首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic cerebral hypoperfusion can cause learning and memory impairment and neuronal damage resembling the effects observed in vascular dementia. PPAR-γ agonists were shown to modulate inflammatory response and neuronal death following cerebral ischemia. The present study was designed to evaluate possible neuroprotective effects of rosiglitazone, a PPAR-γ agonist, in rat model of chronic cerebral hypoperfusion. Cerebral hypoperfusion was induced by permanent bilateral occlusion of the common carotid arteries. Oral administration of rosiglitazone (1.5, 3, and 6 mg/kg/day) or vehicle was carried out for 5 weeks, starting one week before the surgery. Cognitive performance was assessed using the Morris water maze. The density of S100B protein-immunoreactive astrocytes and the OX-42-labeled microglial activation were estimated. Synaptogenesis was also evaluated by the measurement of synaptophysin, the pre-synaptic vesicular protein, level via western blotting technique. Cerebral hypoperfusion for 30 days induced a significant cognitive impairment along with hyperactivation of both microglial and astroglial cells, and reduction of synaptophysin level. Rosiglitazone treatment (3 and 6 mg/kg) not only suppressed the activation of astrocytes and microglia markedly but also alleviated the impairment of memory and increased the synaptophysin level. In conclusion, our results suggest that the chronic administration of rosiglitazone significantly prevents chronic cerebral hypoperfusion-induced brain damage, at least, partly through suppressing glial activation and preserving synaptic plasticity. Thus, it appears that rosiglitazone may be a promising pharmacological agent in the development of therapeutic approaches for the prevention or treatment of cerebrovascular diseases.  相似文献   

2.
Stroke-prone spontaneously hypertensive rats (SHRSP) used as a model of essential hypertension cause a high incidence of brain stroke on the course of hypertension. Incidences and sizes of brain lesions are known to relate to the astrocyte activities. Therefore, relation between brain damage and the expression profile of the astrocytes was investigated with morphometric and immunohistochemical analyses using astrocyte marker antibodies of S100B and glial fibrillary acidic protein (GFAP) with or without arundic acid administration, a suppressor on the activation of astrocytes. Arundic acid extended the average life span of SHRSP. An increase in brain tissue weight was inhibited concomitant with a lower rate of gliosis/hemosiderin deposit/scarring in brain lesions. S100B- or GFAP-positive dot and filamentous structures were decreased in arundic acid-treated SHRSP, and this effect was most pronounced in the cerebral cortex, white matter, and pons, and less so in the hippocampus, diencephalon, midbrain, and cerebellum. Blood pressure decreased after administration of arundic acid in the high-dose group (100 mg/kg/day arundic acid), but not in the low-dose group (30 mg/kg/day). These data indicate that arundic acid can prevent hypertension-induced stroke, and may inhibit the enlargement of the stroke lesion by preventing the inflammatory changes caused by overproduction of the S100B protein in the astrocytes.  相似文献   

3.
Cerebral white matter (WM) lesions are observed frequently in human ischemic cerebrovascular disease and have been thought to contribute to cognitive impairment. This type of lesion can be experimentally induced in rat brains under chronic cerebral hypoperfusion by the permanent occlusion of both common carotid arteries. However, it remains uncertain whether chronic ischemia can damage both the gray and white matter, and whether it can induce demyelination with or without axonal damage. Therefore, we examined axonal damage using immunohistochemistry for the amyloid beta/A4 precursor protein (APP), chromogranin A (CgA) and demyelination using immunohistochemistry for the encephalitogenic peptide (EP) in this model. Severe WM lesions such as vacuolation and the loss of nerve fibers appeared in the optic nerve and optic tract after 3 days of ligation, and less intense changes were observed in the corpus callosum, internal capsule, and fiber bundles of the caudoputamen after 7 days with Klüver-Barrera and Bielschowsky staining. These WM lesions persisted even after 30 days. The APP, CgA, and EP-immunopositive fibers increased in number from 1 to 30 days after the ligation in the following WM regions: the optic nerve, optic tract, corpus callosum, internal capsule, and fiber bundles of the caudoputamen. In contrast, only a few APP, CgA, or EP-immunopositive fibers were detected in the gray matter regions, including the cerebral cortex and hippocampus. These results indicate that the WM is more susceptible to chronic cerebral hypoperfusion than the gray matter, with an involvement of both axonal and myelin components. Furthermore, immunohistochemistry for APP, CgA, and EP is far superior to routine histological staining in sensitivity and may become a useful tool to investigate WM lesions caused by various pathoetiologies.  相似文献   

4.
Using homozygous human apolipoprotein E2 (apoE2) (2/2)-, apoE3 (3/3)-, or apoE4 (4/4)-knock-in (KI) mice, we have shown that delayed infarct expansion and reactive astrocytosis after permanent middle cerebral artery occlusion (pMCAO) were markedly exacerbated in 4/4-KI mice as compared with 2/2- or 3/3-KI mice. Here, we probed the putative causal relationship between enhanced astrocytic activation and exacerbation of brain damage in 4/4-KI mice using arundic acid (ONO-2506, Ono Pharmaceutical Co. Ltd), which is known to oppose astrocytic activation through its inhibitory action on S100B synthesis. In all of the KI mice, administration of arundic acid (10 mg/kg day, intraperitoneal, started immediately after pMCAO) induced significant amelioration of brain damage at 5 days after pMCAO in terms of infarct volumes (results expressed as the mean infarct volume (mm(3)) +/-1s.d. in 2/2-, 3/3-, or 4/4-KI mice in the vehicle groups: 16 +/- 2, 15 +/- 2, or 22 +/- 2; in the arundic acid groups: 11 +/- 2 (P < 0.001), 11 +/- 2 (P < 0.001), or 12 +/- 2 (P < 0.001), as compared with the vehicle groups), neurologic deficits, and S100/glial fibrillary acidic protein burden in the peri-infarct area. The beneficial effects of arundic acid were most pronounced in 4/4-KI mice, wherein delayed infarct expansion together with deterioration of neurologic deficits was almost completely mitigated. The above results support the notion that the apoE4 isoform exacerbates brain damage during the subacute phase of pMCAO through augmentation of astrocytic activation. Thus, pharmacological modulation of astrocytic activation may confer a novel therapeutic strategy for ischemic brain damage, particularly in APOE epsilon4 carriers.  相似文献   

5.
The effects of nimesulide, a cyclooxygenase-2 inhibitor, were examined during chronic cerebral hypoperfusion. After bilateral ligation of the common carotid arteries in 30 rats, 21 received dosages of 2 or 5 mg/kg nimesulide daily and nine received vehicle daily for 14 days. The serum was then analyzed biochemically, and pathological changes were estimated in the white matter by the emergence of major histocompatibility complex (MHC) antigen-immunoreactive activated microglia and white matter lesions. In the vehicle-treated animals, activated microglia and white matter lesions were observed. Following treatment with either 2 or 5mg/kg nimesulide, the magnitude of these changes was reduced (p < 0.001) without significant side effects. These results indicate a potential use for cyclooxygenase-2 inhibitors in cerebrovascular disease.  相似文献   

6.
Epidemiological studies suggest that the intake of flavonoids is inversely associated with risk of cardiovascular diseases and stroke, but there is no evidence showing the effect of flavonoids on vascular dementia. Because quercetin, a natural flavonoid, is known to scavenge free radicals, we investigated whether quercetin attenuates white matter damage in rats with chronic cerebral hypoperfusion, as a model of vascular dementia. Chronic hypoperfusion was induced by ligation of the bilateral carotid arteries in male Wistar rats, which received vehicle alone, 100 mg/kg quercetin, or 200 mg/kg quercetin intraperitoneally at 4-day intervals for 8 weeks after operation. Sham-operated rats were also studied. The area of vacuoles in the optic tract observed after hematoxylin and eosin staining was significantly reduced in the 200 mg/kg quercetin-treated hypoperfusion group versus the vehicle-treated hypoperfusion group (1.7+/-0.2% versus 3.9+/-0.3%; P<0.05). The present results are consistent with the idea that chronic treatment with quercetin could be protective against at least a part of ischemic white matter damage.  相似文献   

7.
Lee JH  Park SY  Shin YW  Hong KW  Kim CD  Sung SM  Kim KY  Lee WS 《Brain research》2006,1082(1):182-191
In the present study, we elucidated effect of cilostazol to prevent the occurrence of vacuolation and rarefaction of the white matter in association with apoptosis induced by bilateral occlusion of common carotid arteries in the male Wistar rats. Rats orally received vehicle (DMSO) or 60 mg kg(-1) day(-1) (orally) cilostazol for 3, 7, 14 or 30 days. In the vehicle group, increased vacuolation and rarefactions in the white matter were accompanied by extensive activation of both microglial and astroglial cells with suppression of oligodendrocytes in association with increased TNF-alpha production, caspase-3 immunoreactivity and TUNEL-positive cells in the white matter including optic tract. Post-treatment with cilostazol (60 mg kg(-1) day(-1)) strongly suppressed not only elevated activation of astroglia and microglia but also diminished oligodendrocytes following chronic cerebral hypoperfusion. In conclusion, cilostazol (60 mg kg(-1) day(-1), orally) significantly reduced the apoptotic cell death in association with decreased TNF-alpha production and caspase-3-positive cells in the white matter of rat brains subjected to bilateral occlusion of common carotid arteries, consequently ameliorating vacuoles and rarefaction changes in the white matter.  相似文献   

8.
Cerebrovascular white matter lesions represent an age-related neurodegenerative condition that appears as a hyperintense signal on magnetic resonance images. These lesions are frequently observed in aging, hypertension and cerebrovascular disease, and are responsible for cognitive decline and gait disorders in the elderly population. In humans, cerebrovascular white matter lesions are accompanied by apoptosis of oligodendroglia, and have been thought to be caused by chronic cerebral ischemia. In the present study, we tested whether chronic cerebral hypoperfusion induces white matter lesions and apoptosis of oligodendroglia in the rat. Doppler flow meter analysis revealed an immediate reduction of cerebral blood flow ranging from 30% to 40% of that before operation; this remained at 52–64% between 7 and 30 days after operation. Transferrin-immunoreactive oligodendroglia decreased in number and the myelin became degenerated in the medial corpus callosum at 7 days and thereafter. Using the TUNEL method, the number of cells showing DNA fragmentation increased three- to eightfold between 3 and 30 days post-surgery compared to sham-operated animals. Double labeling with TUNEL and immunohistochemistry for markers of either astroglia or oligodendroglia showed that DNA fragmentation occurred in both of these glia. Messenger RNA for caspase-3 increased approximately twofold versus the sham-operated rats between 1 and 30 days post-surgery. Immunohistochemistry revealed up-regulation of caspase-3 in the oligodendroglia of the white matter, and also in the astroglia and neurons of the gray matter. Molecules involved in apoptotic signaling such as TNF- and Bax were also up-regulated in glial cells. These results indicate that chronic cerebral hypoperfusion induces white matter degeneration in association with DNA fragmentation in oligodendroglia.  相似文献   

9.
Neuroprotective effects of immunosuppressive agents have been shown in cerebral ischemia. To investigate the role of immunosuppressive agents in chronic cerebral ischemia and to design a drug protocol with safe therapeutic windows, we examined the effects of FK506, a potent immunosuppressive agent, on chronic cerebral ischemia. Both common carotid arteries were ligated in 73 male Wistar rats. Fifty-eight of these rats received a chronic injection of FK506 (0.2, 0.5, 1.0 mg/kg) and the remaining 15 received a vehicle solution injection. Microglia/macrophage was investigated with immunohistochemistry for leukocyte common antigen and major histocompatibility complex, and astroglia was examined with glial fibrillary acidic protein as markers. White matter rarefaction and the number of immunopositive glial cells were assessed from 7 to 30 days after the ligation. In the vehicle-treated animals, there was persistent and extensive activation of the microglia/macrophages and astroglia in the white matter, including the optic nerve, optic tract, corpus callosum, internal capsule, anterior commissure and traversing fiber bundles of the caudoputamen. In the FK506-treated rats, the number of activated microglia/macrophages was significantly reduced in a dose-dependent manner (p<0.01) as compared to the vehicle-treated rats. Rarefaction of the white matter was also inhibited by FK506 in a dose-dependent manner (p<0.01). Thus, a clinically-relevant dosage of FK506 attenuated both glial activation and white matter changes in chronic cerebral ischemia in the rat. These results indicate a potential use for FK506 in cerebrovascular diseases.  相似文献   

10.
We examined the effects of the immunosuppressant tacrolimus (FK506) on the discrimination learning impairment induced by chronic cerebral hypoperfusion in rats. Chronic cerebral hypoperfusion was prepared by permanent ligation of bilateral common carotid arteries for male Wistar rats aged 9 weeks. FK506 (0.05 mg/kg, s.c.) recovered the learning impairment and also prevented the rarefaction of white matter and striatal neuronal cell damage. Our findings suggest that FK506 ameliorates the learning impairment mainly due to preventing neuropathological alterations.  相似文献   

11.
Chronic cerebral hypoperfusion causes white-matter lesions (WMLs) with oxidative stress and cognitive impairment. However, the biologic mechanisms that regulate axonal plasticity under chronic cerebral hypoperfusion have not been fully investigated. Here, we investigated whether L-carnitine, an antioxidant agent, enhances axonal plasticity and oligodendrocyte expression, and explored the signaling pathways that mediate axonal plasticity in a rat chronic hypoperfusion model. Adult male Wistar rats subjected to ligation of the bilateral common carotid arteries (LBCCA) were treated with or without L-carnitine. L-carnitine-treated rats exhibited significantly reduced escape latency in the Morris water maze task at 28 days after chronic hypoperfusion. Western blot analysis indicated that L-carnitine increased levels of phosphorylated high-molecular weight neurofilament (pNFH), concurrent with a reduction in phosphorylated phosphatase tensin homolog deleted on chromosome 10 (PTEN), and increased phosphorylated Akt and mammalian target of rapamycin (mTOR) at 28 days after chronic hypoperfusion. L-carnitine reduced lipid peroxidation and oxidative DNA damage, and enhanced oligodendrocyte marker expression and myelin sheath thickness after chronic hypoperfusion. L-carnitine regulates the PTEN/Akt/mTOR signaling pathway, and enhances axonal plasticity while concurrently ameliorating oxidative stress and increasing oligodendrocyte myelination of axons, thereby improving WMLs and cognitive impairment in a rat chronic hypoperfusion model.  相似文献   

12.
We sought to establish a mouse model of subcortical ischemic vascular dementia (SIVD) that develops predominant white matter (WM) injury and cognitive dysfunction induced by chronic cerebral hypoperfusion. Adult C57Bl/6 male (n = 48) mice were subjected to bilateral common carotid artery stenosis with external microcoils (inner diameters: 0.16 mm, left; 0.18 mm, right). Mice were categorized according to left-side cerebral blood flow (CBF) value on day 6 into those with severe cerebral hypoperfusion (SCH; n = 16, < 30% of preoperative CBF baseline value) or moderate cerebral hypoperfusion (MCH; n = 21, 30-50% of preoperative value). Another 15 mice were sham operated. Neurological dysfunction was evaluated by Morris water maze, rotating rod, and open field tests. Histopathological examination was performed on day 35 after surgery. MCH animals showed persistent hyperlocomotion with reduced anxiety and spatial reference memory dysfunction. Rarefaction and small necrotic lesions were predominantly confined to the WM, with reactive astrocytosis, microglial infiltration, axonal loss, and myelin disruption, and these changes were dominant on the left side. SCH animals had persistent hyperlocomotion and motor dysfunction, and their ischemic lesions extended from the WM to the hippocampus and cortex. In MCH animals, myelin basic protein and neurofilament fiber densities in the WM were correlated with the time spent in the correct area in the water maze probe trials. Our MCH mouse model with the development of several types of neurological dysfunction with high reproducibility would be useful for investigating the pathomechanisms of WM injury in human SIVD.  相似文献   

13.
Panax ginseng is a slow-growing perennial plant.Panax ginseng extract has numerous biological activities,including antitumor,anti-inflammatory and antistress activities.Panax ginseng extract also has a cognition-enhancing effect in rats with alcohol-induced memory impairment.In this study,we partially occluded the bilateral carotid arteries in the rat to induce chronic cerebral hypoperfusion,a wellknown model of vascular dementia.The rats were then intragastrically administered 50 or 100 mg/kg Panax ginseng extract.Morris water maze and balance beam tests were used to evaluate memory deficits and motor function,respectively.Protein quantity was used to evaluate cholinergic neurons.Immunofluorescence staining was used to assess the number of glial fibrillary acidic protein-positive cells.Western blot assay was used to evaluate protein levels of vascular endothelial growth factor,basic fibroblast growth factor,Bcl-2 and Bax.Treatment with Panax ginseng extract for 8 weeks significantly improved behavioral function and increased neuronal density and VEGF and b FGF protein expression in the hippocampal CA3 area.Furthermore,Panax ginseng extract reduced the number of glial fibrillary acidic protein-immunoreactive cells,and it decreased apoptosis by upregulating Bcl-2 and downregulating Bax protein expression.The effect of Panax ginseng extract was dose-dependent and similar to that of nimodipine,a commonly used drug for the treatment of vascular dementia.These findings suggest that Panax ginseng extract is neuroprotective against vascular dementia induced by chronic cerebral hypoperfusion,and therefore might have therapeutic potential for preventing and treating the disease.  相似文献   

14.
Some lines of evidence have suggested that subcortical ischemic vascular dementia (SIVD) is a common form of vascular dementia (VaD), and that its pathological changes are the development of ischemic white matter (WM) lesions under chronic hypoperfusion and lacunes. Here, we have developed a novel mouse model of VaD with WM lesions, which was induced by right unilateral common carotid artery occlusion (rUCCAO). The mice subjected to rUCCAO exhibited chronic cerebral hypoperfusion in the cerebral hemisphere ipsilateral to rUCCAO monitored using a laser-Doppler flow meter (p<0.01), and significant WM damage in the corpus callosum (p<0.05) and deficits in object recognition test correlated with the damage of frontal-subcortical circuits (p<0.01). However, no differences in spontaneous alternation or spontaneous motor activity were observed. Furthermore, the levels of pro-inflammatory cytokines, such as interleukin-1beta (IL-1beta) and interleukin-6 (IL-6), significantly increased (p<0.01), and those of anti-inflammatory cytokines, such as interleukin-4 (IL-4) and interleukin-10 (IL-10), significantly decreased in the ischemic brain (p<0.05). These results suggest that this model is a useful tool for investigating the associations among inflammatory reactions, cognitive impairment, and WM damage, which may help elucidating the pathomechanism of VaD, particularly SIVD.  相似文献   

15.
Vascular dementia is caused by blockage of blood supply to the brain, which causes ischemia and subsequent lesions primarily in the white matter, a key characteristic of the disease. In this study, we used a chronic cerebral hypoperfusion rat model to show that the regeneration of white matter damaged by hypoperfusion is enhanced by inhibiting phosphodiesterase III. A rat model of chronic cerebral hypoperfusion was prepared by bilateral common carotid artery ligation. Performance at the Morris water-maze task, immunohistochemistry for bromodeoxyuridine, as well as serial neuronal and glial markers were analyzed until 28 days after hypoperfusion. There was a significant increase in the number of oligodendrocyte progenitor cells in the brains of patients with vascular dementia as well as in rats with cerebral hypoperfusion. The oligodendrocyte progenitor cells subsequently underwent cell death and the number of oligodendrocytes decreased. In the rat model, treatment with a phosphodiesterase III inhibitor prevented cell death, markedly increased the mature oligodendrocytes, and promoted restoration of white matter and recovery of cognitive decline. These effects were cancelled by using protein kinase A/C inhibitor in the phosphodiesterase III inhibitor group. The results of our study indicate that the mammalian brain white matter tissue has the capacity to regenerate after ischemic injury.  相似文献   

16.
目的 探讨诱导型环氧和酶 (COX -2 )抑制剂尼美舒利对慢性脑缺血损害的保护作用。方法 大鼠随机分为对照组、缺血组和治疗组 ,治疗组于术后 2 4h开始以尼美舒利 (6mg/kg)每日灌胃 ,连续 60d ,各组于 60d后做病理染色、GFAP免疫组化染色及脑组织内MDA和SOD含量的测定。结果 与对照组相比 ,缺血组GFAP阳性细胞明显增多 ;脑内的SOD含量下降 ,MDA含量增多。治疗组以上变化明显减轻 ,且有显著性差异。结论 COX -2抑制剂尼美舒利对慢性脑缺血损伤有脑保护作用。  相似文献   

17.
目的 观察Rho激酶抑制剂盐酸法舒地尔(hydroxy fasudil, HF)对慢性低灌注脑缺血所致大鼠海马神经细胞损伤的保护作用。方法 采用永久性结扎大鼠双侧颈总动脉(permanent occlusion of the bilateral CCA, 2VO)制备大鼠慢性不完全性全脑缺血模型,将SD大鼠随机分为假手术组、脑缺血模型组和HF治疗组,运用Morris 水迷宫行为学方法检测大鼠空间学习记忆能力; 用HE染色观察海马组织形态学改变。结果 Morris 水迷宫检测发现模型组大鼠学习记忆能力受损,与假手术组比较逃避潜伏期延长、空间辨别能力下降; 组织学观察模型组大鼠海马CA1细胞发生丢失,组织结构异常。连续给予盐酸法舒地尔30 d能改善大鼠学习记忆功能,减少脑缺血所致的大鼠海马神经细胞丢失。结论 盐酸法舒地尔可减少慢性脑缺血所致的大鼠海马神经元的丢失,改善学习记忆功能。  相似文献   

18.
Nitric oxide mediates glutamate-induced excitotoxicity associated with cerebral hypoxia-ischemia through production in the brain by several isoforms of nitric oxide synthase (NOS). We examined the influence of the selective neuronal NOS inhibitor, 7-nitroindazole (7-NI), on brain NOS activity and its neuroprotective effects against cerebral hypoxic-ischemic injury in the postnatal day (PND) 7 rat. In the first set of experiments, 7-NI (50 mg/kg) administered intraperitoneally (i.p.) transiently inhibited NOS activity to 40% below the vehicle control level at 1 h after injection (P<0.001, analysis of variance (ANOVA)). In contrast, 7-NI (100 mg/kg, i.p.) inhibited NOS activity to 56% below the control level at 1 h with prolonged suppression of NOS activity at 3, 6, 9 and 12 h after injection. Two-factor ANOVA revealed an overall effect on NOS activity of 7-NI treatment (P<0.001) and time after injection (P<0.001). In the second set of experiments, 7-NI (50, 100 mg/kg) or an equal volume of vehicle was administered after unilateral carotid artery ligation, but 30 min before hypoxia in PND 7 rats. 7-NI (100 mg/kg) significantly protected against cerebral hypoxic-ischemic injury (100 mg/kg of 7-NI, 1.7+/-1.0% damage; control, 8.7+/-1.6%,P<0.05). 7-NI administered 15 min after cerebral hypoxia-ischemia was not neuroprotective. The data suggest that the protective effect of 7-NI is dose dependent, and is related to the duration of suppressed NOS activity.  相似文献   

19.
Diazoxide has been identified as a mitochondrial, ATP-dependent K(+) channel opener, and a potentially neuroprotective compound under ischemic conditions. We set out to characterize the consequences of various treatment strategies with diazoxide in a rat model of chronic cerebral hypoperfusion. Cerebral hypoperfusion was induced by permanent, bilateral occlusion of the common carotid arteries (2VO, n = 36), sham-operated rats serving as controls (SHAM, n = 29). Diazoxide or its vehicle was administered i.p. daily (5 x 0.5 mg/kg/0.25 ml) or as a bolus injection (5 mg/kg/0.25 ml) before surgery or daily after surgery (5 x 0.5 mg/kg/0.25 ml). Spatial learning performance was assessed 1 week after 2VO in the Morris maze. Hippocampal pyramidal cell loss was assessed on cresyl violet-stained sections, while glial reactivity was labeled immunocytochemically. Daily or bolus pretreatment with diazoxide significantly improved 2VO-related learning impairment, whereas posttreatment was ineffective. The number of CA1 pyramidal neurons was reduced by 2VO, which was prevented by repeated or bolus pretreatment with diazoxide. Astrocyte proliferation and microglial activation were enhanced by posttreatment with diazoxide in the hippocampus CA1 area of 2VO animals as compared with SHAM. These data demonstrate that the neuroprotective effect exerted by diazoxide depends on the time of administration with respect to the onset of ischemia; pretreatment but not posttreatment with the compound has proved to be neuroprotective in chronic cerebral hypoperfusion. Thus, pretreatment with diazoxide offers therapeutical prospects for the treatment of cerebral ischemia.  相似文献   

20.
Liu J  Jin DZ  Xiao L  Zhu XZ 《Brain research》2006,1089(1):162-170
Chronic cerebral hypoperfusion, a mild ischemic condition, is associated with the cognitive deficits of AD. Paeoniflorin (PF), a major constituent of peony root, was proved to be neuroprotective in middle cerebral artery occlusion model. In this study, we investigated whether PF could attenuate chronic cerebral hypoperfusion-induced learning dysfunction and brain damage in rat. Seven weeks after permanent bilateral occlusion of the common carotid arteries, the rats were tested in the Morris water maze. Subsequently, the animals were sacrificed and neurons, astrocytes and microglias were labeled with immunocytochemistry in hippocampus. PF at the dose of 2.5 mg/kg ameliorated cerebral hypoperfusion-related learning dysfunction and prevented CA1 neuron damage. Chronic cerebral hypoperfusion increased the immunoreactivity of astrocytes and microglias in hippocampus. The increase was prevented by PF at the dose of 2.5 mg/kg. Cerebral hypoperfusion also increased expression of nuclear factor-kappaB (NF-kappaB), mostly in astrocytes, but not in neurons. With the treatment of PF (2.5 mg/kg), NF-kappaB immunostaining was diminished in hippocampus. Our results demonstrated that PF could attenuate cognitive deficit and brain damage induced by chronic cerebral hypoperfusion and that suppression of neuroinflammatory reaction in brain might be involved in PF-induced neuroprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号