首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PURPOSE: To evaluate the effect of varying spectral resolution on image quality of high spectral and spatial resolution (HiSS) images. MATERIALS AND METHODS: Eight women with suspicious breast lesions and six healthy volunteers were scanned using echo-planar spectroscopic imaging (EPSI) at 1.5 Tesla with 0.75- to 1-mm in-plane resolution and 2.3- to 2.6-Hz spectral resolution. Time domain data were truncated to obtain proton spectra in each voxel with varying (2.6-83.3 Hz) resolution. Images with intensity proportional to water signal peak heights were synthesized. Changes in water signal line shape following contrast injection were analyzed. RESULTS: Fat suppression is optimized at approximately 10-Hz spectral resolution and is significantly improved by removal of wings of the fat resonance. This was accomplished by subtracting a Lorentzian fit to the fat resonance from the proton spectrum. The water resonance is often inhomogeneously broadened, and very high spectral resolution is necessary to resolve individual components. High spectral resolution is required for optimal contrast in anatomic features with very high T(2)* (e.g., within a lesion) and for detection of often subtle effects of contrast agents on water signal line shape. CONCLUSION: Despite a trade-off between the spectral resolution and signal-to-noise ratio, it is beneficial to acquire data at the highest spectral resolution currently attainable at 1.5 Tesla.  相似文献   

3.
As a noninvasive modality, MR is attractive for in vivo skin imaging. Its unique soft tissue contrast makes it an ideal imaging modality to study the skin water content and to resolve the different skin layers. In this work, the challenges of in vivo high‐resolution skin imaging are addressed. Three 3D Cartesian sequences are customized to achieve high‐resolution imaging and their respective performance is evaluated. The balanced steady‐state free precession (bSSFP) and gradient echo (GRE) sequences are fast but can be sensitive to off‐resonance artifacts. The fast large‐angle spin echo (FLASE) sequence provides a sharp depiction of the hypodermis structures but results in more specific absorption rate (SAR). The effect of increasing the field strength is assessed. As compared to 1.5 T, signal‐to‐noise ratio at 3 T slightly increases in the hypodermis and almost doubles in the dermis. The need for fat/water separation is acknowledged and a solution using an interleaved three‐point Dixon method and an iterative reconstruction is shown to be effective. The effects of motion are analyzed and two techniques to prevent motion and correct for it are evaluated. Images with 117 × 117 × 500 μm3 resolution are obtained in imaging times under 6 min. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
Proton MR spectroscopic imaging of the human brain at ultra-high field (≥7 T) is challenging due to increased radio frequency power deposition, increased magnetic field B(0) inhomogeneity, and increased radio frequency magnetic field inhomogeneity. In addition, especially for multislice sequences, these effects directly inhibit the potential gains of higher magnetic field and can even cause a reduction in data quality. However, recent developments in dynamic B(0) magnetic field shimming and dynamic multitransmit radio frequency control allow for new acquisition strategies. Therefore, in this work, slice-by-slice B(0) and B(1) shimming was developed to optimize both B(0) magnetic field homogeneity and nutation angle over a large portion of the brain. Together with a low-power water and lipid suppression sequence and pulse-acquire spectroscopic imaging, a multislice MR spectroscopic imaging sequence is shown to be feasible at 7 T. This now allows for multislice metabolic imaging of the human brain with high sensitivity and high chemical shift resolution at ultra-high field.  相似文献   

6.
7.
This study characterizes gains in sensitivity and spectral resolution of proton echo-planar spectroscopic imaging (PEPSI) with increasing magnetic field strength (B(0)). Signal-to-noise ratio (SNR) per unit volume and unit time, and intrinsic linewidth (LW) of N-acetyl-aspartate (NAA), creatine (Cr), and choline (Cho) were measured with PEPSI at 1.5, 3, 4, and 7 Tesla on scanners that shared a similar software and hardware platform, using circularly polarized (CP) and eight-channel phased-array (PA) head coils. Data were corrected for relaxation effects and processed with a time-domain matched filter (MF) adapted to each B(0). The SNR and LW measured with PEPSI were very similar to those measured with conventional point-resolved spectroscopy (PRESS) SI. Measurements with the CP coil demonstrated a nearly linear SNR gain with respect to B(0) in central brain regions. For the PA coil, the SNR-B(0) relationship was less than linear, but there was a substantial SNR increase in comparison to the CP coil. The LW in units of ppm decreased with B(0), resulting in improved spectral resolution. These studies using PEPSI demonstrated linear gains in SNR with respect to B(0), consistent with theoretical expectations, and a decrease in ppm LW with increasing B(0).  相似文献   

8.
9.
10.
11.
12.
The potential signal‐to‐noise ratio (SNR) gain at ultrahigh field strengths offers the promise of higher image resolution in single‐shot diffusion‐weighted echo‐planar imaging the challenge being reduced T2 and T2* relaxation times and increased B0 inhomogeneity which lead to geometric distortions and image blurring. These can be addressed using parallel imaging (PI) methods for which a greater range of feasible reduction factors has been predicted at ultrahigh field strengths—the tradeoff being an associated SNR loss. Using comprehensive simulations, the SNR of high‐resolution diffusion‐weighted echo‐planar imaging in combination with spin‐echo and stimulated‐echo acquisition is explored at 7 T and compared to 3 T. To this end, PI performance is simulated for coil arrays with a variable number of circular coil elements. Beyond that, simulations of the point spread function are performed to investigate the actual image resolution. When higher PI reduction factors are applied at 7 T to address increased image distortions, high‐resolution imaging benefits SNR‐wise only at relatively low PI reduction factors. On the contrary, it features generally higher image resolutions than at 3 T due to smaller point spread functions. The SNR simulations are confirmed by phantom experiments. Finally, high‐resolution in vivo images of a healthy volunteer are presented which demonstrate the feasibility of higher PI reduction factors at 7 T in practice. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
14.
15.
16.
17.
In this study, the signal‐to‐noise ratio of hyperpolarized 129Xe human lung magnetic resonance imaging was compared at 1.5 T and 3 T. Experiments were performed at both B0 fields with quadrature double Helmholtz transmit–receive chest coils of the same geometry with the same subject loads. Differences in sensitivity between the two field strengths were assessed from the signal‐to‐noise ratio of multi‐slice 2D 129Xe ventilation lung images obtained at the two field strengths with a spatial resolution of 15 mm × 4 mm × 4 mm. There was a systematically higher signal‐to‐noise ratio observed at 3 T than at 1.5 T by a factor of 1.25. Mean image signal‐to‐noise ratio was in the range 27–44 at 1.5 T and 36–51 at 3 T. T of 129Xe gas in the partially inflated lungs was measured to be 25 ms and 18 ms at 1.5 T and 3 T, respectively. T of 129Xe gas in fully inflated lungs was measured to be 52 ms and 24 ms at 1.5 T and 3 T, respectively. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
19.
20.

Purpose

To investigate differences in magnetic resonance imaging (MRI) of trabecular bone at 1.5T and 3.0T and to specifically study noise effects on the visualization and quantification of trabecular architecture using conventional histomorphometric and nonlinear measures of bone structure.

Materials and Methods

Sagittal MR images of 43 calcaneus specimens (donor age: 81 ± 10 years) were acquired at 1.5T and 3.0T using gradient echo sequences. Noise was added to obtain six sets of images with decreasing signal‐to‐noise ratios (SNRs). Micro‐CT images were obtained from biopsies taken from 37 calcaneus samples and bone strength was determined. Morphometric and nonlinear structure parameters were calculated in all datasets.

Results

Originally, SNR was 1.5 times higher at 3.0T. In the simulated image sets, SNR was similar at both fields. Trabecular dimensions measured by μCT were adequately estimated by MRI, with residual errors (er), ranging from 16% to 2.7% at 3.0T. Comparing er at similar SNR, 3.0T consistently displayed lower errors than 1.5T (eg, bone fraction at SNR ≈4: er[3.0T] = 15%; er[1.5T] = 21%, P < 0.05).

Conclusion

The advances of 3.0T compared to 1.5T in visualizing trabecular bone structure are partially SNR‐independent. The better performance at 3.0T may be explained by pronounced susceptibility, enhancing the visualization of thin trabecular structures. J. Magn. Reson. Imaging 2009;29:132–140. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号