首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
Plasmin is a proteolytic enzyme produced from plasminogen by plasminogen activators. We investigated the function of plasmin in human dental pulp fibroblast-like cells. Plasmin induced an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in a concentration-dependent manner. Expression of mRNA for protease-activated receptor-1 (PAR-1) was detected, and the PAR-1 activating peptide SFLLRN induced an increase in [Ca(2+)](i) in the cells. The plasmin-induced increase in [Ca(2+)](i) was inhibited in the presence of the PAR-1 antagonist SCH79797. Plasmin stimulated the expression of interleukin-8 (IL-8) mRNA and prostaglandin E(2) release, which are involved in inflammation. These effects of plasmin on expression of IL-8 mRNA and prostaglandin E(2) release were inhibited in the presence of the PAR-1 antagonist SCH79797. These results suggest that plasmin activates PAR-1 and is involved in inflammation in human dental pulp.  相似文献   

2.
We investigated the effects of uridine 5'-alkylphosphates on agonist-induced aggregation, increased intracellular calcium concentration [Ca(2+)](i), and Ca(2+) (Mn(2+)) influx in washed rabbit platelets. Uridine 5'-hexadecylphosphate (UMPC16) and uridine 5'-eicosylphosphate (UMPC20) at a concentration of 1 x 10(-5) M inhibited platelet aggregation induced by platelet-activating factor (PAF), thrombin, arachidonic acid, and ADP. UMPC16 did not cause significant interference in the binding of [(3)H-acetyl]PAF to platelets. The inhibition of PAF-induced platelet aggregation by UMPC16 was dependent upon the addition time; UMPC16 was ineffective at 60 sec when the extracellular calcium uptake reached the maximum level in PAF-stimulated platelets. Furthermore, UMPC16 inhibited guanosine 5'-O-(3-thiotriphosphate)-induced platelet aggregation but did not affect ionophore A23187- and calcium-independent agonist phorbol 12-myristate 13-acetate-induced platelet aggregation. UMPC16 markedly inhibited the Ca(2+) (Mn(2+)) influx induced by PAF and ADP, and partly inhibited the [Ca(2+)](i) increase induced by the receptor-mediated stimulation. On the other hand, UMPC16 did not affect the [Ca(2+)](i) increase and Ca(2+) (Mn(2+)) influx induced by ionomycin. These experiments suggest that inhibition of calcium influx associated with receptor-mediated platelet activation may be involved in the action of UMPC16.  相似文献   

3.
Thrombin is a powerful agonist for platelets, the action of which is mediated by the thrombin receptor protease-activated receptor-1 (PAR-1). Recently, we discovered that E5555 (1-(3-tert-butyl-4-methoxy-5-morpholinophenyl)-2-(5,6-diethoxy-7-fluoro-1-imino-1,3-dihydro-2H-isoindol-2-yl) ethanone hydrobromide) is a potent thrombin receptor antagonist. We evaluated the anti-platelet and anti-thrombotic effects of E5555. E5555 inhibited the binding of a high-affinity thrombin receptor-activating peptide ([(3)H]haTRAP) to PAR-1 with a half maximal inhibitory concentration (IC(50)) value of 0.019μM. E5555 showed potent inhibitory effects on human platelet aggregation induced by thrombin and TRAP with IC(50) values of 0.064 and 0.031μM, respectively, but had no effect on platelet aggregation induced by either ADP or collagen. Similarly, E5555 showed potent and selective inhibitory effects on guinea pig platelet aggregation induced by thrombin and TRAP with IC(50) values of 0.13 and 0.097μM, respectively. The antithrombotic activity of E5555 in vivo was evaluated in a photochemically-induced thrombosis (PIT) model using guinea pigs. Oral administration of E5555 at 30 and 100mg/kg prolonged the time to occlusion by 1.8-fold and 2.4-fold, respectively, compared with controls. Furthermore, E5555 did not prolong bleeding time in guinea pigs at the highest tested dosage of 1000mg/kg. The drug interactions between E5555 and tissue plasminogen activator (tPA) were evaluated. Intravenous administration of 1mg/kg tPA significantly prolonged bleeding time, and its effects were not altered by the oral co-administration of 300mg/kg E5555. These results suggest that E5555 could be a therapeutic option for atherothrombotic disease.  相似文献   

4.
1. A study was made of the regulation of [(3)H]-gamma-aminobutyric acid ([(3)H]-GABA) release from slices of rat striatum by endogenous dopamine and exogenous histamine and a histamine H(3)-agonist. Depolarization-induced release of [(3)H]-GABA was Ca(2+)-dependent and was increased in the presence of the dopamine D(2) receptor family antagonist, sulpiride (10 microM). The sulpiride-potentiated release of [(3)H]-GABA was strongly inhibited by the dopamine D(1) receptor family antagonist, SCH 23390 (1 microM). Neither antagonist altered basal release. 2. The 15 mM K(+)-induced release of [(3)H]-GABA in the presence of sulpiride was inhibited by 100 microM histamine (mean inhibition 78+/-3%) and by the histamine H(3) receptor-selective agonist, immepip, 1 microM (mean inhibition 81+/-5%). The IC(50) values for histamine and immepip were 1.3+/-0.2 microM and 16+/-2 nM, respectively. The inhibitory effects of histamine and immepip were reversed by the H(3) receptor antagonist, thioperamide, 1 microM. 3. The inhibition of 15 mM K(+)-induced [(3)H]-GABA release by immepip was reversed by the H(3) receptor antagonist, clobenpropit, K(d) 0.11+/-0.04 nM. Clobenpropit alone had no effect on basal or stimulated release of [(3)H]-GABA. 4. Elevated K(+) caused little release of [(3)H]-GABA from striatal slices from reserpinized rats, unless the D(1) partial agonist, R(+)-SKF 38393, 1 microM, was also present. The stimulated release in the presence of SKF 38393 was reduced by 1 microM immepip to the level obtained in the absence of SKF 38393. 5. These observations demonstrate that histamine H(3) receptor activation strongly inhibits the dopamine D(1) receptor-dependent release of [(3)H]-GABA from rat striatum; primarily through an interaction at the terminals of GABA neurones.  相似文献   

5.
ETA receptor-mediated Ca2+ mobilisation in H9c2 cardiac cells   总被引:1,自引:0,他引:1  
Expression and pharmacological properties of endothelin receptors (ETRs) were investigated in H9c2 cardiomyoblasts. The mechanism of receptor-mediated modulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) was examined by measuring fluorescence increase of Fluo-3-loaded cells with flow cytometry. Binding assays showed that [125I]endothelin-1 (ET-1) bound to a single class of high affinity binding sites in cardiomyoblast membranes. Endothelin-3 (ET-3) displaced bound [125I]ET-1 in a biphasic manner, in contrast to an ET(B)-selective agonist, IRL-1620, that was ineffective. The ET(B)-selective antagonist, BQ-788, inhibited [125I]ET-1 binding in a monophasic manner and with low potency. An ET(A)-selective antagonist, BQ-123, competed [125I]ET-1 binding in a monophasic manner. This antagonist was found to be 13-fold more potent than BQ-788. Immunoblotting analysis using anti-ET(A) and -ET(B) antibodies confirmed a predominant expression of the ET(A) receptor. ET-1 induced a concentration-dependent increase of Fluo-3 fluorescence in cardiomyoblasts resuspended in buffer containing 1mM CaCl(2). Treatment of cells with antagonists, PD-145065 and BQ-123, or a phospholipase C-beta inhibitor, U-73122, abolished ET-1-mediated increases in fluorescence. The close structural analogue of U-73122, U-73343, caused a minimal effect on the concentration-response curve of ET-1. ET-3 produced no major increase of Fluo-3 fluorescence. Removal of extracellular Ca(2+) resulted in a shift to the right of the ET-1 concentration-response curve. Both the L-type voltage-operated Ca(2+) channel blocker, nifedipine, and the ryanodine receptor inhibitor, dantrolene, reduced the efficacy of ET-1. Two protein kinase C inhibitors reduced both potency and efficacy of ET-1. Our results demonstrate that ET(A) receptors are expressed and functionally coupled to rise of [Ca(2+)](i) in H9c2 cardiomyoblasts. ET-1-induced [Ca(2+)](i) increase is triggered by Ca(2+) release from intracellular inositol 1,4,5-trisphosphate-gated stores; plasma membrane Ca(2+) channels and ryanodine receptors participate in sustaining the Ca(2+) response. Regulation of channel opening by protein kinase C is also involved in the process of [Ca(2+)](i) increase.  相似文献   

6.

Aim:

To investigate the signaling pathways involved in thrombin-induced connective tissue growth factor (CTGF) expression in rat vascular smooth muscle cells (VSMCs).

Methods:

Experiments were preformed on primary rat aortic smooth muscle cells (RASMCs) and a rat VSMC line (A10). CTGF protein levels were measured using Western blotting. Luciferase reporter genes and dominant negative mutants (DNs) were used to investigate the signaling pathways mediating the induction of CTGF expression by thrombin.

Results:

Thrombin (0.3–3.0 U/mL) caused a concentration- and time-dependent increase in CTGF expression in both RASMCs and A10 cells. Pretreating A10 cells with the protease-activated receptor 1 (PAR-1) antagonist SCH79797 (0.1 μmol/L) significantly blocked thrombin-induced CTGF expression, while the PAR-4 antagonist tcY-NH2 (30 μmol/L) had no effect. The PAR-1 agonist SFLLRN-NH2 (300 μmol/L) induced CTGF expression, while the PAR-4 agonist GYPGQV-NH2 (300 μmol/L) had no effect. Thrombin (1 U/mL) caused time-dependent phosphorylation of c-Jun N-terminal kinase (JNK). Pretreating with the JNK inhibitor SP600125 (3–30 μmol/L) or transfection with DNs of JNK1/2 significantly attenuated thrombin-induced CTGF expression. Thrombin (0.3–3.0 U/mL) increased activator protein-1 (AP-1)-luciferase activity, which was inhibited by the JNK inhibitor SP600125. The AP-1 inhibitor curcumin (1–10 μmol/L) concentration-dependently attenuated thrombin-induced CTGF expression.

Conclusion:

Thrombin acts on PAR-1 to activate the JNK signaling pathway, which in turn initiates AP-1 activation and ultimately induces CTGF expression in VSMCs.  相似文献   

7.
BACKGROUND AND PURPOSE: Inhibitory CB(1) cannabinoid receptors and excitatory TRPV(1) vanilloid receptors are abundant in the hippocampus. We tested if two known hybrid endocannabinoid/endovanilloid substances, N-arachidonoyl-dopamine (NADA) and anandamide (AEA), presynapticaly increased or decreased intracellular calcium level ([Ca(2+)](i)) and GABA and glutamate release in the hippocampus. EXPERIMENTAL APPROACH: Resting and K(+)-evoked levels of [Ca(2+)](i) and the release of [(3)H]GABA and [(3)H]glutamate were measured in rat hippocampal nerve terminals. KEY RESULTS: NADA and AEA per se triggered a rise of [Ca(2+)](i) and the release of both transmitters in a concentration- and external Ca(2+)-dependent fashion, but independently of TRPV(1), CB(1), CB(2), or dopamine receptors, arachidonate-regulated Ca(2+)-currents, intracellular Ca(2+) stores, and fatty acid metabolism. AEA was recently reported to block TASK-3 potassium channels thereby depolarizing membranes. Common inhibitors of TASK-3, Zn(2+), Ruthenium Red, and low pH mimicked the excitatory effects of AEA and NADA, suggesting that their effects on [Ca(2+)](i) and transmitter levels may be attributable to membrane depolarization upon TASK-3 blockade. The K(+)-evoked Ca(2+) entry and Ca(2+)-dependent transmitter release were inhibited by nanomolar concentrations of the CB(1) receptor agonist WIN55212-2; this action was sensitive to the selective CB(1) receptor antagonist AM251. However, in the low micromolar range, WIN55212-2, NADA and AEA inhibited the K(+)-evoked Ca(2+) entry and transmitter release independently of CB(1) receptors, possibly through direct Ca(2+) channel blockade. CONCLUSIONS AND IMPLICATIONS: We report here for hybrid endocannabinoid/endovanilloid ligands novel dual functions which were qualitatively similar to activation of CB(1) or TRPV(1) receptors, but were mediated through interactions with different targets.  相似文献   

8.
1. In the present study, the antiplatelet effects and mechanisms of a new synthetic compound YD-3 [1-benzyl-3(ethoxycarbonylphenyl)-indazole] were examined. 2. YD-3 inhibited the aggregation of washed rabbit platelets caused by thrombin (IC(50)=28.3 microM), but had no or little inhibitory effect on that induced by arachidonic acid, collagen, platelet-activating factor (PAF) or U46619. YD-3 also suppressed generation of inositol phosphates caused by thrombin. On the other hand, thrombin-induced fibrin formation was not affected by YD-3, indicating YD-3 does not inhibit the proteolytic activity of thrombin. 3. In washed human platelets, however, YD-3 had only mild inhibitory effect on the low concentration (0.05 u ml(-1)) of thrombin-induced human platelet aggregation, and did not affect that induced by higher concentrations (> or =0.1 u ml(-1)) of thrombin or SFLLRN, the protease-activated receptor 1 (PAR1) agonist peptide. By contrast, YD-3 inhibited both human and rabbit platelet aggregation elicited by trypsin with IC(50) values of 38.1 microM and 5.7 microM, respectively. 4. YD-3, at 100 microM, had no effect on ristocetin-induced glycoprotein Ib (GPIb)-dependent aggregation of human platelets. In addition, platelets treated with chymotrypsin, which cleaves GPIb, enhanced rather than attenuated the inhibition of YD-3 on thrombin-induced human platelet aggregation. These data indicate that GPIb plays no role in the antiplatelet effect of YD-3. 5. In SFLLRN-desensitized human platelets, high concentration of thrombin (1 u ml(-1)) could still elicit intracellular Ca(2+) mobilization, and the rise of [Ca(2+)](i) was prevented by either leupeptin or YD-3. 6. Our results suggest that YD-3 inhibits a non-PAR1 thrombin receptor which mediates the major effect of thrombin in rabbit platelets, but in human platelets, this receptor function becomes significant only when the function of PAR1 has been blocked or attenuated.  相似文献   

9.
10.
Since protease-activated receptors (PARs) are distributed throughout the gastrointestinal tract, we investigated the role of PARs in modulation of the motility of the rat oesophageal muscularis mucosae. Thrombin produced contraction of segments of the upper and lower part of the smooth muscle. Trypsin contracted both the muscle preparations only at high concentrations. SFLLR-NH(2) and TFLLR-NH(2) (PAR-1-activating peptides), but not the PAR-1-inactive peptide FSLLR-NH(2), evoked a marked contraction. In contrast, the PAR-2 agonist SLIGRL-NH(2) and the PAR-4 agonist GYPGKF-NH(2) caused no or only a negligible contraction. In oesophageal preparations precontracted with carbachol, thrombin produced a dual action i.e. relaxation followed by contraction. TFLLR-NH(2) further contracted the precontracted preparations with no preceding relaxation. GYPGKF-NH(2), but not the inactive peptide GAPGKF-NH(2), produced marked relaxation. Trypsin or SLIGRL-NH(2) caused no relaxation. The PAR-1-mediated contraction was completely abolished in Ca(2+)-free medium and considerably attenuated by nifedipine (1 microM) and in a low Na(+) medium. The PAR-4-mediated relaxation was resistant to tetrodotoxin (10 microM), apamin (0.1 microM), charybdotoxin (0.1 microM), L-N(G)-nitroarginine methyl ester (100 microM), indomethacin (3 microM), propranolol (5 microM) or adenosine 3', 5'-cyclic monophosphorothioate, 8-bromo, Rp-isomer (30 microM). Thus, thrombin plays a dual role in modulating the motility of the oesophageal muscularis mucosae, producing contraction via PAR-1 and relaxation via PAR-4. The PAR-1-mediated effect appears to occur largely through increased Na(+) permeability followed by activation of L-type Ca(2+) channels and subsequent influx of extracellular Ca(2+). Our data could provide evidence for a novel role of PAR-4 as opposed to PAR-1, although the underlying mechanisms are still open to question.  相似文献   

11.
Trypsin-like serine proteinases trigger signal transduction pathways through proteolytic cleavage of proteinase-activated receptors (PARs) in many tissues. Three members, PAR-1, PAR-2 and PAR-4, are trypsin substrates, as trypsinolytic cleavage of the extracellular N terminus produces receptor activation. Here, the ability of the three human pancreatic trypsin isoforms (cationic trypsin, anionic trypsin and mesotrypsin (trypsin IV)) as recombinant proteins was tested on PARs.Using fura 2 [Ca(2+)](i) measurements, we analyzed three human epithelial cell lines, HBE (human bronchial epithelial), A549 (human pulmonary epithelial) and HEK (human embryonic kidney)-293 cells, which express functional PAR-1 and PAR-2. Human mesotrypsin failed to induce a PAR-mediated Ca(2+) response in human epithelial cells even at high concentrations. In addition, mesotrypsin did not affect the magnitude of PAR activation by subsequently added bovine trypsin. In HBE cells, which like A549 cells express high PAR-2 levels with negligible PAR-1 levels (<11%), half-maximal responses were seen for both cationic and anionic trypsins at about 5 nM. In the epithelial cells, mesotrypsin did not activate PAR-2 or PAR-1, whereas both anionic and cationic trypsins were comparable activators.We also investigated human astrocytoma 1321N1cells, which express PAR-1 and some PAR-3, but no PAR-2. High concentrations (>100 nM) of mesotrypsin produced a relatively weak Ca(2+) signal, apparently through PAR-1 activation. Half-maximal responses were observed at 60 nM mesotrypsin, and at 10-20 nM cationic and anionic trypsins.Using a desensitization assay with PAR-2-AP, we confirmed that both cationic and anionic trypsin isoforms cause [Ca(2+)](i) elevation in HBE cells mainly through PAR-2 activation. Desensitization of PAR-1 with thrombin receptor agonist peptide in 1321N1 cells demonstrated that all three recombinant trypsin isoforms act through PAR-1.Thus, the activity of human cationic and anionic trypsins on PARs was comparable to that of bovine pancreatic trypsin. Mesotrypsin (trypsin IV), in contrast to cationic and anionic trypsin, cannot activate or disable PARs in human epithelial cells, demonstrating that the receptors are no substrates for this isoenzyme. On the other hand, mesotrypsin activates PAR-1 in human astrocytoma cells. This might play a role in protection/degeneration or plasticity processes in the human brain.  相似文献   

12.
Amphetamine, a psychostimulant, has been shown to act as a channel blocker of muscle nicotinic receptors and to induce a Ca(2+)-dependent secretion from adrenal chromaffin cells. In this study, the relationship between amphetamine and nicotinic receptors was studied using bovine adrenal chromaffin cells as a model system. Our results show that D-amphetamine sulfate alone induced an increase in the cytosolic Ca(2+) concentration ([Ca(2+)](c)) and [3H]norepinephrine release in a dose-dependent and extracellular Ca(2+)-dependent manner. Two common nicotinic receptor antagonists, hexamethonium and mecamylamine, suppressed the D-amphetamine sulfate-induced [Ca(2+)](c) rise and [3H]norepinephrine release. In addition, D-amphetamine sulfate inhibited the 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP)-induced [Ca(2+)](c) rise and [3H]norepinephrine release, but not the high K(+)- or veratridine-induced [Ca(2+)](c) increase and [3H]norepinephrine release. Antagonists, including alpha-bungarotoxin and choline, that are more specific for alpha7 nicotinic receptors were capable of inhibiting the D-amphetamine sulfate-induced [Ca(2+)](c) rise, while D-amphetamine sulfate was found to be capable of inhibiting the [Ca(2+)](c) rise induced by the alpha7-nicotinic receptor agonists, epibatidine and choline. Moreover, D-amphetamine sulfate dose-dependently suppressed [3H]nicotine binding to chromaffin cells. We, therefore, conclude that D-amphetamine sulfate acts as a nicotinic receptor agonist to induce [Ca(2+)](c) increase and [3H]norepinephrine release in bovine adrenal chromaffin cells.  相似文献   

13.
Fluoxetine, a widely used antidepressant, has additional effects, including the blocking of voltage-gated ion channels. We examined whether fluoxetine affects ATP-induced calcium signaling in PC12 cells using fura-2-based digital calcium imaging, an assay for [3H]-inositol phosphates (IPs) and whole-cell patch clamping. Treatment with ATP (100 microM) for 2 min induced increases in intracellular free Ca(2+) concentrations ([Ca(2+)](i)). Treatment with fluoxetine (100 nM to 30 microM) for 5 min inhibited the ATP-induced [Ca(2+)](i) increases in a concentration-dependent manner (IC(50) = 1.85 microM). Treatment with fluoxetine (1.85 microM) for 5 min significantly inhibited the ATP-induced responses following the removal of extracellular Ca(2+) or depletion of intracellular Ca(2+) stores. Whereas treatment for 10 min with nimodipine (1 microM) significantly inhibited the ATP-induced [Ca(2+)](i) increase, treatment with fluoxetine further inhibited the ATP-induced response. Treatment with fluoxetine significantly inhibited [Ca(2+)](i) increases induced by 50 mM K(+). In addition, treatment with fluoxetine markedly inhibited ATP-induced inward currents in a concentration-dependent manner. However, treatment with fluoxetine did not inhibit ATP-induced [3H]-IPs formation. Therefore, we conclude that fluoxetine inhibits ATP-induced [Ca(2+)](i) increases in PC12 cells by inhibiting both the influx of extracellular Ca(2+) and the release of Ca(2+) from intracellular stores without affecting IPs formation.  相似文献   

14.
Gabapentin and pregabalin (S-(+)-3-isobutylgaba) produced concentration-dependent inhibitions of the K(+)-induced [Ca(2+)](i) increase in fura-2-loaded human neocortical synaptosomes (IC(50)=17 microM for both compounds; respective maximal inhibitions of 37 and 35%). The weaker enantiomer of pregabalin, R-(-)-3-isobutylgaba, was inactive. These findings were consistent with the potency of these drugs to inhibit [(3)H]-gabapentin binding to human neocortical membranes. The inhibitory effect of gabapentin on the K(+)-induced [Ca(2+)](i) increase was prevented by the P/Q-type voltage-gated Ca(2+) channel blocker omega-agatoxin IVA. The alpha 2 delta-1, alpha 2 delta-2, and alpha 2 delta-3 subunits of voltage-gated Ca(2+) channels, presumed sites of gabapentin and pregabalin action, were detected with immunoblots of human neocortical synaptosomes. The K(+)-evoked release of [(3)H]-noradrenaline from human neocortical slices was inhibited by gabapentin (maximal inhibition of 31%); this effect was prevented by the AMPA receptor antagonist NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydro[f]quinoxaline-7-sulphonamide). Gabapentin and pregabalin may bind to the Ca(2+) channel alpha 2 delta subunit to selectively attenuate depolarization-induced Ca(2+) influx of presynaptic P/Q-type Ca(2+) channels; this results in decreased glutamate/aspartate release from excitatory amino acid nerve terminals leading to a reduced activation of AMPA heteroreceptors on noradrenergic nerve terminals.  相似文献   

15.
Intracellular free calcium concentrations ([Ca(2+)](1)) were measured in platelets from healthy volunteers before and after adding thrombin, chlorpromazine, haloperidol and/or lithium, and in platelets from DSM-III-R diagnosed schizophrenic patients receiving neuroleptic medication. Thrombin increased [Ca(2+)]( 1) in a dose- dependent fashion. Chlorpromazine and haloperidol also mobilized Ca(2+) in a dose-dependent fashion, and augmented the response to low doses of thrombin without changing the maximal response to thrombin. The effects of all three drugs were not additive, suggesting that they affected the same intraplatelet calcium pool; most likely the dense tubular system. Lithium also increased [Ca(2+) ] but without affecting the response to thrombin, chlorpromazine or haloperidol. The effects of the latter three drugs were additive to that of lithium, suggesting that lithium was acting on a different calcium pool. The response to thrombin was significantly lower in platelets from schizophrenic patients than in platelets from healthy volunteers. Further studies are required to explore potential causes for this observation. Such causes include schizophrenia per se and chronic neuroleptic treatment.  相似文献   

16.
Prostatic beta-adrenoceptors inhibit alpha(1)-adrenoceptor-stimulated contractility. This study examines the effects of beta-adrenoceptor stimulation upon phenylephrine-induced elevations of intracellular Ca(2+)([Ca(2+)](i)) in human cultured prostatic stromal cells, and contractility of human prostatic tissue. Human cultured prostatic stromal cells were used for [(3)H]-cAMP accumulation studies or were loaded with 5-oxazolecarboxylic acid, 2-(6-(bis(2-((acetyloxy)methoxy)-2-oxoethyl)amino)-5-(2-(2-(bis(2-((acetyloxy)methoxy)-2-oxoethyl)amino)-5-methylphenoxy)ethoxy)-2-benzofuranyl)-, (acetyloxy)methyl ester (FURA-2AM, 10 microM) for Ca(2+) imaging studies. The beta-adrenoceptor agonist isoprenaline increased the accumulation of [(3)H]-cAMP (pEC(50)+/-S.E.M. 6.58+/-0.11) in human cultured prostatic stromal cells, an effect antagonized by the beta(2)-adrenoceptor antagonist (+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol (ICI 118,551), but not by the beta(1)-adrenoceptor antagonist, atenolol. Isoprenaline (3 microM), the adenylyl cyclase activator, forskolin (20 microM) and the phosphodiesterase-4 inhibitor, rolipram (10 microM) inhibited the elevation of [Ca(2+)](i) elicited by phenylephrine (20 microM). The effect of isoprenaline could be blocked by ICI 118,551 (100 nM), the adenylyl cyclase inhibitor cis-N-(2-phenylcyclopentyl)-azacyclotridec-1-en-2-amine (MDL 12,330A, 20 microM) and the K(Ca) channel blocker, iberiotoxin (100 nM), but not by atenolol (1 microM) or the K(ATP) channel blocker, glibenclamide (3 microM). Agonists selective for beta(1)-(xamoterol and prenalterol), beta(2)-(procaterol and salbutamol) and beta(3)-((+/-)-(R(*), R(*))-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy]acetic acid, BRL37344) adrenoceptors inhibited the elevation of [Ca(2+)](i) elicited by phenylephrine (20 microM) with a rank order of BRL37344> or =xamoterol> or =isoprenaline>procaterol> or =prenalterol>salbutamol. The xamoterol effect was reversed by ICI 118,551 (100 nM), but not by 1-(2-ethylphenoxy)-3-[[(1S)-1,2,3,4-tetrahydro-1-naphthalenyl]amino]-(2S)-2-propanol (SR59230A, 100 nM) or atenolol (1 microM). The BRL37344 effect was reversed by SR59230A (100 nM), but not by atenolol (1 microM) or ICI 118,551 (100 nM). Both xamoterol and BRL37344 inhibited phenylephrine-induced tissue contractility. This study shows that both xamoterol and BRL37344 are effective inhibitors of phenylephrine-induced effects in human cultured prostatic stromal cells and in prostatic tissue.  相似文献   

17.
Two tripeptide analogues (N-[3-methyl-1-S[[2-S [(methyl-amino)carbonyl]-1-pyrrolidinyl] carbonyl]butyl-D-analine) (SC40476) and N-[3-methyl-S-(1-pyrrolidinylcarbonyl)butyl]-D-alanine, ethyl ester, hydrochloride (SC42619], inhibit aggregation of, and secretion from, human platelets induced by thrombin but cause no significant inhibition of esterolysis or fibrin formation catalysed by this enzyme. Inhibition by SC40476 of the aggregatory response induced by thrombin is incomplete. Neither peptide analogue inhibits aggregation induced by ADP, collagen, vasopressin or 11,9-epoxymethanoprostaglandin H2 (U-46619). Enhancement of the response is observed when nonsaturating concentrations of these agonists are employed. SC42619 causes a parallel shift to the right in the concentration-response curve describing aggregation induced by thrombin. The Schild plot of these data has a slope of 1.05 and the pA2 is 2.9 +/- 0.1. Both SC40476 and SC42619 induced a small but significant decrease in the single platelet content of platelet suspensions. Neither peptide analogue increases platelet cytosolic [Ca2+] measured using quin 2 or Fura 2. Both analogues cause inhibition of the increase in cytosolic [Ca2+] induced by thrombin. Inhibition by SC42619 is competitive with respect to thrombin when the extracellular [Ca2+] is reduced to less than 0.1 microM but is non-competitive in the presence of 1 mM Ca2+. SC42619 also inhibits the increase in cytosolic [Ca2+]induced by ADP in the presence of 1 mM Ca2+ but not the smaller increase caused by this agonist when the medium contains less than 0.1 microM Ca2+. SC42619 inhibits Mn2+ influx induced by thrombin and ADP. SC40476 and SC42619 inhibit the enhanced incorporation of [32P] into phosphatidic acid observed on stimulation by thrombin of platelets pre-labelled with [32P]-phosphate. Addition of the peptide analogues alone fails to increase significantly the 32P content of phosphatidate, phosphatidylcholine, phosphatidylserine or phosphatidylethanolamine. SC40476 causes no detectable hydrolysis of glycoprotein V as detected by release of the proteolytic product (glycoprotein VFR). The results indicate that SC40476 and SC42619 interact selectively with the platelet thrombin receptor. Both peptide analogues act as effective antagonists for this receptor but also possess weak agonist activity which may also result from interaction with the thrombin receptor. The molecular basis for this latter activity has not been defined. SC42619 non-selectively inhibits Ca2+ influx induced by several agonists but this effect does not appear to contribute to the observed inhibition of the aggregatory and secretory responses.  相似文献   

18.
The protective effect of 2-(4-chlorobenzoylamino)-3-[2(1H)-quinolinon-4-yl]-propionic acid (rebamipide) on gastric mucosa is well established. Here we demonstrate that rebamipide acts on pancreatic acinar cells to generate oscillations of intracellular Ca(2+) concentration ([Ca(2+)](i)) through the activation of cholecystokinin subtype 1 (CCK(1)) receptors. At concentrations higher than 5 microM, rebamipide induced [Ca(2+)](i) oscillations in individual fura-2-loaded pancreatic acinar cells. The frequency of oscillations increased with increasing concentrations of rebamipide, while the latency between stimulation of cells and initiation of [Ca(2+)](i) oscillations decreased with increasing concentration. The [Ca(2+)](i) oscillations evoked by rebamipide were inhibited by the CCK(1) receptor antagonist L-364,718 but not by atropine or the CCK(2) receptor antagonist L-365,260 indicating that rebamipide is a nonpeptide CCK(1) receptor agonist.  相似文献   

19.
The effect of palytoxin (C(129)H(223)N(3)O(54)) on Ca(2+) homeostasis in immune cells has not been studied. Therefore, we investigated the effect of palytoxin on the cytosolic-free Ca(2+) concentration ([Ca(2+)](i)) in mouse spleen cells using a fluorescence Ca(2+) indicator, fura-2. Palytoxin (0.1-100 nM) increased [Ca(2+)](i) in a concentration-dependent manner. The palytoxin-induced increase in [Ca(2+)](i) was abolished by the omission of extracellular Ca(2+) or 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride (SKF-96365, 100 microM), and was greatly inhibited by Ni(2+) (2 mM). Ouabain (0.5-1 mM) partially inhibited the palytoxin-induced response. There was no effect of decreased extracellular Na(+) (6.2 mM), tetrodotoxin (1 microM), verapamil (10 microM), nifedipine (10 microM), omega-agatoxin IVA (200 nM), omega-conotoxin GVIA (1 microM), omega-conotoxin MVIIC (500 nM), or La(3+) (100 microM). These results suggest that palytoxin increases [Ca(2+)](i) in mouse spleen cells by stimulating Ca(2+) entry through an SKF-96365-, Ni(2+)-sensitive pathway.  相似文献   

20.
1. Long-term (> or = 12 h) treatment of cultured bovine adrenal chromaffin cells with A23187 (a Ca(2+) ionophore) or thapsigargin (TG) [an inhibitor of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)] caused a time- and concentration-dependent reduction of cell surface [(3)H]-saxitoxin (STX) binding capacity, but did not change the K:(D:) value. In A23187- or TG-treated cells, veratridine-induced (22)Na(+) influx was reduced (with no change in veratridine EC(50) value) while it was enhanced by alpha-scorpion venom, beta-scorpion venom, or Ptychodiscus brevis toxin-3, like in nontreated cells. 2. The A23187- or TG-induced decrease of [(3)H]-STX binding was diminished by BAPTA-AM. EGTA also inhibited the decreasing effect of A23187. A23187 caused a rapid, monophasic and persistent increase in intracellular concentration of Ca(2+) ([Ca(2+)](i)) to a greater extent than that observed with TG. 2,5-Di-(t-butyl)-1,4-benzohydroquinone (DBHQ) (an inhibitor of SERCA) produced only a rapid monophasic increase in [Ca(2+)](i), without any effect on [(3)H]-STX binding. 3. Reduction in [(3)H]-STX binding capacity induced by A23187 or TG was attenuated by G?6976 (an inhibitor of conventional protein kinase C) or calpastatin peptide (an inhibitor of calpain). When the internalization rate of cell surface Na(+) channels was measured in the presence of brefeldin A (an inhibitor of vesicular exit from the trans-Golgi network), A23187 or TG accelerated the reduction of [(3)H]-STX binding capacity. 4. Six hours treatment with A23187 lowered Na(+) channel alpha- and beta(1)-subunit mRNA levels, whereas TG had no effect. 5. These results suggest that elevation of [Ca(2+)](i) caused by A23187, TG or DBHQ exerted differential effects on down-regulation of cell surface functional Na(+) channels and Na(+) channel subunit mRNA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号