aimed at the lateral ventricle and the right PGi and made physically dependent by intracerebroventricular infusion of either morphine (26 nmol/microl/h) or butorphanol (26 nmol/microl/h) through an osmotic minipump for 3 days. Two hours following termination of the opioid infusion, microinjections of naloxone (11 nmol/400 nl), a nonselective opioid receptor antagonist, or nor-binaltorphimine (nor-BNI) (3.84 nmol/400 nl), a selective kappa-opioid receptor antagonist, were made into the PGi of morphine-dependent and butorphanol-dependent rats. Discrete PGi injections precipitated withdrawal behaviors, with significant (P<.05) increases noted in the incidence of teeth chattering, wet-dog shakes, and scratching. Composite scores for behavioral withdrawal were significantly higher in nor-BNI-precipitated, butorphanol-dependent rats (score=6.8+/-0.6), in naloxone-precipitated, butorphanol-dependent rats (8.9+/-0.8), and in naloxone-precipitated, morphine-dependent rats (11.5+/-0.9) than in all other groups. Both kappa- and mu-opioid receptor mediated dependence can be demonstrated at the level of a discrete medullary site, the PGi, which further supports a specific role for this nucleus in elicitation of behavioral responses during opioid withdrawal.  相似文献   

6.
Drug dependence and the endogenous opioid system   总被引:3,自引:0,他引:3  
The discovery of endogenous opioids has markedly influenced the research on the biology of drug dependence. Evidence has been presented that these brain substances are self-administered by laboratory animals. This finding, among others, has led to the hypothesis that endogenous opioids are involved in reinforcing habits, including dependence on drugs of abuse. The course of drug dependence is presented as a continuum from no drug use via controlled use to an actual dependence on the drug. Specific brain opioid systems belonging to four conceptualized brain circuits are described to be involved during the different phases of the drug dependence continuum. More recent research to delineate the role of endogenous opioid systems in drug dependence has focussed on genetic research in humans and animals. Among others, the findings obtained from studies of opioid receptor and opioid peptide precursor knockout mice provided further support for a role of endogenous opioid systems in drug dependence, in agreement with previous pharmacological studies.  相似文献   

7.
Fundytus ME 《CNS drugs》2001,15(1):29-58
Evidence from the last several decades indicates that the excitatory amino acid glutamate plays a significant role in nociceptive processing. Glutamate and glutamate receptors are located in areas of the brain, spinal cord and periphery that are involved in pain sensation and transmission. Glutamate acts at several types of receptors, including ionotropic (directly coupled to ion channels) and metabotropic (directly coupled to intracellular second messengers). Ionotropic receptors include those selectively activated by N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate. Metabotropic glutamate receptors are classified into 3 groups based on sequence homology, signal transduction mechanisms and receptor pharmacology. Glutamate also interacts with the opioid system, and intrathecal or systemic coadministration of glutamate receptor antagonists with opioids may enhance analgesia while reducing the development of opioid tolerance and dependence. The actions of glutamate in the brain seem to be more complex. Activation of glutamate receptors in some brain areas seems to be pronociceptive (e.g. thalamus, trigeminal nucleus), although activation of glutamate receptors in other brain areas seems to be antinociceptive (e.g. periaqueductal grey, ventrolateral medulla). Application of glutamate, or agonists selective for one of the several types of glutamate receptor, to the spinal cord or periphery induces nociceptive behaviours. Inhibition of glutamate release, or of glutamate receptors, in the spinal cord or periphery attenuates both acute and chronic pain in animal models. Similar benefits have been seen in studies involving humans (both patients and volunteers); however, results have been inconsistent. More research is needed to clearly define the role of existing treatment options and explore the possibilities for future drug development.  相似文献   

8.
Among the various nervous systems and signaling components involved in the development of morphine withdrawal symptoms, sensitization of the brain dopaminergic nervous system and an increase in the cAMP levels in the locus coeruleus are believed to be the most important cellular events. This study tested the effects of (-)-epigallocatechin gallate (EGCG), a major compound of green tea, on the development of morphine-induced withdrawal symptoms. All the naloxone-precipitated withdrawal symptoms in morphine-dependent animals were inhibited by an EGCG pretreatment in a dose-dependent manner, being forepaw tremor, rearing, teeth chattering, urination, and wet dog shake were more sensitive than jumping and ptosis. In addition, EGCG showed moderate inhibitory effects on the morphine-induced increase in the cAMP levels in the locus coeruleus at 100 mg/kg and the signaling of the dopamine D2 receptor at 100 microM. Effects of EGCG on the sequestration of D2 receptor were inconclusive. These results suggest that EGCG has strong pharmacological activity against the development of morphine dependence, which can be partly explained by its inhibitory effects on the morphine-induced increase in the cAMP levels in the locus coeruleus and the signaling of the dopamine D2 receptor.  相似文献   

9.
Naltrexone-precipitated morphine withdrawal induces hyperactivity of locus coeruleus (LC) neurons, as well as a plethora of behavioral withdrawal signs. Previous research has demonstrated that an increased release of glutamate and activation of AMPA receptors, particularly in the LC, play an important role in opiate withdrawal. LY354740 is a novel Group II metabotropic glutamate mGlu2/3 receptor agonist that decreases the release of glutamate. Therefore, we investigated the effect of LY354740 on naltrexone-precipitated morphine-withdrawal-induced activation of LC neurons and behavioral signs of morphine withdrawal. In in vivo recordings from anesthetized rats, pretreatment with LY354740 (3-30 mg/kg, s.c.) dose-dependently attenuated the morphine-withdrawal-induced activation of LC neurons. In unanesthetized, morphine-dependent animals, pretreatment with LY354740 (3-30 mg/kg, s.c.) dose-dependently suppressed the severity and occurrence of many naltrexone-precipitated morphine-withdrawal signs. These results indicate mGlu2/3 receptor agonists: (1) can attenuate the morphine-withdrawal-induced activation of LC neurons and many behavioral signs of morphine withdrawal; and (2) may have therapeutic effects in man for the treatment of opiate withdrawal.  相似文献   

10.
Opioid dependence and cross-dependence in the isolated guinea-pig ileum   总被引:1,自引:0,他引:1  
The development of opioid dependence and tolerance attributed to selective types of opiate receptors was studied in the isolated ileum of guinea pigs chronically exposed to specific opioids. These investigations were based on reports that in this preparation highly tolerant opiate receptors may coexist with opiate receptors of almost unchanged sensitivity. Thus, the ilea were set up in vitro and tested for tolerance and dependence. Apparently precipitation of the withdrawal contracture, indicating dependence, proved a more sensitive parameter than the phenomenon of tolerance. Maximal dependence was determined at rather low degrees of tolerance (5 to 10 fold). The intensity of the withdrawal contracture failed to increase as opiate tolerance did. Furthermore, the experiments failed to present evidence for the existence of selective dependence at specific opiate receptor types. These findings may suggest multiple adaptational mechanisms upon chronic activation of opiate receptors. One mechanism may be responsible for the development of dependence and a low degree of tolerance, whilst a further increase of tolerance may be associated with changes at the opiate binding site level.  相似文献   

11.
There is a growing interest in the development of new pharmacological tools for treating alcohol withdrawal and dependence. A number of anticonvulsants including valproate and carbamazepine have been shown to be safe and effective alternatives to benzodiazepines for treating alcohol withdrawal. These agents are relatively safe, are free from demonstrated abuse liability, and do not usually potentiate the psychomotor and cognitive effects of alcohol. For the treatment of alcohol dependence, there is a growing literature on the utility of medications that have neurochemical effects at opioid, serotonergic, GABAergic, and glutamate receptors. Furthermore, as a class of medication, there appears to be a growing interest in investigating the utility of novel anticonvulsants such as topiramate for the treatment of alcohol dependence.  相似文献   

12.
Rationale and objectives We have recently reported that conditioned morphine reward and tolerance to its antinociceptive effect, but not expression of morphine dependence, were attenuated by 2-(phosphonomethyl)pentanedioic acid (2-PMPA), a prototypic inhibitor of glutamate carboxipeptidase II (GCP II), which is an enzyme responsible for the supply of glutamate. In the present study, we investigated in more detail the effects of GCP II inhibition on opioid dependence and tolerance to its antinociceptive effect in C57/Bl mice using a novel GCP II inhibitor.Results The treatment with 2-(3-mercaptopropyl)pentanedioic acid (2-MPPA; 60 but not 10 or 30 mg/kg) prevented the development of morphine tolerance without affecting acute morphine antinociception. 2-MPPA at 30 and 60 mg/kg did not prevent the development of dependence induced by 10 and 30 mg/kg of morphine. The study on opioid withdrawal syndrome, i.e., expression of opioid dependence, demonstrated that 2-MPPA potentiated jumping behavior and teeth chattering but attenuated chewing and ptosis. None of these opioid withdrawal signs were affected by 2-MPPA in morphine nondependent mice. Pretreatment with the mGluR II antagonist LY341495 (1 mg/kg) reversed the 2-MPPA-induced increase or decrease in opioid withdrawal signs in morphine-dependent mice. 2-MPPA (60 mg/kg) administered for 7 days with morphine did not affect brain concentration of this opiate.Conclusions The present findings suggest complex effects of GCP II inhibition on morphine dependence and tolerance and imply a role of mGluR II in the actions of 2-MPPA.  相似文献   

13.
Ceftriaxone (a beta-lactam antibiotic) has recently been identified as having the rare ability to increase the expression and functional activity of the glutamate transporter subtype 1 (GLT-1) in rat spinal cord cultures. GLT-1 has been implicated in diverse neurological disorders and in opioid dependence and withdrawal. It has been speculated that it might also be involved in the physical dependence and withdrawal of other abused drugs, but demonstration of this property can be difficult in mammalian models. Here, we demonstrate for the first time using a planarian model that ceftriaxone attenuates both the development of physical dependence and abstinence-induced withdrawal from cocaine, amphetamine, methamphetamine, and a benzodiazepine (clorazepate) in a concentration-related manner. These results suggest that physical dependence and withdrawal from several drugs involve a common - beta-lactam-sensitive - mechanism in planarians. If these findings can be shown to extend to mammals, beta-lactam antibiotics might represent a novel pharmacotherapy or adjunct approach for treating drug abuse or serve as a template for drug discovery efforts aimed at treating drug abuse, recovery from drug abuse, or ameliorating the withdrawal from chronic use of therapeutic medications.  相似文献   

14.
Opioids: cellular mechanisms of tolerance and physical dependence   总被引:5,自引:0,他引:5  
Morphine and other opioids are used and abused for their analgesic and rewarding properties. Tolerance to these effects develops over hours/days to weeks, as can physical and psychological dependence. Despite much investigation, the precise cellular mechanisms underlying opioid tolerance and dependence remain elusive. Recent studies examining mu-opioid receptor desensitization and trafficking have revealed several potential mechanisms for acute receptor regulation. Other studies have reported changes in many other proteins that develop during chronic opioid treatment or withdrawal and such changes may be partly responsible for the cellular and synaptic adaptations to prolonged opioid exposure. While these studies have added to our knowledge of the cellular processes participating in opioid tolerance and dependence, the challenge remains to integrate these observations into a coherent explanation of the complex changes observed in whole animals chronically exposed to opioids.  相似文献   

15.
The devastating costs of opioid abuse and dependence underscore theneed for effective treatments for these disorders. At present, several different maintenance medications exist for treating opioid dependence, including methadone, buprenorphine and naltrexone. Of these, naltrexone is theonly one that possesses no opioid agonist effects. Instead, naltrexoneoccupies opioid receptors and prevents or reverses the effects produced by opioid agonists. Despite its clear pharmacologic effectiveness, its clinical effectiveness in treating opioid dependence has been disappointing, primarily due to non-compliance with taking the medication. However, the recent availability of sustained-release formulations of naltrexone has renewed interest in this medication. The present paper describes the development of sustained-release naltrexone formulations and discusses the clinical issues associated with their use in treating opioid dependence.  相似文献   

16.
18-Methoxyroconaridine (18-MC), a synthetic derivative of ibogaine, reduces morphine self-administration and alleviates several signs of acute opioid withdrawal in rats. Although there is already well documented evidence of the mechanism mediating 18-MC's action to reduce the rewarding effects of morphine, nothing is known about the mechanism responsible for 18-MC's attenuation of opioid withdrawal. In vitro studies have demonstrated that 18-MC is a potent antagonist of alpha3beta4 nicotinic receptors (IC50=0.75 microM), which are predominantly located in the medial habenula and interpeduncular nuclei. Previous work indicating that alpha3beta4 nicotinic receptors mediate 18-MC's effects on drug self-administration prompted us to assess whether brain areas having high or moderate densities of alpha3beta4 receptors might be involved in 18-MC's modulation of opioid withdrawal. To test this possibility, 18-MC was locally administered into the medial habenula, interpeduncular nucleus and locus coeruleus of morphine-dependent rats; this treatment was followed by naltrexone to precipitate a withdrawal syndrome. Pretreatment with various doses of 18-MC into the locus coeruleus significantly reduced wet-dog shakes, teeth chattering, burying and diarrhea, while pretreatment into the medial habenula attenuated teeth chattering, burying, and weight loss. Some doses of 18-MC administered into the interpeduncular nucleus significantly ameliorated rearing, teeth chattering, and burying, while other doses exacerbated diarrhea and teeth chattering. The present findings suggest that 18-MC may act in all three nuclei to suppress various signs of opioid withdrawal.  相似文献   

17.
Opioid and excitatory amino acid receptors contribute to morphine dependence, but there are no studies of their role in heroin dependence. Thus, mice injected with acute or chronic heroin doses in the present study were pretreated with one of the following selective antagonists: 7-benzylidenenaltrexone (BNTX), naltriben (NTB), nor-binaltorphimine (nor-BNI; delta1, delta2, and kappa opioid receptors, respectively), MK-801, or LY293558 (NMDA and AMPA excitatory amino acid receptors, respectively). Naloxone-precipitated withdrawal jumping frequency, shown here to be a reliable index of heroin dependence magnitude, was reduced by BNTX or NTB in mice injected with both acute and chronic heroin doses. In contrast, nor-BNI did not alter jumping frequencies in mice injected with an acute heroin dose but significantly increased them in mice receiving chronic heroin injections. Continuous MK-801 or LY293558 infusion, but not injection, reduced jumping frequencies during withdrawal from acute heroin treatment. Their delivery by injection was nonetheless effective against chronic heroin dependence, suggesting mechanisms not simply attributable to NMDA or AMPA blockade. These data indicate that whereas delta1, delta2, NMDA, and AMPA receptors enable acute and chronic heroin dependence, kappa receptor activity limits the dependence liability of chronic heroin. With the exception of delta1 receptors, the apparent role of these receptors to heroin dependence is consistent with their contribution to morphine dependence, indicating that there is substantial physiological commonality underlying dependence to both heroin and morphine. The ability of kappa receptor blockade to differentially alter acute and chronic dependence supports previous assertions from studies with other opioids that acute and chronic opioid dependence are, at least in part, mechanistically distinct. Elucidating the substrates contributing to heroin dependence, and identifying their similarities and differences with those of other opioids such as morphine, may yield effective treatment strategies to the problem of heroin dependency.  相似文献   

18.
N-Methyl-D-aspartate (NMDA) antagonists have been demonstrated to suppress the signs of opiate withdrawal; however, side effects limit their clinical use. Since the metabotropic glutamate (mGlu) 5 receptor has been shown to affect glutamate release and modulate NMDA receptor function, we examined the effects of two selective mGlu5 receptor antagonists, 2-methyl-6-(phenyl-ethynyl)-pyridine (MPEP) and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP), on morphine withdrawal. Pretreatment with MPEP or MTEP (1, 3, and 10 mg/kg, i.p.) significantly attenuated behavioral signs of morphine withdrawal. Specifically, both MPEP and MTEP attenuated the occurrence/severity of chews, digging, salivation, and weight loss, and increased the occurrence of erections. Neither compound changed the occurrence of wet-dog shakes, ptosis, irritability, or lacrimation. Both MPEP and MTEP produced a modest, but significant, attenuation of morphine-withdrawal-induced activation of locus coeruleus neurons in anesthetized rats. These results indicate a role for mGlu5 receptors in morphine withdrawal and suggest the potential for mGlu5 antagonists in the treatment of withdrawal from opiates and other drugs of abuse.  相似文献   

19.
The devastating costs of opioid abuse and dependence underscore the need for effective treatments for these disorders. At present, several different maintenance medications exist for treating opioid dependence, including methadone, buprenorphine and naltrexone. Of these, naltrexone is the only one that possesses no opioid agonist effects. Instead, naltrexone occupies opioid receptors and prevents or reverses the effects produced by opioid agonists. Despite its clear pharmacologic effectiveness, its clinical effectiveness in treating opioid dependence has been disappointing, primarily due to non-compliance with taking the medication. However, the recent availability of sustained-release formulations of naltrexone has renewed interest in this medication. The present paper describes the development of sustained-release naltrexone formulations and discusses the clinical issues associated with their use in treating opioid dependence.  相似文献   

20.
Glutamate receptors are implicated in the development and expression of drug dependence. Substantial experimental evidence suggests that antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors attenuate the severity of opioid withdrawal. However, it is less clear whether opioid withdrawal can be potentiated by agonists of glutamate receptors. The present study evaluated the behavioural effects of various agonists of glutamate receptors, as well as a nitric oxide (NO) donor, in morphine-dependent rats trained to discriminate 0.1 mg/kg of naloxone from saline. None of the following drugs produced appreciable levels of naloxone-like responding (substitution tests) or potentiated the discriminative stimulus effects of naloxone: NMDA (3-56 mg/kg), glycine (100-1000 mg/kg), glutamate (1000-3000 mg/kg), kainate (0.3-3 mg/kg), isosorbide dinitrate (30-300 mg/kg). Nevertheless, expression of some morphine withdrawal-like somatic and behavioural signs ('wet-dog'-like shaking, scream on touch, ptosis, tremor, chewing, weight loss) was facilitated by NMDA, glycine, and isosorbide dinitrate. These results suggest that, compared to somatic symptoms, subjective effects of opioid withdrawal (as reflected by discriminative stimulus effects) are not mimicked by direct activation of glutamate receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号