首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Intact lymphocytes from patients with cystic fibrosis (CF) produce significantly (P less than 0.001) less adenosine 3':5' cyclic monophosphate (cAMP) than normal lymphocytes in response to isoproterenol (10(-8)-10(-4) M), although the basal cAMP content and the response to prostaglandin E1 are normal. Obligate heterozygotes for CF have significantly (P less than 0.005) reduced cAMP response to isoproterenol as well, suggesting a genetic component in the beta adrenergic deficiency in CF. The number of beta adrenergic receptors, as determined by equilibrium binding of [3H]dihydroalprenolol to lymphocyte particulates, is the same in normal lymphocytes (969 +/- 165 receptors/cell) and lymphocytes from patients with CF (1,333 +/- 263 receptors/cell). Binding properties of the receptor for both antagonist and agonist, as assessed by KD for dihydroalprenolol and Ki for (-)-isoproterenol, are also normal in the CF lymphocytes. Similarly, in granulocytes from patients with CF, the cAMP response to isoproterenol (10(-8)-10(-4) M) is significantly reduced compared with healthy controls (P less than 0.03), as is the response of granulocytes from obligate heterozygotes (P less than 0.05). Again, the basal cAMP levels and the response to prostaglandin E1 are normal. The number of beta adrenergic receptors, as determined by equilibrium binding of [3H]dihydroalprenolol to granulocyte particulates, was the same in normal (1,462 +/- 249 receptors/cell) and CF (1,621 +/- 221 receptors/cell) preparations. Binding properties of the receptor for both agonist and antagonist, as assessed by KD for dihydroalprenolol and Ki for isoproterenol, are normal in CF granulocyte particulates. The lymphocyte and granulocyte beta adrenergic defect in CF cannot be explained by abnormalities of the beta adrenergic receptor or of adenylate cyclase itself. Receptor-cyclase coupling is the most likely site of the heritable beta adrenergic defect in CF.  相似文献   

2.
Beta adrenergic receptors have been previously characterized in human neutrophil sonicates. In the present study the intact neutrophil has been assessed for the number and affinity of beta adrenergic binding sites by using the antagonist DNA. Agonist and antagonist potencies, characterized by their effect on DHA binding and cyclic AMP accumulation, are compared with agonist inhibition of lysosomal enzyme (beta glucuronidase) release. Criteria for beta adrenergic receptor identification were successfully demonstrated. At 30 degrees C, beta adrenergic binding was rapid (t 1/2 2 min) and reversible (t 1/2 9 min). Receptor binding was saturable, revealing approximately 900 high-affinity receptors per neutrophil with DHA concentrations of 0.1 to 10 nM. By utilizing both equilibrium and kinetic techniques, the KD was determined to be approximately 0.6 nM. Agonists and antagonists competed for DHA binding in a manner consistent with their effect on cyclic AMP generation. Rank order potency was suggestive of a beta-2 receptor: isoproterenol greater than epinephrine greater than norepinephrine. Stereoselectivity was shown by the greater potency of L-propranolol compared to the D isomer. A high degree of receptor-adenylate cyclase coupling efficiency was suggested by the observation that with only 1% receptor occupancy isoproterenol stimulated 50% maximal cyclic AMP generation. Finally, there was an excellent correlation between the isoproterenol concentration which resulted in 50% of maximal inhibition of beta glucuronidase release (Ki) and that causing 50% maximal cyclic AMP stimulation (Kact), suggestive of a close relationship between beta adrenergic-induced adenylate cyclase activation and beta adrenergic regulation of neutrophil lysosomal enzyme release. The data presented suggest that the use of the intact neutrophil for study of the beta adrenergic receptor is feasible and may provide information which is considerably more closely related to modulation of physiological function by neurohormones than is possible with disrupted cell preparations.  相似文献   

3.
The receptor alterations involved in catecholamine-induced desensitization of adenylate cyclase in human neutrophils have been investigated as has the ability of hydrocortisone to modify such alterations. Incubation of human neutrophils with isoproterenol for 3 h in vitro resulted in an 86% reduction in the ability of isoproterenol to stimulate cyclic AMP accumulation in the cells. Two types of receptor alterations were documented. There was a 40% reduction in the number of beta adrenergic receptors (42 vs. 25 fmol/mg protein, P < 0.005) present after desensitization as assessed by [3H]dihydroalprenolol ([3H]DHA) binding. In addition the receptors appeared to be relatively uncoupled from adenylate cyclase. This uncoupling was assessed by examining the ability of the agonist isoproterenol to stabilize a high-affinity form of the receptor, detected by computer modelling of competition curves for [3H]DHA binding. Desensitized receptors were characterized by rightward-shifted agonist competition curves. When hydrocortisone was added to the desensitizing incubations (combined treatment) there was a statistically significant attenuation in the desensitization process as assessed by the ability of isoproterenol to increase cyclic AMP levels in the cells. Although combined treatment did not prevent the decline in receptor number, it did attenuate the uncoupling of the receptors. Combined treatment resulted in competition curves intermediate between the control and the rightward-shifted desensitization curves. Prednisolone was similar to hydrocortisone in attenuating isoproterenol-induced uncoupling. Thus, steroids appeared to attenuate agonist-induced desensitization of the beta adrenergic receptor-adenylate cyclase system by dampening the ability of agonists to uncouple receptors without modifying their ability to promote down-regulation of beta adrenergic receptors.  相似文献   

4.
Human leukocytes have been useful in studying desensitization phenomena to beta-adrenergic agonists in a number of clinical conditions. For example, we have previously shown that oral terbutaline causes a time-dependent decrease in neutrophil (PMN) beta receptor number, using the beta antagonist ligand [3H]dihydroalprenolol (DHA), in conjunction with a significant loss of isoproterenol-induced adenylate cyclase activity. In the present in vitro study we have explored the mechanism for beta-adrenergic desensitization and have compared conditions for homologous and heterologous desensitization, using the intact PMN model. PMN preincubated with isoproterenol (10(-4)M), washed thoroughly, then restimulated, desensitize rapidly so that within 10 min 80% of control isoproterenol-induced cyclic AMP stimulation is lost. Cells washed free of isoproterenol recover full responsiveness in 1 to 2 hr. The estimated isoproterenol desensitization EC50 in cells washed and then restimulated is 1 X 10(-5)M, and the EC50 in unwashed cells that are restimulated is 9 X 10(-8)M. Rank-order potency studies of catecholamine desensitization show isoproterenol greater than epinephrine greater than norepinephrine, a beta-2 pattern. Isoproterenol-induced desensitization results in a small reduction in [3H]DHA binding sites, which becomes statistically significant (p less than 0.05) from control values at 1 hr (67% of control) and 3 hr (64%). Since the change in number of beta receptors did not explain the profound, rapid loss of beta agonist-induced cyclic AMP responsiveness, we explored the possibility of an uncoupling phenomenon. In the absence of GTP, isoproterenol binding is characterized by an EC50 of 6.6 +/- 2.6 X 10(-7)M, which is significantly different (p less than 0.05) from the EC50 of 38.1 +/- 9.1 X 10(-7)M found when cells are previously desensitized with isoproterenol for 10 min. GTP does not affect the EC50 of desensitized cells. These findings are consistent with the uncoupled receptor state fitting the model described by Su et al. Finally, prolonged (3 hr) isoproterenol preincubation results in a small but significant (p less than 0.05) loss of cyclic AMP responsiveness to histamine (67.7% +/- 11.7 of control) and PGE1 (59.3% +/- 7.4), suggesting heterologous desensitization. These studies suggest that the human PMN is a suitable model to study both homologous and heterologous desensitization in vitro.  相似文献   

5.
Three types of adrenergic receptors, beta, alpha-1, and alpha-2, were identified in human adipocytes, isolated from properitoneal adipose tissue, using both the binding of radioactive ligands and the effects of adrenergic agents on receptor-specific biochemical responses. Adrenergic binding studies showed the following results: [(3)H]dihydroalprenolol binding (beta adrenergic) B(max) 280 fmol/mg protein, K(D) 0.38 nM; [(3)H]para-aminoclonidine binding (alpha-2 adrenergic) B(max) 166 fmol/mg protein, K(D) 0.49 nM; [(3)H]WB 4101 binding (alpha-1 adrenergic) B(max) 303 fmol/mg protein, K(D) 0.86 nM. In adipocytes from subcutaneous adipose tissue, [(3)H]dihydroergocryptine binding indicated the presence of alpha-2 but not alpha-1 receptors.Beta and alpha-2 adrenergic receptors appeared to be positively and negatively coupled to adenylate cyclase, respectively. Cells or cell membranes were incubated with epinephrine (10 muM) alone and in combination with the antagonists yohimbine (alpha-2) and prazosin (alpha-1). Epinephrine alone prompted a modest increase in adenylate cyclase activity, cyclic AMP, and glycerol release, an index of lipolysis. Yohimbine (0.1 muM) greatly enhanced these actions whereas prazosin was without effect. The beta agonist, isoproterenol, stimulated glycerol release, whereas the alpha-2 agonist, clonidine, inhibited lipolysis and cyclic AMP accumulation. To assess further alpha-1 receptors, cells were incubated with [(32)P]phosphate and epinephrine (10 muM) alone and in combination with prazosin and yohimbine. Epinephrine alone caused a three- to fourfold increase in (32)P incorporation into phosphatidylinositol. Prazosin (0.1 muM) blocked this action whereas yohimbine (0.1 muM) was without effect. Thus, in a homogeneous cell preparation, the human adipocyte appears to have three different adrenergic receptors, each of which is coupled to a distinct biochemical response.  相似文献   

6.
Alteration of sensitivity to the inotropic responses to isoproterenol and acetylcholine (ACh) and of saturation constants for the specific binding of [3H]dihydroalprenolol and [3H]quinuclidinyl benzilate to particulate fractions were investigated in rat hearts chronically treated with isoproterenol. The EC50 value for the inotropic response to isoproterenol in the atria of rats injected i.p. with isoproterenol (0.01 or 0.1 mg/kg) twice a day for 10 days, was 9.0-fold higher than in controls. Isoproterenol (0.17 mg/kg i.p.)-induced stimulation of cardiac ornithine decarboxylase activity was significantly (P less than .05) attenuated in atria from animals of the treated groups. Scatchard analysis of specific binding of [3H]dihydroalprenolol revealed that repeated isoproterenol injection produced a significant decrease in the maximum number of binding sites (Bmax), but not in the dissociation constant (KD) for this antagonist. In comparison to the isoproterenol-induced changes in beta adrenergic positive inotropic response, repeated treatment with isoproterenol decreased 2-fold the EC50 value for the negative inotropic response to ACh in isolated atria. Scatchard analysis of specific [3H]quinuclidinyl benzilate binding, however, indicated a significant (P less than .01) decrease in Bmax. Repeated isoproterenol injections also elicited a significant increase in cardiac weight. It is suggested that repeated administration of isoproterenol induces a decrease in density of beta adrenergic receptors which may in part underlie a cardiac hyposensitivity to isoproterenol and an increase in the number of muscarinic ACh receptors and inotropic responsiveness to ACh.  相似文献   

7.
We have tested the beta adrenergic receptor theory of bronchial asthma by determining the number and affinity of binding sites of the beta adrenergic radioligand [(3)H]dihydroalprenolol (DHA) and the activity of adenylate cyclase in broken cell preparations of polymorphonuclear leukocytes (PMN). We studied 31 control subjects (group 1), 30 asthmatics receiving no systemic adrenergic medication (group 2), and 17 asthmatics receiving adrenergic agonists systemically (group 3). Control subjects and asthmatics taking no adrenergic drugs bound similar amounts of DHA at 0.5 nM and 30 nM DHA and had about 900 binding sites per PMN. In contrast, asthmatics receiving adrenergic agonists had a >70% decrease in their number of DHA binding sites per PMN (254+/-57). In a subset of our three groups of subjects (eight from group 1, six from group 2, and five from group 3) we measured DHA binding at several DHA concentrations and found similar values (0.4-0.7 nM) for the dissociation constant of DHA among these subjects.In further studies we examined the interaction of the agonist (-)-isoproterenol with beta adrenergic receptors in 8 normal subjects and 10 asthmatics not receiving adrenergic medication. We tested the ability of isoproterenol to compete for DHA binding sites and to stimulate adenylate cyclase in sonicates prepared from PMN and examined under identical conditions. The dissociation constants for the competition of isoproterenol for DHA binding sites in normal and asthmatic subjects were virtually identical ( approximately 1.0 muM). In addition, the (activation constant) values for stimulation of adenylate cyclase were similar (0.16-0.19 muM) in the two groups of subjects.Thus, these data suggest that asthma per se is not associated with alteration in either the number or affinity of beta adrenergic receptors in PMN. Our findings indicate that previous reports of abnormal beta adrenergic receptor function in asthmatic patients may in part be explained by prior treatment of such patients with adrenergic agonists. Because the asthmatics who received adrenergic agonists in our study tended to be more ill and to receive additional medication compared to subjects in group 2, we cannot rule out unequivocally that severe asthma may be associated with decreased binding to beta adrenergic receptors. Nevertheless, we conclude that beta adrenergic receptors on PMN from asthmatics are relatively normal unless such patients are treated with adrenergic agonists.  相似文献   

8.
Stimulation of beta adrenergic receptors on AtT-20 cells increases intracellular cyclic AMP levels and adrenocorticotropin hormone (ACTH) release. Pretreatment of these cells with catecholamines reduces the ability of (-)-isoproterenol to stimulate both cyclic AMP formation and ACTH secretion. This beta receptor desensitization is time- and dose-dependent and is reversible. Various beta adrenergic agonists can induce this desensitization with a rank order of potency of salmefamol greater than or equal to (-)-isoproterenol greater than or equal to epinephrine greater than or equal to norepinephrine greater than or equal to (+)-isoproterenol. (+/-)-Propranolol but not practolol can block the (-)-isoproterenol-induced beta receptor desensitization. Long-term treatment of AtT-20 cells with (-)-isoproterenol reduces the density of beta receptors but does not affect the affinity of these sites for [3H]dihydroalprenolol. In addition to desensitizing beta receptors, (-)-isoproterenol pretreatment enhances basal ACTH secretion. This effect was dose-dependent and blocked by (+/-)-propranolol. Forskolin-stimulated cyclic AMP formation and ACTH secretion was not altered by (-)-isoproterenol treatment indicating that the desensitization of beta receptors on AtT-20 cells is the result of receptor-adenylate cyclase uncoupling. No cross-desensitization of corticotropin releasing factor or vasoactive intestinal peptide receptors occurred as (-)-isoproterenol treatment did not alter the effect of these peptides on cyclic AMP synthesis or ACTH secretion.  相似文献   

9.
To study the epigenetic regulation of beta adrenergic receptor subtypes, we examined the effects of phorbol esters on beta adrenergic receptor coupling to adenylyl cyclase in 3T3-L1 fibroblasts, which express both beta-1 and beta-2 adrenergic receptor subtypes. Pretreatment of intact 3T3-L1 cells with the protein kinase C activator phorbol dibutyrate caused a dose- and time-dependent decrease in subsequent cyclic AMP (cAMP) accumulation mediated by the beta adrenergic agonist isoproterenol. This effect was selective for beta-adrenergic receptor-mediated responses because there was a potentiation of cAMP accumulation caused by other activators such as prostaglandin E1, forskolin or cholera toxin. The inactive phorbol, alpha-phorbol dibutyrate was ineffective at 1 microM in attenuating isoproterenol stimulation, and 25 nM of the protein kinase C inhibitor staurosporine blocked the effects of phorbol ester on beta adrenergic agonist responses. Stimulation of cAMP accumulation by isoproterenol occurred through a greater proportion of beta-2 adrenergic receptors in phorbol dibutyrate-treated cells than in control cells. This was demonstrated using the beta-1 adrenergic selective antagonist ICI 89.406 and the beta-2 adrenergic selective antagonist ICI 118.551 to inhibit competitively isoproterenol-stimulated cAMP accumulation. Beta-2 adrenergic receptor number and subtype in these cells are regulated by glucocorticoids and butyrate. Decreasing the proportion of beta-1 adrenergic receptors and concomitantly increasing beta-2 adrenergic receptors with either glucocorticoids or butyrate decreased the ability of phorbol ester pretreatment to attenuate cAMP accumulation by isoproterenol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The cyclic AMP response to catecholamines in rat cortical slices is mediated by a beta adrenergic receptor which is coupled to adenylate cyclase and an alpha adrenergic receptor which potentiates the response to beta receptor stimulation. The present studies examined the effects of repeated restraint stress, adrenocorticotropin or desmethylimipramine administration on the beta and alpha adrenergic components of this response. Restraint was found to produce a small nonsignificant decrease of the beta receptor response accompanied by a significant reduction of the alpha receptor-induced potentiation of the beta response. Desmethylimipramine was found to lower the cyclic AMP response to beta receptor stimulation but not to alter the alpha-induced potentiation of the beta response. Adrenocorticotropin, like restraint stress, was found to reduce only the alpha-induced potentiation of the beta response. Experiments with adenosine and histamine showed that restraint stress lowered the alpha-induced potentiation of cyclic AMP responses to these neurohormones also. It is concluded that restraint stress acts primarily to reduce the response to stimulation of central alpha adrenergic receptors whereas desmethylimipramine acts primarily to reduce the response to stimulation of beta adrenergic receptors. Adrenocorticotropin has the same effect as restraint stress suggesting that pituitary adrenal hormones mediate the stress effect.  相似文献   

11.
Norepinephrine stimulates the synthesis of melatonin in the pineal gland. The action of norepinephrine is believed to be mediated primarily by beta adrenergic receptors, and involves activation of adenylate cyclase. Ethanol, 25 to 50 mM, added to cultured pineal glands in vitro, enhanced isoproterenol-induced stimulation of cyclic AMP and melatonin production. The action of ethanol was observed only at doses of isoproterenol that produced a submaximal effect, and ethanol alone had no effect on cyclic AMP or melatonin release. Butanol, at a concentration of 2 mM, was as effective as 50 mM ethanol in increasing isoproterenol-stimulated cyclic AMP and melatonin release, indicating that the response to alcohols was not due simply to changes in osmolarity, and may reflect a hydrophobic interaction of the alcohols with the cell membrane. The effects of ethanol on pineal cyclic AMP and melatonin release were reversible after a 15-min preincubation, but not after a 2-hr preincubation, suggesting that, over a long incubation period, ethanol may sensitize the pineal beta adrenergic receptor-coupled adenylate cyclase system to isoproterenol. The findings in this study are consistent with earlier work showing that ethanol increases cerebral cortical beta adrenergic receptor-coupled adenylate cyclase activity, and demonstrate that the effect of ethanol on the receptor-effector system can result in an endocrinological response.  相似文献   

12.
The interactions of the atypical agonists pindolol and celiprolol with beta adrenergic receptors were compared with those of the full agonist, isoproterenol. Studies were carried out using intact cells as well as membranes prepared from C6 glioma cells. Computer-assisted analysis of dose-response curves resulting from the inhibition of the binding of [125I]iodopindolol by the beta-1 and beta-2 selective compounds ICI 89,406 and ICI 118,551 revealed that approximately one-third of the beta adrenergic receptors on these cells were beta-1 receptors. Addition of GTP to the binding assay simplified the dose-response curve for inhibition of the binding of [125I]iodopindolol by isoproterenol and diminished the potency of the agonist. GTP had no effect on the binding of pindolol or celiprolol, suggesting that these drugs do not induce the formation of a ternary complex with the receptor and the guanine nucleotide-binding protein for stimulation of adenylate cyclase activity. When added to the growth medium of intact C6 cells, isoproterenol induced a 40-fold increase in cyclic AMP accumulation. Pindolol and celiprolol, however, caused no elevation of enzyme activity. Addition of isoproterenol to the growth medium of intact cells resulted in an 80% decrease in the density of both beta-1 and beta-2 adrenergic receptors within 8 hr. Growing cells in the presence of pindolol or celiprolol induced a 50% decrease in the density of beta-2 receptors, which was inhibited by beta adrenergic antagonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We have previously reported the presence of a 5-HT1 (serotonin)-like receptor coupled in an inhibitory manner to adenylate cyclase in the opossum kidney cell line, which is derived from the kidney of a North American opossum. Pharmacological data from binding and cyclic AMP production studies indicate that this receptor does not have characteristics of a 5-HT1A, 5-HT1C or 5-HT1D receptor, but is similar to 5-HT1B receptors found in rodent tissues. Many serotonergic drugs, including 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyrindinyl)1H-indol, 5-HT and methysergide, but not (+/-)-8-hydroxy-2-(di-N-propylamino)tetralin hydrobromide or buspirone, were full agonists at this receptor as defined by the inhibition of bovine parathyroid hormone peptide fragment 1-34-stimulated cyclic AMP production in an intact cell assay. Several classical beta adrenergic antagonists including propranolol and cyanopindolol were also full agonists at this receptor. Radioligand binding studies using [125I](-)-iodocyanopindolol gave a Bmax of 88 fmol/mg of protein and a KD of 47 pM for saturation experiments carried out in the presence of GTP. In the absence of GTP, the binding data were significantly better fit by a two-site model with KD values of 10 and 345 pM. Inhibition binding experiments were consistent with the results of the cyclic AMP experiments. The identification of 5-HT1B receptors in a tissue derived from the opossum kidney suggests that these receptors may be distributed more widely than previously thought, inasmuch as other studies have found them only in neuronal tissues of rodents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Submaxillary glands of rats, chronically treated with isoproterenol or reserpine undergo morphological and functional alterations. These changes have been described to resemble those seen in human cystic fibrosis. Since it has been proposed that the beta adrenergic-mediated response is altered in exocrine glands of cystic fibrosis patients, we have examined whether the drug-induced alterations in rat salivary glands were accompanied by changes in the numbers and affinities of beta adrenergic receptor sites. Beta receptor characteristics were determined by means of direct binding studies with the beta adrenergic antagonist [3H]dihydroalprenolol. Compared to controls, specific binding capacities of [3H]dihydroalprenolol per unit of protein increased by 110 +/- 14% after reserpine treatment and decreased by 34 +/- 11% after isoproterenol administration (P less than .001). The difference in the number of receptor sites remained statistically significant whether expressed per gram of fresh weight or per unit of the membrane marker 5'-nucleotidase activity. Dissociation constants of the binding were not significantly different between the treatment groups. The observed changes in the number of beta receptors showed an inverse relationship to the drug-induced presumed changes of catecholamine concentrations at the receptor sites. This suggests the existence of a feedback system which maintains the balance within the autonomous nervous system. We speculate that in cystic fibrosis this adaptive system is genetically abnormal.  相似文献   

15.
In membrane preparations derived from primary cultures of chick myocardial cells, beta adrenergic receptors modeled for a single low-affinity site for both betaxolol (beta-1-selective) and ICI 118551 (beta-2-selective) displacement of [125I]iodocyanopindolol (ICYP), indicating that the chick beta receptor is pharmacologically distinct from both mammalian beta-1 and beta-2 adrenergic receptors with respect to these antagonists. However, the highly beta-1-selective compound CGP 20712A was able to distinguish two binding sites on ICYP competition curves, a high-affinity "beta-1 site" (75%) and a low-affinity "beta-2 site" (25%). Also, in chick heart cell membranes the relative ability of agonists to displace ICYP produced a profile typical of beta-1 adrenergic receptors with a rank order of potency or efficacy of: isoproterenol greater than epinephrine = norephinephrine. When agonist-mediated adenylyl cyclase stimulation was assessed the order of potency was slightly different, isoproterenol greater than epinephrine greater than or equal to norepinephrine. Additionally, antagonism of isoproterenol stimulation of adenylyl cyclase by CGP 20712A yielded a Kb value (1.16 +/- 0.35 x 10(-7) M) intermediate between the high and low-affinity binding sites of CGP 20712A, suggesting that the low-affinity site is coupled to adenylyl cyclase. In membrane preparations of frog myocardial cells, ICYP/antagonist competition curves modeled for a mixed population of receptors, with subtype percentages varying from 50:50 beta-1:beta-2 to 100% beta-2 depending on the specific antagonist used and the individual cell preparation. For ICYP/agonist competition binding experiments the relative ability to displace ICYP was isoproterenol greater than epinephrine = norepinephrine, a profile typical of beta-1 adrenergic receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The ability of 10 muM epinephrine or isoproterenol to stimulate cyclic AMP accumulation was decreased in hepatocytes isolated from hyperthyroid (triiodothyronine treated) as compared to euthyroid rats. In the presence of methylisobutylxanthine, epinephrine or isoproterenol-stimulated cyclic AMP accumulation was approximately 65% lower in hyperthyroid as compared with euthyroid rat hepatocytes. The ability of glucagon to stimulate a cyclic AMP response was also decreased in the hyperthyroid state, when assayed in either the absence or presence of a methyl xanthine. The character of the catecholamine-stimulated cyclic AMP response was beta adrenergic in both the hyperand euthyroid states. No evidence for an alpha(2) adrenergic mediated component of catecholamine action on cyclic AMP levels was noted. Cyclic AMP phosphodiesterase activity of hepatocyte homogenates was not altered in the hyperthyroid state. Hormone-stimulated, guanine nucleotide- and fluoride-activatable adenylate cyclase activity was reduced in subcellular fractions obtained from hyperthyroid as compared with euthyroid rat hepatocytes. Beta adrenergic receptor binding was reduced approximately 35% and glucagon receptor binding reduced approximately 50% in the hyperthyroid as compared with euthyroid rat hepatocyte membrane fractions. The status of the regulatory components of adenylate cyclase were examined by in vitro treatment of subcellular fractions with cholera toxin. The ability of cholera toxin to modulate adenylate cyclase was not altered by hyperthyroidism. Cholera toxin catalyzed AD[(32)P]ribosylation of hyperthyroid and euthyroid rat hepatocyte proteins separated electrophoretically displayed nearly identical autoradiograms. Studies of the reconstitution of adenylate cyclase activity of S49 mouse lymphoma cyc(-) mutant membranes by detergent extracts from rat hepatocyte membranes, indicated that hyperthyroidism was associated with a reduced capacity of regulatory components to confer fluoride, but not guanine nucleotide activatability to catalytic cyclase. Thyroid hormones regulate the hormone-sensitive adenylate cyclase system of rat hepatocytes at several distinct loci of the system.  相似文献   

17.
We have demonstrated previously a postnatal peak for the beta adrenergic receptor in the heart and detected the appearance of a beta adrenergic receptor before an (-)-isoproterenol inducible increase in heart rate. The present study examined 1) agonist displaceable [3H] dihydroalprenolol (DHA) binding in the neonatal and adult mouse heart and 2) adenylate cyclase in fetal, neonatal and adult mouse heart. 3[H]DHA binding displaceable by (-)-isoproterenol gave a similar Ki from 1 day neonate through adult. Similar to the result found for antagonist displacement binding, there was a dramatic increase in the agonist displaceable [3H] DHA binding postnatally. The maximum was achieved in 2 weeks and then gradually declined to adult level. Cyclase activity (basal, (-)-isoproterenol- and NaF- stimulated) paralleled beta adrenergic receptor increases before birth. However, no early postnatal peak was present. In the 13 day fetal mouse heart, there is no (-)-isoproterenol increase in heart rate, but beta adrenergic receptor (13 +/- 4% of adult) and (-)-isoproterenol-stimulated adenylate cyclase activity (15 +/- 5% of adult) are present. It is concluded that 1) no significant difference exists between the agonist and antagonist displaceable [3H] DHA binding during development, 2) adenylate cyclase activity increases significantly during the last third of pregnancy in parallel with the beta adrenergic receptor, 3) both the beta adrenergic receptor and adenylate cyclase activity can be detected before the heart rate responses and 4) total adenylate cyclase activity does not increase in parallel with the early postnatal beta adrenergic receptor peak.  相似文献   

18.
Interactions of dl-flerobuterol with central beta adrenoceptors were investigated. It inhibited the binding of [3H]CGP 12177, a selective beta adrenoceptor ligand, to membranes prepared from rat cerebral cortex, cerebellum, heart and lung. The affinity of dl-flerobuterol was very close in all tissues (Ki approximately 1 microM). In cerebral cortex, binding inhibition of [3H]CGP 12177 was stereospecific, l-flerobuterol (Ki = 483 nM) being 70-fold more potent than d-flerobuterol (Ki = 34 microM). Moreover, dl-flerobuterol (Ki = 926 nM) was 7-fold less potent than isoproterenol (Ki = 140 nM) to displace [3H]CGP 12177 binding, but 5-fold more potent than salbutamol (Ki = 4600 nM). Flerobuterol did not inhibit the radioligand binding to the other receptors at the highest concentration tested, thus leading to a very high beta adrenergic selectivity. Flerobuterol increased the concentration of cyclic AMP in slices of rat cerebral cortex in a dose-dependent manner; this effect was antagonized by atenolol and propranolol. Compared to isoproterenol or norepinephrine, which produced cyclic AMP maximal increases of 380 and 460%, respectively, it showed a weaker activity with a maximal stimulation obtained at 100 microM, corresponding to a cAMP increase of 140% over basal value (100%). These data revealed that flerobuterol possessed a beta adrenergic agonist activity. Moreover, it antagonized competitively the isoproterenol- or norepinephrine-stimulated accumulation of cAMP. At low concentrations of isoproterenol or norepinephrine, the stimulation of adenylate cyclase was only due to the action of flerobuterol, but at higher concentrations, the response of isoproterenol or norepinephrine was competitively blocked by flerobuterol. At 10 microM, isoproterenol surmounted fully this antagonism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In an effort to define the mechanisms regulating pulmonary vasodilatation and explain the greater in vitro response to iso-proterenol in the pulmonary artery (PA) vs. aorta (AO), we compared beta adrenergic receptor binding characteristics and coupling to adenylate cyclase in PA and AO obtained from adult male rats. Beta adrenergic receptor binding characteristics and affinity for agonists were determined with [125I]-iodocyanopindolol. Agonist displacement studies were characteristic of a beta-2 adrenergic receptor subtype. Receptor density (44.7 +/- 7.3 vs. 39.6 +/- 0.8 fmol/mg of protein means +/- S.E.M., PA vs. AO) and the dissociation constant for the radioligand (10.3 +/- 2.6 vs. 13.4 +/- 3.5 pM) were similar in the two arteries. However, affinity for l-isoproterenol was greater (the inhibition constant was lower) in PA compared to AO (0.08 +/- 0.03 vs. 1.20 +/- 0.18 microM, P less than .05), as was affinity for l-epinephrine (0.89 +/- 0.20 vs. 3.87 +/- 0.62 microM, P less than .05). Affinity was similar for l-norepinephrine (18.93 +/- 3.63 vs. 13.49 +/- 3.12 microM). Base-line cyclic AMP (cAMP) content, basal adenylate cyclase activity and adenylate cyclase activity stimulated by GTP, isoproterenol plus GTP and forskolin were measured by radioimmunoassay for cAMP. Base-line cAMP content was greater in PA than in AO (513.5 +/- 46.9 vs. 125.5 +/- 19.1 pmol of cAMP per mg of protein, P less than .001), as was basal adenylate cyclase activity (10.8 +/- 1.2 vs. 5.7 +/- 1.3 pmol of cAMP per mg of protein per min, P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Beta adrenergic receptors of rat atria and uteri were examined with the use of enantiomers of isoproterenol as agonists and mechanical responses and adenosine 3',5'-monophosphate (cyclic AMP) levels as measured effects. Assuming that stereoselectivity reflects the unique asymmetry of receptors, potency differences between the enantiomers are expected to provide a sensitive indication of ligand binding. All effects in each tissue were investigated under similar experimental conditions. Both isomers produced the same maximum effect on all measured responses. Enantiomeric potency differences (in log units) for positive chronotropic and inotropic responses and increases in cyclic AMP levels in atria were 3.31, 3.51 and 3.48, respectively. In uteri, the values for reduction of spontaneous contractile amplitude and increases in cyclic AMP were 2.90 and 2.79 log units, respectively. Even though these absolute values varied slightly with the experimental conditions, they were consistently smaller in uteri than in atria. In both tissues, dose-response curves for production of mechanical effects were greater than 2 log units to the left of those for increases in cyclic AMP levels. Regardless of the interpretation of this phenomenon, the results show the following. 1) The stereoselectivity for isoproterenol-induced effects is different between the two tissues at both levels of response. Therefore, it is suggested that this reflects dissimilar beta adrenergic receptor types in rat atrium vs. rat uterus. 2) The stereochemical selectivity for isoproterenol-induced mechanical effects and increases in cyclic AMP is the same in rat atrium and in rat uterus. Therefore, the data support the postulate that cyclic AMP is formed from interaction of isoproterenol with a receptor that is similar to the one activated to produce a mechanical effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号