首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
近视眼眼轴长度、前房深度及晶状体厚度的测量分析   总被引:6,自引:0,他引:6  
霍豫星  丁华 《眼科新进展》2006,26(9):696-697
目的探讨近视屈光度与眼袖长度、前房深度及晶状体厚度之间的关系。方法采用日本产NIDEK-US2520B型超声显像仪对屈光度在-3.00D以上的近视患者163例(312眼)进行眼轴长度、晶状体厚度和前房深度测量。结果随着近视度数的增加,其眼轴长度和前房深度明显增加,而晶状体厚度与眼轴长度的比值则显著降低(P<0.05)。在屈光度相同的各组中,眼轴长度、晶状体厚度和晶状体厚度与眼轴长度比值存在明显的性别差异(P<0.05),而前房深度的性别差异无显著性(P>0.05)。结论近视屈光度的增加可同时伴有眼轴长度、前房深度和晶状体厚度与眼轴长度比值的改变。  相似文献   

2.
目的 探讨年龄相关性白内障患者眼轴长度与角膜曲率、角膜散光、前房深度和眼压的关系.方法 本次研究对象为在武汉大学中南医院行白内障手术的年龄相关性白内障患者368例(368眼).患者的眼轴长度、角膜曲率、角膜散光和前房深度均应用IOL-Master(德国蔡司公司)进行测量,眼压采用iCare眼压计测量.使用随机抽样法从不同眼轴长度患者中随机抽出80例(80眼),分别为短眼轴组、中眼轴组和长眼轴组.各组间比较采用单因素方差分析.眼轴长度和角膜曲率、角膜散光、前房深度及眼压的关系采用Spearman相关分析.结果 眼轴长度与角膜曲率(r=-0.424,P<0.001)、眼轴长度与角膜散光(r=0.138,P=0.008)、眼轴长度与前房深度(r=0.561,P<0.001)均相关.其中,眼轴长度与角膜曲率呈负相关,与角膜散光和前房深度呈正相关,但与角膜散光相关性较弱,而与角膜曲率和前房深度中度相关.眼轴长度与眼压无相关性(r =0.064,P=0.326).中眼轴组和长眼轴组角膜曲率与短眼轴组比较,差异均有统计学意义(均为P<0.001);而中眼轴组与长眼轴组差异无统计学意义(P =0.438).中眼轴组与短眼轴组的角膜散光差异无统计学意义(P=0.333),同样中眼轴组与长眼轴组的角膜散光差异亦无统计学意义(P =0.718),但是短眼轴组与长眼轴组的角膜散光差异有统计学意义(P =0.042).短眼轴组的前房深度与中眼轴组(P=0.001)和长眼轴组(P<0.001)比较差异均有统计学意义,中眼轴组与长眼轴组的前房深度差异亦有统计学意义(P <0.001).3组眼压两两比较差异均无统计学意义(均为P>0.05).结论 角膜曲率与眼轴长度呈负相关;角膜散光与眼轴长度相关性弱,只有眼轴长度明显增长,才有可能表现出角膜散光度数增加;前房深度与眼轴长度中等相关,并随眼轴增长而加深;眼轴长度与眼压无相关性.  相似文献   

3.
前房深度,晶体厚度与眼轴长度   总被引:4,自引:0,他引:4  
周华 《眼科新进展》1996,16(4):210-211
前房深度、晶体厚度与眼轴长度昆明医学院第一附属医院眼科周华有关正常人的前房深度,已有不少报导,国内应用超声技术测量正常眼前房深度,晶体厚度,眼轴长,以及三者之间关系的报告较少,我们应用B型超声论断仪对正常人的眼球进行生物测量,现将测量结果报告如下.资...  相似文献   

4.
IOLMaster与接触式A超测量前房深度和眼轴长度的比较研究   总被引:3,自引:2,他引:1  
目的:比较IOLMaster与接触式A超测量中央前房深度和眼轴长度的差异,以评价两者在人工晶状体度数计算参数测量中的准确性.方法:2006-10/2007-01在我院眼科施行白内障超声乳化摘除手术联合人工晶状体植入的患者121例(137眼),分别用IOLMaster与接触式A超于术前测量中央前房深度和眼轴长度.结果:IOLMaster与接触式A超测量中央前房深度分别为(2.94±0.49)mm,(2.58±0.51)mm,配对t检验,两者的差值为(0.36±0.30)mm(P<0.001),差异有显著性,相关系数r=0.823(P<0.001).测量眼轴长度分别为(24.37±3.04)mm,(23.81±2.83)mm,配对t检验,两者差值为(0.56±0.34)mm(P<0.001),差异有显著性,相关系数r=0.996(P<0.001).结论:IOLMaster与接触式A超均可用于前房深度和眼轴长度的测量,两者的相关性好.但基于光学原理的IOLMaster在准确测量眼轴长度和前房深度的同时,简便、快捷、非接触的特点是A超无法比拟的,并可同时测量出其他相关参数.  相似文献   

5.
目的:评估A超测量不同眼轴长度区间的眼轴长度(AL)和中央前房深度(ACD)的可重复性,并与IOL Master检查结果比较,为临床实践提供依据.方法:选取白内障患者170例257眼,术前分别行IOL Master和A超检查,其中每只受试眼IOL Master自动测量5次,A超测量3次,分别取平均值.按A超测得的AL分为5组:A组:2129mm(21眼).Cronbach's Alpha系数及组内相关系数(ICC)评估A超测量AL和ACD的可重复性.配对样本t检验和Pearson相关系数分析各组中A超和IOL Master测量的AL和ACD的差异性和相关性.Bland-Altman分析A超和IOL Master测量的AL和ACD的一致性.结果:A超测量的AL和ACD的Cronbach's Alpha系数和ICC均大于0.98.A、B、C、D、E组中, A超测量的AL与IOL Master测量的AL差值分别为-0.11±0.08、-0.15±0.10、-0.19±0.15、-0.29±0.16、-0.45±0.29mm,差异均有统计学意义(均P<0.01);ACD差值分别为-0.10±0.16、-0.06±0.13、-0.06±0.13、-0.19±0.10、-0.18±0.21mm,差异均有统计学意义(均P<0.01).A、B、C、D、E组中,A超和IOL Master测量的AL和ACD均具有很好的相关性(均r >0.89,P<0.01).结论:A超测量白内障患者的AL和ACD具有很好的可重复性,且数值均比IOL Master小;其中不同眼轴长度的差异,随着眼轴的增长而增大.  相似文献   

6.
为探讨高度远视性屈光不正与眼轴及角膜曲率的相关性,我院对79例(150眼)高度远视儿童进行了眼轴长度、角膜曲率的测量,报告如下。 资料与方法 一、资料2000年1月至2004年7月在我院随访治疗的高度远视弱视儿童79例(105眼),其中男2,4例(46眼),女55例(104眼);年龄3~14岁,平均6.13岁。远视球境+6.00D~+12.0D,柱镜+0.50D~+6.0D,眼部及全身无器质性病变,矫正远视力0.1~0.8。正常组儿童26例(40眼),男15例,女11例;年龄3~14岁,平均7.92岁。远视球镜0~0.75D,柱镜〈+0.5D,矫正远视力≥0.9。  相似文献   

7.
目的:分析不同眼轴长度眼的前房形态学差异及其相关因素,寻找其变化规律.方法:选择门诊就诊患者697例697眼,使用IOL Master 500进行眼生物测量.将研究对象按照眼轴长度分为五组:短眼轴组,正常眼轴组,轻、中和重度长眼轴组.使用Pentacam 70900眼前节测量评估系统进行眼前节检查,分析各眼轴长度组前房参数及各组间关系.结果:短眼轴组:前房容积与年龄呈负相关,前房深度与年龄呈负相关.正常眼轴组:前房容积与年龄呈负相关,与眼轴长度呈正相关;前房角与年龄呈负相关,与眼轴长度呈正相关,与角膜曲率呈正相关;前房深度与年龄呈负相关,与眼轴长度呈正相关.轻度长眼轴组:前房容积与年龄呈负相关,与眼轴长度呈正相关,与角膜曲率呈负相关;前房角与年龄呈负相关,与眼轴长度呈正相关,与角膜曲率呈正相关;前房深度与年龄呈负相关,与眼轴长度呈正相关.中度长眼轴组:前房容积与年龄呈负相关,前房角与眼轴长度呈正相关,前房深度与眼轴长度呈正相关.重度长眼轴组:前房容积与年龄呈负相关.轻、中及重度长眼轴组间前房容积、前房角、前房深度差异无统计学意义(P>0.05),其它各组间差异均有统计学意义(P<0.05).结论:在眼轴长度介于22~27mm眼,前房容积、前房角及前房深度均与年龄呈负相关,与眼轴长度呈正相关,随着眼轴变短或变长,它们与眼轴长度的相关性消失.前房容积、前房角和前房深度随眼轴长度的增加而呈现明显增长的趋势,在眼轴长度>27mm时停止.各组中,随着年龄增长,前房容积变小.  相似文献   

8.
目的:探讨不同注视角度下眼的调节幅度、前房深度、晶状体厚度、眼轴长度的变化。方法:对18例36眼21~28岁的志愿者,取与重力轴方向成180°,90°,45°夹角的3个不同注视角度,用移近法测量眼的调节幅度,用眼A超测量前房深度、晶状体厚度、眼轴长度。结果:三种不同注视角度下的调节幅度、前房深度、晶状体厚度、眼轴长度无差异。结论:在青年中,眼在仰视、平视、俯视状态不影响其调节幅度、前房深度、晶状体厚度、眼轴长度。  相似文献   

9.
目的分析剥脱综合征(ES)患者和正常人眼轴及中央前房深度与眼压的相关性。方法 2010年1月~2012年1月间来本院就诊的ES患者106例(106眼)、正常人69例(69眼),均为维吾尔族。观察ES眼和非ES眼眼轴长度、中央前房深度及眼压有无差异,分析眼轴及中央前房深度与眼压的相关性。结果 ES患者眼轴长度为(22.89±0.91)mm,正常人眼轴长度为(23.12±0.97)mm,差异无统计学意义(P=0.12);ES患者前房深度为(2.84±0.41)mm,正常人前房深度为(2.93±0.39)mm,差异无统计学意义(P=0.14);ES患者眼压为(26.72±15.70)mmHg(1mmHg=0.133kPa),正常人眼压为(14.39±2.19)mmHg,差异有统计学意义(P=0.00)。ES患者眼轴与眼压具有相关性(r=-0.412,P=0.00);正常人眼轴与眼压不具有相关性(r=-0.102,P=0.405)。ES患者中央前房深度与眼压具有相关性(r=-0.33,P=0.001);正常人中央前房深度与眼压不具有相关性(r=-0.102,P=0.406)。结论维吾尔族ES患者的眼压较正常人高,其眼轴及中央前房深度与眼压具有负相关性。  相似文献   

10.
目的 确定不伴内斜或弱视的远视眼与伴有内斜的远视性弱视眼相比眼轴/视盘面积比及视盘大小是否有差别,评价远视眼、眼轴长度(AXL)与视盘面积(DA)的相对关系.方法 对64例远视患者(远视球镜+2.00~+6.00D)行眼轴测量和眼底照相及视盘面积测量.计算眼轴(AXL)/视盘面积(DA)比.结果 远视不伴有弱视及内斜组(组1)AXL/DA为(9.46~2.71)/mm;远视伴有内斜,不伴弱视组(组2)AXL/DA为(12.53±3.44)/mm;远视伴有弱视及内斜眼的对侧眼组(组3)AXL/DA为(13.60±3.65)/mm;远视伴有弱视及内斜眼组(组4)AXL/DA为(15.62±4.59)/mm.组4与组3相比视盘面积缩小、AXL/DA比增大,两组间差异具有统计学意义,P<0.05,眼轴长度之间差异无显著性意义,P>0.05.组4与组1相比,眼轴缩短,P<0.01;视盘面积缩小,P<0.01;AXL/DA增大,P<0.01.组4与其他组相比AXL/DA比增大,差异有统计学意义(F=11.6,P<0.01).结论 伴有内斜的远视性弱视患者尽管两眼AXL/DA值均增加,但视力差的眼视盘面积缩小更显著.这可能是解释远视性弱视患者视功能受损的一个因素.  相似文献   

11.
The intraocular pressure (IOP), anterior chamber depth (ACD), and axial length (AL) were measured in 38 eyes of 19 subjects before and after intravenous mannitol injection (12.5 g). Intraocular pressures dropped over the initial 30 min then rose back to baseline by 2 hr. Time 0 min:14.2 mmHg, 15 min:12.7 mmHg, 30 min:11.4 mmHg, 60 min:12.0 mmHg, 90 min, 13.2 mmHg, 120 min:14.1 mmHg. Sitting and supine ACD and AL did not change following mannitol injection. This study supports an ocular hypotensive effect of mannitol without reducing vitreous volume using a relatively low dose of mannitol (12.5 g). This finding has important implications for its use in ocular surgery at this dosage.  相似文献   

12.
PURPOSE: To review and evaluate the biometry measurements in 750 eyes (first eye developing cataract) of 750 consecutive patients with no retinal pathology. SETTING: Private practice, Lynwood, California, USA. METHODS: All measurements were performed with the I3 system A-scan (Innovative Imaging, Inc.) using an immersion technique. The axial length (AL), anterior chamber depth (ACD), and lens thickness (LT) measurements were evaluated in relation to each other and in relation to age, sex, and keratometric readings. RESULTS: The mean AL was 23.46 mm +/- 1.03 (SD), the mean ACD was 2.96 +/- 0.45 mm, and the mean LT was 4.93 +/- 0.56 mm. Men presented for surgery at an earlier age than women (mean 73 +/- 9.41 years versus 75 +/- 8.55 years) with a longer AL (23.76 +/- 1.00 mm versus 23.27 +/- 1.01 mm). The AL tended to be longer in younger patients (r = -0.127; P<.001); the ACD tended to be deeper in younger patients (r = -0.250; P<.001) and in longer eyes (r = 0.423; P<.001). The LT tended to be thicker in older patients (r = 0.385; P<.001) and in shorter eyes (r = -0.179; P<.001), with large scatter in the distribution. CONCLUSIONS: There was a positive correlation between AL and ACD and an inverse correlation between AL and LT. Also, AL was inversely correlated with age and corneal power.  相似文献   

13.
AIM:To evaluate the effect of axial length(AL)and anterior chamber depth(ACD)on peripheral refractive profile in myopic patients compared to emmetropic participants.METHODS:This cross-sectional study was conducted in right eyes of 58 participants of whom 38 were emmetropic and 20 were myopic.Central and peripheral refraction were measured at 10°,20°,and 30°eccentricities in nasal and temporal fields using an open-field autorefractor.The Lenstar LS900 was used to measure ACD and AL.The participants were divided into three groups of short(<22.5 mm),normal(22.5-24.5 mm),and long eye(>24.5 mm)according to AL and three groups of low ACD(<3.00 mm),normal ACD(3.00-3.60 mm),and high ACD(>3.60 mm)according to ACD.RESULTS:The mean age of the participants was 22.26±3.09 y(range 18-30 y).The peripheral mean spherical refractive error showed a hypermetropic shift in myopic and emmetropic groups although this shift was more pronounced in the myopic group.The results showed significant changes in the spherical equivalent,J0,and J45 astigmatism in all gazes with an increase in eccentricity(P<0.001).The pattern of refractive error changes was more noticeable in long and short eyes versus normal AL eyes.Moreover,the pattern of peripheral refractive changes was much more prominent in the high ACD group versus the normal ACD group and in the normal ACD group versus the low ACD group.CONCLUSION:Peripheral refraction changes are greater in participants with AL values outside the normal range and deeper ACD values compared to participants with normal AL and ACD.  相似文献   

14.
PURPOSE: Phakic intraocular lenses are being used increasingly to correct refractive errors. We studied the relationship between anterior chamber depth, refractive state of the eye, spherical equivalent refraction, axial length of the globe, corneal diameter, and keratometry. METHODS: Two hundred eleven eyes of 211 patients were enrolled. All eyes underwent the same protocol with a complete ocular examination that included slit-lamp microscopy, intraocular pressure, objective and subjective refraction, calculation of the spherical equivalent refraction, corneal pachymetry, anterior chamber depth, axial length of the globe, and keratometry. All results were analyzed statistically using SPSS statistics software. Correlations between different parameters were studied using the Pearson correlation test. RESULTS: The anterior chamber depth was found to correlate significantly with both the average corneal diameter and the axial length of the globe (0.744, 0.531, P < .01) and was also found to correlate through an inverse relation with both age and spherical equivalent refraction (-0.391, -0.623, P < .01). Corneal thickness and keratometric power did not correlate with the anterior chamber depth. CONCLUSION: Most parameters (axial length, corneal diameter, spherical equivalent refraction, patient age) affected anterior chamber depth and should be considered carefully when planning refractive procedures that employ phakic intraocular lenses.  相似文献   

15.
16.
Background: Cycloplegia has been shown to have no effect on axial length measurement made with the IOLMaster in adults. The current study aimed at evaluating the effect of cycloplegia on axial length and anterior chamber depth (ACD) measurements made with the IOLMaster and an ultrasonic biometer in children. Methods: Pre‐ and post‐cycloplegic axial length and ACD were measured with the IOLMaster followed by the Sonomed A‐5500 in 31 children aged from seven to 15 years by the same examiner. The 95% limits of agreement (LoA) were determined, if there were no significant correlations found between the mean differences and their means. Results: Seven subjects were excluded. Results from the remaining 24 subjects show that the effects of cycloplegia, instruments, and interaction between cycloplegia and instrument on axial length measurement were insignificant (repeated measure ANOVA F1,23 < 2.19, p > 0.15). The 95% LoA in cycloplegia were better with the IOLMaster (‐0.04 to 0.04 mm) than with the Sonomed A‐5500 (‐0.13 to 0.14 mm). The 95% LoA between the two instruments were similar with and without cycloplegia (pre‐cycloplegia: ‐0.20 to 0.27 mm; post‐cycloplegia: ‐0.17 to 0.22 mm). There was no significant interaction between cycloplegia and instrument in ACD measurement (repeated measure ANOVA F1,23= 0.85, p = 0.37), however, ACD was 0.05 to 0.06 mm shorter before cycloplegia (repeated measure ANOVA F1,23= 44.70, p < 0.001) and was 0.06 to 0.08 shorter measured with the IOLMaster (repeated measure ANOVA F1,23= 28.81, p < 0.001). Conclusion: Effects of cycloplegia on axial length measurement in children made with IOLMaster and Sonomed A‐5500 were insignificant. In contrast, ACD measurement was significantly affected by cycloplegia and different instruments.  相似文献   

17.
目的 探讨准分子激光角膜原位磨镶术对患者的角膜曲率、前房深度及眼轴长度产生的影响。方法 准分子激光角膜原位磨镶术患者61例122眼,用光学相干生物测量仪(IOL-Master)分别测量术前及术后0.5a的角膜曲率、前房深度及眼轴长度,用电脑自动验光仪分别测量术前及术后0.5a的角膜曲率,对结果进行统计学分析比较手术前后各个参数的改变,用临床病史法计算出术后矫正角膜曲率(K矫正),建立K矫正对术后测量的角膜曲率(K术后)的回归公式,并比较IOL-Master和电脑自动验光仪测量术前和术后角膜曲率的一致性。结果 IOL-Master测量术前和术后的角膜曲率分别为(43.25±1.15)D和(39.13±1.92)D,前房深度分别为(3.65±0.21)mm和(3.55±0.20)mm,眼轴长度分别为(25.58±0.89)mm和(25.49±0.87)mm,手术前后三组数据相比差异均有统计学意义(均为P=0.000)。电脑自动验光仪测量的手术前后角膜曲率分别为(43.20±1.15)D和(39.06±1.89)D,推导的回归公式为:K矫正=1.093×K术后-4.013。Bland-Altman分析显示IOL-Master和电脑自动验光仪在测量术前和术后角膜曲率上一致性较好。结论 准分子激光角膜原位磨镶术后患者的角膜曲率、前房深度及眼轴长度均较术前降低,相比较角膜曲率改变更明显,可采用回归公式对术后角膜曲率进行矫正。IOL-Master和电脑自动验光仪在测量术前和术后角膜曲率上一致性较好,临床上可以替代使用。  相似文献   

18.
AIM: To compare the measurement of anterior chamber depth (ACD) and axial length (AL) by IOLMaster and contact ultrasonic (US) axial scan (A-scan). · METHODS: Measurements of ACD and AL were prospectively obtained in 137 eyes of 121 subjects with the IOLMaster compared with measurements with the US. · RESULTS: There was an excellent correlation between IOL Master and US measurements for the ACD (r =0.823;P < 0.001) and AL (r =0.996;P <0.001). The mean values of the parameters measured by IOLMaster and US were, respectively, as follows: ACD, 2.94±0.49mm, 2.58±0.51mm; AL, 24.37±3.04mm, 23.81±2.83mm. The mean differences of ACD and AL values between IOLMaster and US measurements were 0.36±0.30mm, 0.56±0.34 mm respectively, and they proved to be statistically significant (P < 0.001), with the 95% limits of agreement (LoA) from -0.08mm to +0.38mm for ACD and from -0.09mm to +0.69mm for AL. · CONCLUSION: As noncontact biometry, IOLMaster provides accurate values. A high degree of agreement between US and IOLMaster was noted. It not only has the advantage of performing noncontact examinations, but also produces various additional data simultaneously and may thus obviate the need for multiple examinations. Further studies are needed to assess the interchangeability of measurements in clinical practice.  相似文献   

19.
BACKGROUND: Axial length and anterior chamber depth have been measured clinically using conventional ultrasound biometry. Recently, a non-contact device has become available to measure these parameters. This study evaluated the repeatability and accuracy of this device. METHODS: The axial length and anterior chamber depth were measured by two practitioners on a group of young subjects using the IOLMaster followed by a conventional ultrasound biometer operated by a third practitioner. The accommodation was controlled in ultrasound biometry through a full correction on the non-measured eye and a distant fixation target. RESULTS: There was good repeatability and accuracy of axial length assessment. The mean difference between the IOLMaster and ultrasound biometry was -0.099 mm, with 95% limits of agreement between 0.66 and -0.85 mm. The axial length was slightly shorter from the IOLMaster and the difference was not significant. The anterior chamber depth was repeatable but was shown to be deeper than the ultrasound results. The mean difference in anterior chamber depth between the IOLMaster and ultrasound biometry was 0.15 mm, with 95% limits of agreement between 0.34 and -0.03 mm. It is suggested that the former device is not measuring the axial anterior chamber depth. CONCLUSIONS: The IOLMaster is a non-contact 'optical' A-scan which is simple to use and good for axial length assessment. The anterior chamber depth assessment should be further evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号