首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The excessive proliferation and migration of vascular smooth muscle cells (SMCs) participate in the growth and instability of atherosclerotic plaque. We examined the direct role of a newly developed chemical inhibitor of cholesteryl ester transfer protein, JTT-705, on SMC proliferation and angiogenesis in endothelial cells (ECs). JTT-705 inhibited human coronary artery SMC proliferation. JTT-705 induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular-signal-regulated kinases (ERK) in SMCs. In addition, the anti-proliferative effects of JTT-705 in SMCs were blocked by p38 MAPK inhibitor. JTT-705 induced the upregulation of p-p21(waf1), and this effect was blocked by dominant-negative Ras (N17), but not by inhibitors of p38 MAPK or ERK. In addition, JTT-705 also induced the upregulation of p27(kip1), and this effect was blocked by p38 MAPK inhibitor. Interestingly, culture medium from JTT-705-treated SMCs blocked human coronary artery EC tube formation in an in vitro model of angiogenesis indirectly via a decrease in vascular endothelial growth factor (VEGF) from SMCs and directly via an anti-proliferative effect in ECs. JTT-705 blocked the proliferation of SMCs through the activation of p38 kinase/p27(kip1) and Ras/p21(waf1) pathways, and simultaneously blocked EC tube formation associated with a decrease in VEGF production from SMCs and an anti-proliferative effect in ECs. Our results indicate that JTT-705 may induce a direct anti-atherogenic effect in addition to its inhibitory effect of CETP activity.  相似文献   

2.
Endothelial cells (ECs) are the critical cellular element responsible for postnatal angiogenesis. Since the calcium channel blocker (CCB) nifedipine indirectly upregulates endothelial superoxide dismutase expression by stimulating the production of vascular endothelial growth factor (VEGF) from smooth muscle cells (SMCs), we examined whether nifedipine would induce human coronary artery endothelial cell (HCEC) tube formation via an increase in VEGF production from human coronary artery SMCs (HCSMCs) in an in vitro model. Nifedipine stimulated VEGF production from HCSMCs, and this stimulation was abolished by protein kinase C (PKC) inhibitors and a bradykinin B2 receptor antagonist. In addition, supernatant derived from nifedipine-treated HCSMCs induced HCEC tube formation. This tube formation was inhibited by pretreatment with a specific inhibitor of kinase insert domain-containing receptor/fetal liver kinase-1 (KDR/Flk-1) tyrosine kinase and an inhibitor of nitric oxide (NO) synthase. In conclusion, nifedipine increases VEGF secretion through PKC activation via the B2 receptor. The VEGF secretion directly induces HCEC tube formation via the KDR/Flk-1/NO pathway. CCBs may thus have novel beneficial effects in improving coronary microvascular blood flow in addition to their main effect of reducing blood pressure.  相似文献   

3.
BACKGROUND: Previous studies have shown that mesenchymal stem cells (MSCs) transplantation can promote neovascularization and regenerate damaged myocardium. However, it remains unknown whether MSCs seeding can be used to repair injured cellular components in vascular diseases. In this study we explored the feasibility of applying MSCs to endothelium repair in endothelial damage and vasoproliferative disorders. METHODS: Ex vivo model of endothelium repair was developed in which rabbit vascular smooth muscle cells (SMCs) were inoculated into the upper chamber and rabbit endothelial cells (ECs)/human MSCs into the lower chamber of a co-culture system. 3H-TdR incorporation and PCNA protein expression were assayed and migrated number of SMCs was calculated to evaluate the effect of MSCs seeding on SMCs growth. Flk-1 and vWF protein expressions were observed to analyze the plasticity of the seeded MSCs along endothelial lineage. RESULTS: In this co-culture system, no vWF protein but Flk-1 protein was observed in the 25.71% of MSCs after having been co-cultured with mature rabbit ECs for 5 days. Compared with the control group, the proliferation and migration of SMCs was significantly increased by proliferative ECs but decreased by confluent ECs (n=6, P<0.01). MSCs seeding decreased the proliferation and migration of SMCs compatible with the effect of proliferative ECs (n=6, P<0.001). However, no inhibition on SMCs growth was observed with MSCs seeding in comparison to the effect of confluent ECs. CONCLUSIONS: MSCs seeding can inhibit the proliferation and migration of SMCs. MSCs co-cultured with mature ECs have the ability to undergo milieu-dependent differentiation toward ECs.  相似文献   

4.
Pedram A  Razandi M  Levin ER 《Endocrinology》2001,142(4):1578-1586
Vascular endothelial cell growth factor (VEGF) is essential for angiogenesis. Atrial natriuretic peptide (ANP) inhibits the production of VEGF, but whether this important vascular peptide also inter- rupts VEGF signaling to angiogenesis is unknown. In cultured bovine aortic endothelial cells, VEGF significantly stimulated extracellular signal-regulated protein kinase activity and phosphorylation, which was inhibited 60% by coincubation with ANP or a natriuretic peptide clearance receptor specific ligand (NPRC), C-type NAP-(4-23) [C-ANP-(4-23)]. VEGF also stimulated c-Jun N-terminal kinase (JNK) and p38 activities/phosphorylation that were prevented by the two natriuretic peptides (NP). A specific NP guanylate cyclase (GC) receptor antagonist, HS-142-1, blocked the actions of ANP [but not those of C-ANP-(4-23)], supporting the involvement of both GC and NPRC receptors. VEGF and expression of constituitively active JNK each stimulated the synthesis of cyclin D1 and increased the activity of the cyclin-dependent kinase-4, which was inhibited 55% by ANP. VEGF induced endothelial cell proliferation and migration, which was significantly blocked by NP or by expressing a dominant negative JNK-1. VEGF stimulated human microvascular endothelial cells to form capillary tubes, which was significantly inhibited by expressing dominant negative JNK-1 and by NP. Therefore, VEGF induction of critical steps in angiogenesis is enhanced through JNK activation. The actions are significantly prevented by NP, which act through both the NPRC and GC receptors to block growth factor signaling. Thus, NP are candidate antiangiogenesis factors that inhibit both the synthesis and function of VEGF.  相似文献   

5.
OBJECTIVE: Angiogenesis is a complex multistep process that involves endothelial cell (EC) migration, proliferation and differentiation into vascular tubes. NO has been reported to be a downstream mediator in the angiogenic response to a variety of growth factors, but the mechanisms by which NO promotes neovessel formation is not clear. We hypothesized that NO directly contributes to EC migration and capillary tube formation. METHODS: Since previous studies have noted important biological differences between NO produced pharmacologically by NO-donor compounds compared to that from NO synthase (NOS), we used a cell-based gene transfer approach to increase NO production in a co-culture model of in vitro angiogenesis. Rat smooth muscle cells (SMCs) were transfected with plasmids containing VEGF(121), VEGF(165) (SMC(VEGF)), endothelial NOS (SMC(eNOS)) or the empty vector (SMC(Cont)). Expression of the eNOS in SMC(eNOS) was confirmed by Northern analysis, NADPH-diaphorase activity, and nitrite/nitrate levels, whereas VEGF production was confirmed using ELISA. Calf pulmonary artery ECs (CPAECs) were cultured on the fibrin matrix with (co-culture) or without underlying SMCs (monoculture). RESULTS: Co-culture of ECs with SMC(Cont) had no effect on EC differentiation compared with EC in monoculture (differentiation index, DI=2.8+/-3.4 vs. 2.1+/-2.8, respectively, NS). In contrast, co-culture with SMC(eNOS) resulted in the formation of extensive capillary-like structures within 48 h (DI=17.2+/-5.9, P<0.001 versus SMC(Cont)), which was significantly inhibited using a NOS inhibitor, L-NAME (3 mM) (DI=4.5+/-3.04, P<0.001 versus SMC(eNOS)). Similarly, SMC(VEGF121) induced an angiogenic response (DI=14.2+/-3.8), which was also significantly inhibited by L-NAME (DI=5.9+/-1.8, P<0.05). In using the Boyden chamber model, SMC(eNOS), but not SMC(Cont) increased EC migration to a similar extent as SMC(VEGF121), and both were significantly inhibited with L-NAME. CONCLUSIONS: These data support an important paracrine role for endogenously produced NO in EC migration and differentiation in vitro, and suggest that the cell-based eNOS gene transfer may be a useful approach to increase new blood vessel formation in vivo.  相似文献   

6.
OBJECTIVE: Cyclooxygenase-2 (COX-2) is induced by hypoxic stimuli and is also involved in the process of angiogenesis. We previously demonstrated that vascular endothelial growth factor (VEGF) is one of the principal factors produced by hypoxic myocytes and is responsible for the induction of COX-2 expression in endothelial cells. Yet the signaling pathways by which VEGF modulates COX-2 gene expression are still less well defined. We therefore examined the regulation of VEGF-induced COX-2 expression by the mitogen-activated protein kinase (MAPK) family in endothelial cells. METHODS AND RESULTS: Human umbilical vascular endothelial cells (HUVECs) were incubated with U0126 (ERK1/2 inhibitor, 10 microM), SB203580 (p38 inhibitor, 20 microM), and SP600125 (JNK inhibitor, 20 microM), as well as the COX-2 selective inhibitor, NS398, for 1 h before treating with VEGF (20 ng/ml). COX-2 expression induced by VEGF at both mRNA and protein levels was significantly inhibited by selective p38 and JNK inhibitors but not by the ERK1/2 inhibitor. The phosphorylation of p38 and JNK kinases was observed as early as 5 min in HUVECs after VEGF stimulation. Furthermore, the biological significance of the COX-2 gene in endothelial cells was examined by over-expressing or knocking down COX-2 gene expression. (3)H-Thymidine incorporation and Matrigel techniques were used to determine cell proliferation and vascular structure formation. VEGF-induced cell proliferation was significantly reduced when HUVECs were either pre-treated with NS398 (21.52+/-3.6%) or transfected with COX-2 siRNA (34.12+/-5.81%). In contrast, in HUVECs with over-expression of COX-2, VEGF-induced cell proliferation was increased 42.56+/-7.69%. Moreover, the formation of vascular structure assayed by Matrigel demonstrated that VEGF-induced vascular structure formation was accelerated in COX-2 over-expressing cells but attenuated in COX-2 siRNA-transfected cells. CONCLUSION: COX-2 plays an important role in VEGF-induced angiogenesis via p38 and JNK kinase activation pathways. These findings suggest that the cardioprotective role of COX-2 may be, at least in part, through its angiogenic activity.  相似文献   

7.
8.
To explore the role of prostaglandin E(2) (PGE(2)) in angiogenesis in the developing corpus luteum, luteal microvascular endothelial-like cells (luteal ECs) were prepared from highly luteinizing ovaries of rats using the percoll density gradient method. The cells abundantly expressed the mRNAs of the endothelial markers CD31 (PECAM-1) and responded to the vascular endothelial growth factor (VEGF) to form in vitro tube structures on Matrigel. Cyclooxygenase (COX) inhibitors significantly suppressed tube formation in luteal ECs, whereas PGE(2) counteracted the COX inhibitor-induced blockage. PGE(2)-induced tube formation was blocked by a cyclic AMP-dependent protein kinase A (PKA) inhibitor, H89. The antagonist against the PGE receptor type 2 (EP2 receptor), AH6809, completely inhibited PGE(2)-induced tube formation and partly suppressed the VEGF-induced tube formation but did not attenuate PGE(2)-induced phosphorylation of both AKT kinase and extracellular signal-regulated kinase 1/2. VEGF significantly enhanced the expression of COX-2 mRNAs detected by real-time RT-PCR and PGE(2) secretion into the media measured by ELISA in luteal ECs. In turn, PGE(2) stimulated VEGF expression. In vitro co-culture of luteal ECs with steroidogenic luteal cells (SLCs) promoted tube formation. Pre-treatment of SLCs with VEGF further enhanced tube formation of ECs, and this effect was blocked by the COX-2 inhibitor. This stimulatory effect was inhibited by treatment with AH6809. These data indicate that PGE(2) exerts a direct stimulatory effect on tube formation mainly via the EP2 receptor/PKA signaling in luteal ECs. Our results suggest the possibility that the endogenous PGE(2) that is produced from luteinizing follicular cells as well as ECs may stimulate luteal angiogenesis.  相似文献   

9.
Endothelial cell migration and tube formation in response to vascular endothelial growth factor (VEGF) play an important role in the process of angiogenesis. Recent data indicate that angiotensin type 2 (AT2) receptor stimulation is antiangiogenic. Therefore, we studied the effect of angiotensin II (Ang II) on VEGF-induced migration and in vitro tube formation of human endothelial cells. Ang II inhibited VEGF-induced migration of EA.hy926 cells, human coronary artery (HCA) and human dermal microvascular (HDM) endothelial cells (ECs) as well as tube formation by HDMECs. The AT2 receptor antagonist PD123,319 but not the AT1 receptor antagonist losartan blocked the inhibitory effect of Ang II. The inhibitory effect of Ang II on VEGF-induced migration of endothelial cells was mimicked by the specific AT2 receptor agonist CGP-42112A. The phosphorylation of Akt and its downstream effector endothelial NO synthase (eNOS) is pivotal to VEGF-induced angiogenesis. We therefore investigated the effect of Ang II on VEGF-induced Akt and eNOS phosphorylation. Ang II diminished the VEGF-induced phosphorylation of Akt and eNOS in endothelial cells, whereas the autophosphorylation of VEGF receptors was unaffected. CGP-42112A again mimicked and PD123,319 but not losartan blocked the inhibitory effect of Ang II. Treatment of endothelial cells with pertussis toxin (PTX) totally abolished the AT2 receptor-mediated inhibition of VEGF-induced endothelial cell migration and blocked the inhibition of Akt and eNOS phosphorylation. In conclusion, this study indicates that AT2 receptor stimulation inhibits VEGF-induced endothelial cell migration and tube formation via activation of a PTX-sensitive G protein. These findings may explain the reported antiangiogenic properties of the AT2 receptor.  相似文献   

10.
Blood vessels are composed basically of two cell types, vascular endothelial cells (ECs) and vascular smooth muscle cells (SMCs), whose proliferation in vivo is tightly regulated. A number of growth regulatory polypeptides have been identified that stimulate the proliferation of vascular cells. This article reviews briefly the structural properties and biologic activities of the best-characterized vascular cell growth factors. A fuller understanding of the properties of vascular cell growth modulators is an important element in delineating the proliferative events that are associated with vascular injury; with SMC hyperplasia such as occurs in restenosis following angioplasty, in atherosclerosis, and in hypertension; and with angiogenesis, both physiologic and pathologic.  相似文献   

11.
12.
Interactions of vascular endothelial cells (ECs) and smooth muscle cells (SMCs) were studied by testing the ability of cultured bovine aortic ECs to secrete factors influencing the migration of cultured aortic SMCs from the same species. Migration of SMCs was examined in blind-well chambers using gelatin-coated polycarbonate filters. Conditioned culture medium obtained by incubating confluent monolayers of ECs in serum-free RPMI-1640 medium for 48 hours caused a 2.4-fold increase in the migration of SMCs as compared with nonconditioned medium (p less than 0.001). The effect was dependent on the length of conditioning with the ECs and was chemotactic in nature as judged on the basis of checkerboard analysis. Preliminary characterization of the migration stimulating activity indicates that it is sensitive to trypsin, nondialyzable, and stable at 56 degrees C for 30 min. The activity was abolished by heating to 100 degrees C for 20 min but was not significantly inhibited by protamine sulphate, which suggests that most of the activity was not due to platelet-derived growth factor (PDGF)-like proteins. Our results thus show that ECs secrete polypeptide(s) chemotactic for vascular SMCs. Such interactions between ECs and SMCs in vivo might contribute to the migration of medial SMCs into the intima during atherogenesis.  相似文献   

13.
14.
Using polymerase chain reaction-coupled subtractive hybridization, we have isolated genes expressed during the in vitro differentiation of murine embryonic stem cells into endothelial cells (ECs). Among the genes obtained, we identified one gene that was inducible by vascular endothelial growth factor (VEGF) in the murine EC line MSS31. Analysis of the nucleotide and deduced amino acid sequences revealed that the protein was composed of 930 amino acids, including an HEXXH(X)18E consensus sequence of the M1 aminopeptidase family, and is thought to be a mouse orthologue of puromycin-insensitive leucyl-specific aminopeptidase (mPILSAP). The recombinant protein hydrolyzed N-terminal leucyl and methionyl residues from synthetic substrates. Immunohistochemical analysis revealed that mPILSAP was expressed in ECs during postnatal angiogenesis. Specific elimination of mPILSAP expression by antisense oligodeoxynucleotide (AS-ODN) attenuated VEGF-stimulated proliferation, migration, and network formation of ECs in vitro. Moreover, AS-ODN to mPILSAP inhibited angiogenesis in vivo. These results suggest a novel function of mPILSAP, which is expressed in ECs and plays an important role in angiogenesis.  相似文献   

15.
Background/Aims: Adiponectin levels are decreased in diabetes and atherosclerosis. Coexisting hyperglycaemia and systemic inflammation predisposes to dysregulated angiogenesis and vascular disease. We investigated the effect of globular adiponectin (gAd) and full-length adiponectin (fAd) on angiogenesis and pro-angiogenic molecules, i.e. matrix metalloproteinase (MMP)-2, MMP-9 and vascular endothelial growth factor (VEGF), in human microvascular endothelial cells (HMEC-1). Methods: Angiogenesis was assessed by studying capillary tube formation in HMEC-1 on growth factor-reduced Matrigel. Endothelial cell migration assay was performed in a modified Boyden chamber. Results: Endothelial cell proliferation, in vitro migration and angiogenesis were significantly increased by gAd (mediated by AdipoR1, AMPK-Akt pathways), and gAd significantly increased MMP-2, MMP-9 and VEGF expression levels. The effect of gAd on VEGF appears to be mediated by AdipoR1, whilst the effect of gAd on MMP-2 and MMP-9 appears to be mediated by AdipoR1 and AdipoR2. Only endothelial cell proliferation was significantly increased by fAd in human microvascular endothelial cells and appears to be mediated by AdipoR2. No significant effects on MMP-2, MMP-9 and VEGF were observed. Importantly, gAd decreased glucose and C-reactive protein-induced angiogenesis with a concomitant reduction in MMP-2, MMP-9 and VEGF in HMEC-1 cells. Conclusion: We report novel insights into the mechanisms of adiponectin on angiogenesis.  相似文献   

16.
The regulation of blood vessel formation is of fundamental importance to many physiological processes, and angiogenesis is a major area for novel therapeutic approaches to diseases from ischemia to cancer. A poorly understood clinical manifestation of pathological angiogenesis is angiodysplasia, vascular malformations that cause severe gastrointestinal bleeding. Angiodysplasia can be associated with von Willebrand disease (VWD), the most common bleeding disorder in man. VWD is caused by a defect or deficiency in von Willebrand factor (VWF), a glycoprotein essential for normal hemostasis that is involved in inflammation. We hypothesized that VWF regulates angiogenesis. Inhibition of VWF expression by short interfering RNA (siRNA) in endothelial cells (ECs) caused increased in vitro angiogenesis and increased vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2)-dependent proliferation and migration, coupled to decreased integrin αvβ3 levels and increased angiopoietin (Ang)-2 release. ECs expanded from blood-derived endothelial progenitor cells of VWD patients confirmed these results. Finally, 2 different approaches, in situ and in vivo, showed increased vascularization in VWF-deficient mice. We therefore identify a new function of VWF in ECs, which confirms VWF as a protein with multiple vascular roles and defines a novel link between hemostasis and angiogenesis. These results may have important consequences for the management of VWD, with potential therapeutic implications for vascular diseases.  相似文献   

17.
Yamazaki T  Akada T  Niizeki O  Suzuki T  Miyashita H  Sato Y 《Blood》2004,104(8):2345-2352
Puromycin-insensitive leucyl-specific aminopeptidase (PILSAP) plays an important role in angiogenesis by regulating the proliferation and migration of endothelial cells (ECs). Here we characterize the mechanism by which PILSAP regulates the vascular endothelial growth factor (VEGF)-stimulated proliferation of ECs. The specific elimination of PILSAP expression or its enzymatic activity inhibited VEGF-stimulated G1/S transition in ECs. This G1 arrest correlated with reduced cyclin dependent kinase 4/6 (CDK4/6) activity and retinoblastoma (Rb) protein phosphorylation. Analyses of signaling molecules upstream of CDK4/6 revealed that S6 kinase (S6K) activation was affected by PILSAP, whereas that of phosphatidylinositol-3 kinase (PI3K), Akt, and extracellular signal-related kinase 1/2 (ERK1/2) was not. We further demonstrated that PILSAP bound phosphatidylinositol-dependent kinase 1 (PDK1) and removed 9 amino acids from its N-terminus, which allowed S6K to associate with PDK1 and PILSAP upon VEGF stimulation. We constructed mutant PILSAP, which lacked the aminopeptidase activity but bound PDK1. Mutant PILSAP abrogated S6K activation upon VEGF stimulation in a dominant-negative manner. An N-terminal truncated form of PDK1 abolished the dominant-negative effect of mutant PILSAP. Finally, the introduction of a mutated PILSAP gene in ECs inhibited angiogenesis and retarded tumor growth in vivo. These results indicate that PILSAP plays a crucial role in the cell cycle progression of ECs and angiogenesis via the binding and modification of PDK1.  相似文献   

18.
Angiogenesis, the formation of new blood vessels from existing vascular endothelium, is essential for tumor growth. Vascular endothelial growth factor (VEGF) is an endotheliumspecific mitogen and regulator of angiogenesis. Angiogenesis has been associated to the malignant phenotype of pheochromocytomas and is readily observed in experimental pheochromocytomas. Although VEGF gene expression has already been demonstrated in the rat PC12 cell line, the detailed mechanisms of action are not known. We have, therefore, studied angiogenesis in the rat PC12 pheochromocytoma cell line in vitro and in vivo. VEGF gene expression and accumulation of VEGF protein in cytoplasm and conditioned medium of PC12 cells was found. Conditioned medium from PC12 cells significantly increased proliferation of VEGF-dependent endothelial cells from human umbilical veins, and this effect reversed upon addition of a neutralizing anti-VEGF antibody. Dexamethasone and nerve growth factor (NGF) increased VEGF mRNA expression and accumulation of VEGF protein of PC12 subclones with established metastatic activity in vivo. PC12 cells xenotransplanted to nude mice had marked VEGF expression and induced host angiogenesis, confirmed by the presence of CD34-positive endothelial cells in the experimental PC12 tumors. When NGF-primed PC12 cells were immobilized in Matrigel supplemented with rising concentrations of the growth factor and xenotransplanted, increasing NGF resulted in tumors with smaller areas of necrosis and increased vital tumor volume. These results suggest that VEGF is a mediator of angiogenesis in the PC12 pheochromocytoma cell line, and that dexamethasone and NGF affect VEGF expression. Our data further suggest that NGF may contribute to angiogenesis in experimental pheochromocytoma.  相似文献   

19.
20.
Reduced angiogenic responses in adult Endoglin heterozygous mice   总被引:4,自引:0,他引:4  
OBJECTIVE: To determine if angiogenesis is altered in adult Endoglin heterozygous (Eng(+/-)) mice, the animal model for the vascular disorder hereditary hemorrhagic telangiectasia type 1 (HHT1). METHODS: Primary cultures of endothelial cells were generated from Eng(+/-) and Eng(+/+) mice and analyzed for proliferation, migration, and ability to form capillary-like tubes. Endothelial cells derived from umbilical veins of newborns (HUVEC) with an HHT1 genotype were also tested for capillary formation. Two in vivo models of angiogenesis were tested in the Eng(+/-) and Eng(+/+) mice: Matrigel implant-dependent angiogenesis and reperfusion following hindlimb ischemia. RESULTS: The Eng(+/-) endothelial cells displayed significantly reduced proliferation and migration, increased collagen production, and decreased NO synthase expression and vascular endothelial growth factor (VEGF) secretion. They also showed impaired capillary tube formation in vitro, as did the HHT1 HUVEC. These endothelial cell-specific abnormalities were associated with impaired Matrigel-dependent capillary tube formation in vivo and delayed reperfusion following hindlimb ischemia. CONCLUSIONS: Although vascular development is normal in Eng(+/-) mice, angiogenic abnormalities were observed in the adult mice and their isolated endothelial cells. These results suggest that a normal level of endoglin is required for full angiogenic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号