首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Interaction of CD28 with its ligand B7 plays an important role in the initiation of immune responses. The co-stimulatory signal generated by cross-linking of CD28 molecules results in enhanced T-cell proliferation and augmentation of cytokine production. In particular, mRNA levels of T-helper 1 (Th1)-type cytokines, such as interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) are reported to be strongly increased. We investigated the effect of CD28 co-stimulation on the production of Th2-type cytokines. CD28 mAb induced a strong augmentation of IL-2 secretion in activated T-cell clones. Production of IFN-gamma was also enhanced, but the increase in IL-4 secretion was generally moderate. Augmentation of IL-4 production by CD28 was most pronounced in clones that produced low amounts of IL-2, compared to clones producing high levels of IL-2. It was found that the up-regulation of IL-4 by CD28 co-stimulation was mainly controlled indirectly via an increase of IL-2. Some clones could produce IL-4 in an IL-2-independent manner; in these situations CD28 co-stimulation had no augmenting effect on the production of IL-4. The secretion of IL-4 by peripheral blood CD4+ T cells, that were activated with B7-expressing transfectants, was also found to be dependent on IL-2. Finally, Northern blot analysis confirmed that co-stimulation of CD28 primarily affected IL-2 production, and that inhibition of IL-2/IL-2 receptor interaction abolished the augmenting action of CD28 monoclonal antibody on the production of the Th2-type cytokines IL-4, IL-5 and IL-10 and of the Th1 cytokine IFN-gamma.  相似文献   

4.
RT-PCR was used to examine the expression of IFN-gamma, IL-2, IL-4, IL-5, IL-6 and IL-10 mRNAs by single murine CD4+ T cells activated either in a strongly type 1-polarized mixed lymphocyte reaction (MLR) or in the type 2-polarized response to immunization with keyhole limpet hemocyanin (KLH) in alum. The frequencies of expression of each cytokine differed markedly between the two responses, consistent with their polarization at the population level. However, most cells expressed only none to three of the six cytokines assayed, few displayed the canonical type 1 profile and none in either response expressed a full type 2 or type 0 profile. A significant fraction of cells co-expressed IFN-gamma with IL-4 and/or other type 2 cytokines at frequencies that suggested that most of these genes were independently regulated. Collectively, these single-cell expression patterns indicate that polarization at the population level can mask substantial intercellular heterogeneity, and show directly that multiple type 1 and 2 cytokines can be expressed simultaneously in an individual T cell.  相似文献   

5.
CD4(+) T cells with pre-defined MHC-unrestricted specificity to type II collagen (CII) were engineered for cell-based anti-inflammatory gene therapy of autoimmune arthritis. To this end, recombinant chimeric immunoreceptors, C2gamma or C2zeta, were expressed in primary mouse keyhole limpet hemocyanin (KLH)-specific T(h)1 and T(h)2 cells using retrovirus vector-based somatic cell gene transfer. The ectodomain of these tyrosine-based activation motif (ITAM)-containing immunoreceptors is a single-chain IgG variable domain of an anti-CII mAb. The engineered cells might arrest migration when they encounter CII in articular cartilage. Up to 19 and 55% of transduced CD4(+) T cells expressed respectively C2gamma and C2zeta. The expression of C2gamma or C2zeta on the surface of CD4(+) T cells was down-regulated upon binding CII, and cells activated in such a way proliferated, up-regulated CD25 expression and produced cytokines. Comparison of cytokine levels normalized by the number of producer cells revealed that C2gamma and C2zeta were as potent as TCR in the induction of IFN-gamma, but induced lower levels of IL-4. It appears that the reason why CD4(+) T cells stimulated through C2gamma and C2zeta produce low levels of IL-4 is a lack of integration between co-stimulatory signals required for the optimal production of this cytokine and the ITAM-dependent signals generated by the immunoreceptors. The significance of these data for the development of anti-inflammatory gene therapy based on CD4(+) T cells targeted to a tissue-specific protein is discussed.  相似文献   

6.
The ability of cytokines to steer CD4(+) T(h) cell responses toward a T(h)1 or T(h)2 phenotype and enhance the magnitude of both CD8(+) cytotoxic T lymphocytes (CTL) and antibody responses has clearly been demonstrated by our lab and others, but the influence of cytokines on protective immune responses is much less clear. Here we show an essential role for CD4(+) T(h)1 helper cell induction and IFN-gamma production in protection from viral challenge with a recombinant vaccinia virus expressing HIV-1MN viral envelope glycoprotein gp160. Complete protection from viral challenge is achieved only when the triple combination of exogenous cytokines granulocyte macrophage colony stimulating factor (GM-CSF), IL-12 and tumor necrosis factor (TNF)-alpha are co-administered with the peptide vaccine. In vivo depletion of CD4(+) cells or immunization of IFN-gamma-deficient mice abrogates protection. GM-CSF, IL-12 and TNF-alpha also synergize for the enhanced induction of CTL; however, adoptive transfer of a CD8(+) CTL line afforded only partial protection in this viral challenge model. As a possible mechanism of in vivo protection we show that GM-CSF increases the percentage and activity of antigen-presenting dendritic cells in draining lymph nodes where the immune response is initiated. We further demonstrate synergy between IL-12 and the proinflammatory cytokine TNF-alpha in driving IFN-gamma production. Thus, a combination of IL-12 and TNF-alpha is essential for the optimal development of T(h)1 responses and help for CTL induction in BALB/c mice, and is complemented by a third cytokine, GM-CSF, which enhances antigen presentation.  相似文献   

7.
Naive CD4(+) T cells rapidly proliferate to generate effector cells after encountering an antigen and small numbers survive as memory T cells in preparation for future immunological events. In the present work, adoptive transfer of naive CD4(+) T cells into RAG2(-/-) mice caused the generation of memory-type effector T cells including T(h)1, T(h)2, T(h)17 and regulatory T cells, and eventually induced T cell-dependent colitis. We found here that blocking of the IL-6R with a specific mAb remarkably inhibited the CD4(+) T cell-mediated colitis in parallel with the inhibition of T(h)17 cell generation. However, the transfer of naive CD4(+) T cells prepared from IL-17(-/-) mice still induced severe colitis. At the effector phase, the mAb significantly inhibited IL-17 but not IFN-gamma production. The blockade of IL-6 signaling enhanced the generation of IL-4- and IL-10-producing CD4(+) T cells, and inhibited up-regulation of tumor necrosis factor -alpha mRNA expression in the colon. These findings clearly demonstrated that IL-6 is a critical factor for the induction of colitis by expansion of naive CD4(+) T cells in RAG2(-/-) mice. Thus, the IL-6-mediated signaling pathway may be a significant therapeutic target in T cell-mediated autoimmune diseases.  相似文献   

8.
Chemokine and chemokine receptor interactions may have important roles in leukocyte migration to specific immune reaction sites. Recently, it has been reported that CXC chemokine receptor (CXCR) 3 and CC chemokine receptor (CCR) 5 were preferentially expressed on T(h)1 cells, and CCR3 and CCR4 were preferentially expressed on T(h)2 cells. To investigate chemokine receptor expression by T(h) subsets in vivo, we analyzed cytokine (IL-2, IL-4 and IFN-gamma) and chemokine receptor (CXCR3, CXCR4, CCR3, CCR4 and CCR5) mRNA expression by individual peripheral CD4(+) memory T cells after short-term stimulation, employing a single-cell RT-PCR method. This ex vivo analysis shows that the frequencies of cells expressing chemokine receptor mRNA were not significantly different between T(h)1 and T(h)2 cells in normal peripheral blood. To assess a potential role of in vivo stimulation, we also analyzed unstimulated rheumatoid arthritis synovial CD4(+) memory T cells. CXCR3, CXCR4, CCR3 and CCR5 expression was detected by individual synovial T cells, but the frequencies of chemokine receptor mRNA were not clearly different between T(h)1 and non-T(h)1 cells defined by expression of IFN-gamma or lymphotoxin-alpha mRNA in all RA patients. These data suggest that chemokine receptor expression does not identify individual memory T cells producing T(h)-defining cytokines and therefore chemokine receptor expression cannot be a marker for T(h)1 or T(h)2 cells in vivo.  相似文献   

9.
IL-18 is a proinflammatory cytokine that plays an important role in NK cell activation and T(h)1 response. IL-18 has a structural homology to IL-1, particularly IL-1beta. IL-18R, composed of IL-1R-related protein (IL-18Ralpha) and IL-1R accessory protein-like (IL-18Rbeta), belongs to the IL-1R family. Furthermore, IL-18R at least partly shares the signal transducing system with IL-1R. Thus, the IL-18-IL-18R system has a striking similarity to the IL-1-IL-1R system. For this reason, we regarded it important to investigate whether, like IL-18, IL-1beta synergizes with IL-12 in inducing IFN-gamma production from human T cells and plays an important role in the T(h)1 response. Here we show that IL-12 and IL-1beta synergistically induce T cells to proliferate and produce IFN-gamma without their TCR engagement. IL-12 stimulation induced an increase in the proportion of T cells positive for IL-18R. Then, IL-12-stimulated T cells responded to IL-18 or IL-1beta by their proliferation and IFN-gamma production, although levels of IL-1beta-induced responses were lower. CD4(+)CD45RA(+) T cells, although they constitutively expressed IL-18Rbeta mRNA, did not express IL-18Ralpha mRNA. Phytohemagglutinin (PHA) stimulation alone induced IL-18Ralpha mRNA without affecting the expression of IL-18Rbeta mRNA. T(h)1-inducing conditions (PHA, IL-12 and anti-IL-4) further increased this expression. We also show that T(h)1 cells but not T(h)2 cells have increased expression of IL-18R and IL-1R, and produce IFN-gamma in response to IL-18 and/or IL-1beta.  相似文献   

10.
Suppressor of cytokine signaling (SOCS)-1 is an inhibitory molecule for JAK, and its deficiency in mice leads to lymphocyte-dependent multi-organ disease and perinatal death. Crossing of SOCS-1(-/-) mice on an IFN-gamma(-/-), STAT1(-/-) and STAT6(-/-) background revealed that the fatal disease of SOCS-1(-/-) mice is also dependent on IFN-gamma/STAT1 and IL-4/STAT6 signaling pathways. Since IFN-gamma and IL-4 are representative T(h)1 and T(h)2 cytokines respectively, here we investigated the role of SOCS-1 in T(h) differentiation. Freshly isolated SOCS-1(-/-) CD4(+) T cells stimulated with anti-CD3 rapidly produced larger amounts of IFN-gamma and IL-4 than control cells, suggesting that these mutant T cells had already differentiated into T(h)1 and T(h)2 cells in vivo. In addition, SOCS-1(+/-) CD4(+) T cells cultured in vitro produced significantly larger amounts of IFN-gamma and IL-4 than SOCS-1(+/+) cells. Similarly, SOCS-1(+/-) CD4(+) T cells produced more IFN-gamma and IL-4 than SOCS-1(+/+) cells after infection with Listeria monocytogenes and Nippostrongyrus braziliensis respectively. Since IL-12-induced STAT4 and IL-4-induced STAT6 activation is sustained in SOCS-1(-/-) T cells, the enhanced T(h) functions in SOCS-1(-/-) and SOCS-1(+/-) mice appear to be due to the enhanced effects of these cytokines. These results suggest that SOCS-1 plays a regulatory role in both T(h)1 and T(h)2 polarizations.  相似文献   

11.
Inhibitors of cAMP-specific phosphodiesterase (PDE) 4 have been shown to inhibit inflammatory mediator release and T cell proliferation, and are considered candidate therapies for T(h)1-mediated diseases. However, little is known about how PDE4 inhibitors influence dendritic cells (DC), the cells responsible for the priming of naive T(h) cells. Therefore, we investigated the PDE profile of monocyte-derived DC, and whether PDE4 inhibitors modulate DC cytokine production and T cell-polarizing capacity. We mainly found cAMP-specific PDE4 enzymatic activity in both immature and mature DC. In contrast to monocytes that mainly express PDE4B, we found that PDE4A is the predominant PDE4 subtype present in DC. Immature DC showed reduced ability to produce IL-12p70 and tumor necrosis factor (TNF)-alpha upon lipopolysaccharide or CD40 ligand (CD40L) stimulation in the presence of PDE4 inhibitors, whereas cytokine production upon CD40L stimulation of fully mature DC in the presence of PDE4 inhibitors was not affected. Exposure to PDE4 inhibitors for 2 days during DC maturation did not influence T cell-stimulatory capacity or acquisition of a mature phenotype, but increased the expression of the chemokine receptor CXCR4. Furthermore, DC matured in the presence of PDE4 inhibitors showed reduced capacity to produce IL-12p70 and TNF-alpha upon subsequent CD40L stimulation. Using these PDE4 inhibitor-matured DC to stimulate naive T cells resulted in a reduction of IFN-gamma-producing (T(h)1) cells. These findings indicate that PDE4 inhibitors can affect T cell responses by acting at the DC level and may increase our understanding of the therapeutic implication of PDE4 inhibitors for T(h)1-mediated disorders.  相似文献   

12.
IL-2 signaling appears to play a significant role in enabling the synthesis of T(h)2 cytokines in an in vitro system for studying primary T cell responses. When T cells from C57BL/6J or BALB/c strains of mice were activated in vitro and re-stimulated through their TCR complex 48 h later, CD4(+) T cells producing the T(h)2 cytokines IL-4 and IL-10 were found only when IL-2 was present. IL-2 also enhanced IFN-gamma synthesis in C57BL/6J cells but not in BALB/c cells. By up-regulating production of anti-inflammatory T(h)2 cytokines during a primary response, IL-2 may play a critical role in limiting T(h)1-mediated responses.  相似文献   

13.
The short in vivo lifespan of many cytokines can make measurement of in vivo cytokine production difficult. A method was developed to measure in vivo IL-4 and IFN-gamma production that eliminates this problem. Mice are injected with a biotin-labeled neutralizing IgG anti-IL-4 or anti-IFN-gamma mAb and bled 2-24 h later. Secreted cytokine is captured by the biotin-labeled mAb to produce a complex that has a relatively long in vivo half-life and consequently accumulates in serum. Serum concentrations of the complex are determined by ELISA, using wells coated with an antibody to a second epitope on the same cytokine to capture the complex. This technique is specific and increases sensitivity of detection of secreted IL-4 at least 1000-fold. The amount of cytokine measured is directly proportional to the amount produced and relatively independent of the site of cytokine production. Furthermore, because mice are injected with small quantities of biotin-labeled anti-cytokine mAb, which sample, rather than neutralize, all secreted cytokines, cytokine-dependent responses are not inhibited. The in vivo half-lives of the cytokine-anti-cytokine mAb complexes are sufficiently short to allow cytokine production to be measured every 2-3 days in the same mice. Thus, use of this assay provides a practical and relatively simple and inexpensive way to measure ongoing in vivo cytokine production. Furthermore, the techniques that have been developed to measure in vivo production of IL-4 and IFN-gamma can be applied to in vivo measurement of other molecules that have a short in vivo lifespan, including other cytokines.  相似文献   

14.
15.
We examined the co-stimulatory activity of H4/ICOS on murine activated CD4(+) T cells and found that the cross-linking of H4/ICOS enhanced their proliferation, in addition to raising IFN-gamma, IL-4 and IL-10 production to levels comparable to those induced by CD28. However, IL-2 production was only marginally co-stimulated by H4/ICOS. This distinct pattern of lymphokine production appears to be induced by a specific intracellular signaling event. Compared with CD28, H4/ICOS dominantly elicited the Akt pathway via phosphatidylinositol 3-kinase. In addition, mitogen-activated protein kinase family kinases were activated in different ways by CD28 and H4/ICOS. The strong phosphorylation of p46 c-Jun N-terminal kinase was observed upon CD28 co-stimulation, but was less potently induced by H4/ICOS. The strain diversity in the induction of H4/ICOS was recognized. The expression of H4/ICOS on BALB/c activated CD4(+) T cells was >6-fold higher compared with C57BL/6 activated CD4(+) T cells. Furthermore, BALB/c activated CD4(+) T cells exhibited more T(h)2-deviated lymphokine production as compared with C57BL/6 activated CD4(+) T cells and signaling through H4/ICOS during the primary stimulation of naive CD4(+) T cells promoted the generation of T(h)2 cells. Thus, the difference in H4/ICOS expression on activated CD4(+) T cells, which is regulated among the mouse strains, may also regulate the polarization of T(h) cells.  相似文献   

16.
BACKGROUND: Two variants of the CXCR3 receptor exist, one (CXCR3-A) reactive with CXCL9, CXCL10, and CXCL11 and the other (CXCR3-B) also reactive with CXCL4. Both variants are contemporarily expressed by human T cells. OBJECTIVE: We sought to investigate the in vitro effects of CXCL10 and CXCL4 on the production of TH1 or TH2 cytokines. METHODS: The cytokine profile of antigen-specific human CD4+ T-cell lines obtained in the absence or presence of CXCL10 or CXCL4 was evaluated by means of quantitative RT-PCR, flow cytometry, and ELISA. RESULTS: CXCL10 upregulated IFN-gamma and downregulated IL-4, IL-5, and IL-13 production, whereas CXCL4 downregulated IFN-gamma and upregulated TH2 cytokines. Similar effects were also observed on polyclonally activated pure naive CD4+ T cells. The opposite effects of CXCL10 and CXCL4 on TH1 and TH2 cytokine production were inhibited by an anti-CXCR3 antibody able to neutralize both CXCR3-A and CXCR3-B and were apparently related to the activation of distinct signal transduction pathways. Moreover, CXCL10 upregulated mRNA levels of T-box expressed in T cells and downregulated GATA-3 expression, whereas CXCL4 downregulated T-box expressed in T cells and upregulated GATA-3. Finally, CXCL4, but not CXCL10, induced direct activation of IL-5 and IL-13 promoters. CONCLUSION: CXCL10 and CXCL4 exert opposite effects on the production of human TH1 and TH2 cytokines, likely through their respective interaction with CXCR3-A or CXCR3-B and the consequent activation of different signal transduction pathways. This might represent an internal regulatory pathway of TH cell responses and might contribute to the modulation of chronic inflammatory reactions, including allergy.  相似文献   

17.
Three distinct bone marrow (BM)-derived dendritic cells (BMDC) were expanded from BALB/c BM cells by culture with (i) granulocyte macrophage colony stimulating factor (GM-CSF) plus IL-3, (ii) GM-CSF, IL-3 plus T(h)1-biasing cytokines (IL-12 and IFN-gamma) or (iii) GM-CSF, IL-3 plus T(h)2-biasing cytokines (IL-4). All of these cells expressed the DC-specific marker CD11c, and were designated as BMDC0, BMDC1 and BMDC2 cells respectively. BMDC1 cells exhibited superior T cell-stimulating activity in allogeneic mixed lymphocyte culture (MLC), while BMDC2 showed inferior stimulating activity. Specifically, BMDC1, as compared with BMDC2, induced a higher frequency of IFN-gamma-producing CD8(+) T cells in MLC. Moreover, BMDC1, but not BMDC2, were strong inducers of H-2(d)-specific cytotoxic T lymphocytes (CTL) in MLC. BMDC0 always showed intermediate stimulatory activity; however, when BMDC0 were cultured with IFN-gamma, they differentiated into BMDC1-like stimulator cells concomitant with the up-regulation of both MHC antigens and co-stimulatory molecules. In contrast, BMDC2 were refractory to differentiation into superior stimulator cells by treatment with IFN-gamma, although this treatment enhanced MHC expression. These findings indicate that T(h)1- and T(h)2-biasing cytokines, in addition to their effect on T(h) cell differentiation, may play a critical role in the functional skewing of DC. These findings have important implications for the development of DC-based immunotherapies.  相似文献   

18.
This study examined whether therapy with a non-mitogenic, non-activating anti-CD3 mAb (G4.18) alone, or in combination with the T(h)2 cytokines, could inhibit induction or facilitate recovery from experimental allergic encephalomyelitis (EAE) in Lewis rats. G4.18, but not rIL-4, rIL-5 or anti-IL-4 mAb, reduced the severity and accelerated recovery from active EAE. A combination of rIL-4 with G4.18 was more effective than G4.18 alone. The infiltrate of CD4(+) and CD8(+) T cells, B cells, dendritic cells, and macrophages in the brain stem was less with combined G4.18 and IL-4 than G4.18 therapy or no treatment. Residual cells had preferential sparing of T(r)1 cytokines IL-5 and transforming growth factor-beta with loss of T(h)1 markers IL-2, IFN-gamma and IL-12Rbeta2, and the T(h)2 cytokine IL-4 as well as macrophage cytokines IL-10 and tumor necrosis factor-alpha. Lymph nodes draining the site of immunization had less mRNA for T(h)1 cytokines, but T(h)2 and T(r)1 cytokine expression was spared. Treatment with G4.18, rIL-4 or rIL-5 from the time of immunization had no effect on the course of active EAE. MRC OX-81, a mAb that blocks IL-4, delayed onset by 2 days, but had no effect on severity of active EAE. G4.18 also inhibited the ability of activated T cells from rats with active EAE to transfer passive EAE. This study demonstrated that T cell-mediated inflammation was rapidly reversed by a non-activating anti-CD3 mAb that blocked effector T(h)1 cells, and spared cells expressing T(h)2 and T(r)1 cytokines.  相似文献   

19.
Regulation of the IL-12 receptor (IL-12R) beta2 chain has been suggested to function as a molecular switch in determining T cell phenotype. However, because most studies have been carried out under conditions in which cell proliferation was occurring, it has been difficult to distinguish between instructive and selective mechanisms in regulating this key receptor. Here, in the course of trying to understand the mechanism for synergy between IL-12 and TNF-alpha in up-regulating IFN-gamma production, we find that when the stimulus through the TCR is too weak to induce cell proliferation, which would be needed for selection, IL-12 and TNF-alpha synergize to up-regulate not only IFN-gamma, but also the IL-12Rbeta2 chain, which triggers IFN-gamma production. Neither cytokine alone was sufficient. This observation held true both in the absence of antigen-presenting cells (APC), when the stimulus was anti-CD3 on plastic, and in the presence of APC presenting ovalbumin peptide to TCR-transgenic T cells. In contrast, when the TCR signal was stronger, no cytokines were necessary to up-regulate the IL-12R. Our results support the strength of signal model in instructing Th phenotype, and suggest both an instructive role and, later, through the production of IFN-gamma, a selective role, of this synergistic combination of cytokines in the preferential differentiation and expansion of Th1 cells.  相似文献   

20.
Pancreatic islet xenotransplantation has been advocated as a way of overcoming the shortage of human donor tissue for the treatment of type 1 diabetes. However, the potent immune response against xenografts is a major barrier to their use. We show that a short course of the anti-CD45RB antibody, MB23G2, prolongs survival of fetal pig pancreas grafts in mice. To investigate this effect further we used an i.p. xenograft model in which both donor pig cells and host inflammatory cells can be expediently recovered and analyzed. Graft prolongation was associated with reduced T cell and macrophage infiltration, and reduced production of both T(h)1 and T(h)2 cytokines at the graft site. Graft survival was further increased and T cell infiltration further reduced by combining anti-CD45RB antibody with co-stimulation blockade. The primary effect of anti-CD45RB antibody may be on CD4 T cells, in keeping with the marked reduction in T cell cytokine production in both spleen and graft sites. This concurs with previous studies in allogeneic models that indicate that this antibody perturbs T cell responses by modifying signaling via the TCR. In addition, anti-CD45RB treatment led to reduced expression of LFA-1 and CD62 ligand (CD62L) on CD4 T cells, independent of antigenic challenge. LFA-1 may enhance co-stimulation, and both LFA-1 and CD62L are involved in T cell trafficking. Their reduced expression provides an explanation why the T cell pool is reduced in lymph nodes. We conclude that modulation of inflammation against xenografts by anti-CD45RB antibody is due to effects on both T cell priming and trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号