首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hair follicle morphogenesis and cycling were examined in transgenic mice that overexpress the bone morphogenetic protein (BMP) inhibitor Noggin under the control of the neuron-specific enolase promoter. The Noggin transgene was misexpressed in the proximal portion of the hair follicle, primarily the matrix cells, apart from the usual expression in neurons. Transgene expression appeared only after induction of both the primary (tylotrich) and secondary (nontylotrich) pelage hair follicles had already occurred, thus allowing examination of the role of BMP signaling in follicles that had been induced normally in the presence of BMPs. The overexpression of Noggin in these animals resulted in a dramatic loss of hair postnatally. There was an apparently normal, but shortened period of postnatal hair follicle morphogenesis, followed by premature initiation of hair follicle cycling via entry into the first catagen transformation. This resulted in a complete loss of hair shafts from the nontylotrich hair follicles in these mice while the tylotrich hair follicles were normal. The onset of anagen of the first postnatal hair follicle cycle was also accelerated in the transgenic mice. Our results show that BMP signaling is specifically required for proper proliferation and differentiation during late morphogenesis of nontylotrich hair follicles and that inhibition of this signaling pathway may be one of the triggers for the onset of catagen when the follicles are in anagen and the onset of anagen when the follicles are in telogen. Ectopic sebocyte differentiation was another hallmark of the phenotype of these transgenic mice suggesting that BMP signaling may be an important determinant of lineage selection by common progenitor cells in the skin. BMPs likely promote a hair follicle-type differentiation pathway of keratinocytes while suppressing the sebaceous differentiation pathway of skin epithelium.  相似文献   

2.
The cat's sinus hair follicle is described histologically with special regard to structural characteristics and functional mechanisms of sinus hair growth and sinus hair cycle. Special features of both cornification of the inner epithelial root sheath and hair fixation, respectively, result in a loss of traction that is required for hair growth and hair expulsion. Instead, there is the outgrowing new anagen sinus hair that pushes the preceeding sinus hair upwards, and - secondly - there is a long-lasting cell pro- liferation. Cell proliferation - immunocytochemically detected with anti-proliferating cell nuclear antigen - continues in the preceeding sinus hair while the formation of a new, succeeding sinus hair follicle begins. No distinct, 'typical' catagen state of sinus hair follicle has been found even in a large number of collected specimens. These findings stress that the well known features of hair growth and hair cycle in the pelage hair follicle cannot be generalized and adopted in all details to the sinus hair follicle.  相似文献   

3.
4.
Wang N  Yang T  Li J  Lei M  Shi J  Qiu W  Lian X 《Acta histochemica》2012,114(3):199-206
Although the function of c-Myc has been clarified in many tissues, until now its expression and role in hair follicle morphogenesis and the hair cycle remains unknown. In this study we detected c-Myc expression pattern in the process of mouse hair follicle development and normal cycle. We found that during hair follicle morphogenesis, the stage-specific expression of c-Myc was detected in mouse skin and was predominantly localized to the hair follicle epithelium. c-Myc expression was also consistently found in mouse skin throughout the hair follicle cycle. Through the in vivo injection of c-Myc inhibitory peptide and c-Myc expression plasmid, we also investigated the direct effects of c-Myc on the hair follicle structures during the hair follicle cycle. Our results showed that c-Myc inhibitory peptide significantly restrained the development of anagen hair follicles, while the injection of plasmid DNA encoding c-Myc in vivo clearly promoted anagen development. Our data indicate that c-Myc may play an important role in the proliferation and differentiation of the hair follicle keratinocytes during hair follicle development. c-Myc also was shown to participate in the regulation of the mouse hair growth cycle and could promote the proliferation of the hair matrix keratinocytes as well as the differentiation of the inner root sheath.  相似文献   

5.
6.
7.
Previous studies have shown that the Wnt signaling pathway plays an important role in the growth and development of hair follicles. It has been generally accepted that Wnt5a, a non-canonical Wnt gene, inhibits the Wnt/β-catenin signaling pathway. Several reports have addressed its mRNA expression in embryonic and postnatal hair follicles, but its exact role in the growth of hair follicles is currently unknown. In this study, we investigated the immunolocalization of Wnt5a protein in pelages of the dorsal skin and whisker follicles of mice. We found that in the anagen phase, dermal papilla cells showed the highest staining levels of Wnt5a protein, while in the catagen and the telogen phases the staining levels were lower. During the growth stage, Wnt5a protein was prominently located in the matrix and precortex cells in addition to the inner root sheath, outer root sheath and the dermal papilla. As the hair cycle progresses, the immunostaining of Wnt5a was gradually decreased in the catagen phase and was located in the bulge and secondary hair germ in the telogen phase. This Wnt5a immunostaining profile was consistent between dorsal skin pelages and whisker follicles. Furthermore, in an in vitro study using whisker follicle organ culture, we demonstrated that the growth of the hair shaft was significantly inhibited by adenovirus Wnt5a. Our findings suggest that Wnt5a is a dynamic factor in the hair cycle and it is important for the regulation of hair shaft growth.  相似文献   

8.
Wang HD  Yang L  Yu XJ  He JP  Fan LH  Dong YJ  Dong CS  Liu TF 《Acta histochemica》2012,114(8):773-778
It is well recognized that the Wnt pathway, in which β-catenin and Lef-1 are important factors, is associated with many physiological processes, including embryogenesis and postnatal development. The Wnt pathway also plays a critical role in the development of skin. It regulates the formation of the dorsal dermis and epidermal appendages in the skin and the activity of epithelial stem cells. In this study, we investigated the presence and localization of β-catenin and Lef-1 in murine hair follicles through the first postnatal month, which encompasses the first hair cycle in mice, using Western blotting and immunohistochemistry. Our results show that β-catenin and Lef-1 are expressed during all stages in a hair cycle, most strongly in the anagen and weakly in the catagen and telogen phases. The results also suggest that the β-catenin-Lef-1 complex may regulate hair follicle cycling. This process will be of considerable interest to future studies.  相似文献   

9.
10.
Woo WM  Zhen HH  Oro AE 《Genes & development》2012,26(11):1235-1246
During hair follicle morphogenesis, dermal papillae (DPs) function as mesenchymal signaling centers that cross-talk with overlying epithelium to regulate morphogenesis. While the DP regulates hair follicle formation, relatively little is known about the molecular basis of DP formation. The morphogen Sonic hedgehog (Shh) is known for regulating hair follicle epithelial growth, with excessive signaling resulting in basal cell carcinomas. Here, we investigate how dermal-specific Shh signaling contributes to DP formation and hair growth. Using a Cre-lox genetic model and RNAi in hair follicle reconstitution assays, we demonstrate that dermal Smoothened (Smo) loss of function results in the loss of the DP precursor, the dermal condensate, and a stage 2 hair follicle arrest phenotype reminiscent of Shh(-/-) skin. Surprisingly, dermal Smo does not regulate cell survival or epithelial proliferation. Rather, molecular screening and immunostaining studies reveal that dermal Shh signaling controls the expression of a subset of DP-specific signature genes. Using a hairpin/cDNA lentiviral system, we show that overexpression of the Shh-dependent gene Noggin, but not Sox2 or Sox18, can partially rescue the dermal Smo knockdown hair follicle phenotype by increasing the expression of epithelial Shh. Our findings suggest that dermal Shh signaling regulates specific DP signatures to maintain DP maturation while maintaining a reciprocal Shh-Noggin signaling loop to drive hair follicle morphogenesis.  相似文献   

11.
Hair greying is one of the most distinct but least comprehended features of senescence. The signalling of stem cell factor (SCF) and its receptor KIT has been documented to regulate essential roles in the maintenance of embryonic melanocyte lineages and postnatal cutaneous melanogenesis, although little is known about its detailed mechanisms in postnatal hair pigmentation. To address this, anagen human hair follicles and C57BL/6 murine pelage were analysed in this study. Molecular biological analyses of murine follicular skin indicated a significant increase of membrane‐bound SCF expression, reaching its peak 8–16 days after anagen induction in concert with the escalation of cutaneous tyrosinase activity and corresponding pigmentation. Administration of KIT–neutralizing antibody abolished MITF and tyrosinase expressions, resulting in a reversible hair depigmentation in murine regenerated hair and human hair organ culture. Quantitative RT‐PCR of human hair follicles indicated that KIT expression as well as the expression of several melanogenic factors, including MITF, was significantly lower in unpigmented than in pigmented follicles. Taken together, these data revealed a pivotal role of SCF–KIT signalling in the maintenance of human hair follicle melanogenesis during the anagen cycle and its involvement in physiological ageing of the hair follicle pigmentary unit. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

12.
The regulation of the periodic regeneration of hair follicles is complicated. Although Wnt10b has been reported to induce hair follicle regeneration, the characteristics of induced hair follicles, especially the target cells of Wnt10b, have not yet been clearly elucidated. Thus, we systematically evaluated the expression and proliferation patterns of Wnt10b-induced hair follicles. We found that Wnt10b promoted the proliferation of hair follicle stem cells from 24 hours after AdWnt10b injection. Seventy-two hours after AdWnt10b injection, cells outside of bulge area began to proliferate. When the induced hair follicle entered full anagen, although the hair follicle stem cells were normal, canonical Wnt signaling was maintained in the hair precortex cells. Our results reveal that the target cells that overexpressed Wnt10b included hair follicle stem cells, hair precortex cells, and matrix cells.  相似文献   

13.
Mutation in the serum/glucocorticoid regulated kinase 3 (Sgk3, also known as Sgkl or Cisk) gene causes both defective hair follicle development and altered hair cycle in mice. We examined Sgk3-mutant YPC mice (YPC-Sgk3(ypc)/Sgk3(ypc)) and found expression of SGK3 protein with altered function. In the hair follicles of YPC mice, the aberrant differentiation and poor proliferation of hair matrix keratinocytes during the period of postnatal hair follicle development resulted in a complete lack of hair medulla and weak hair. Surprisingly, the length of postnatal hair follicle development and anagen term was shown to be dramatically shortened. Also, phosphorylation of GSK3beta at Ser9 and the nuclear accumulation of beta-catenin were reduced in the developing YPC hair follicle, suggesting that phosphorylation of GSK3beta and WNT-beta-catenin pathway takes part in the SGK3-dependent regulation of hair follicle development. Moreover, the above-mentioned features, especially the hair-cycling pattern, differ from those in other Sgk3-null mutant strains, suggesting that the various patterns of dysfunction in the SGK3 protein may result in phenotypic variation. Our results indicate that SGK3 is a very important and characteristic molecule that plays a critical role in both hair follicle morphogenesis and hair cycling.  相似文献   

14.
BACKGROUND: CD1d belongs to a family of antigen presenting molecules that are structurally and distantly related to the classic major histocompatibility complex class I (MHC I) proteins. However, unlike MHC I molecules, which bind protein antigens, CD1d binds to lipid and glycolipid antigens. CD1d is expressed by cells of lymphoid and myeloid origin, and by cells outside of the lymphoid and myeloid lineages, such as human keratinocytes of psoriatic skin.AIMS: To investigate whether CD1d is also expressed in sun exposed skin and in the immuno-privileged anagen hair follicle.Materials/METHODS: CD1d immunoreactivity was studied in human scalp skin and hair follicles of healthy women in situ by immunofluorescent and light microscopic immunohistology. Skin biopsies were obtained from normal human scalp containing mainly anagen VI hair follicles from women (age, 53-57 years) undergoing elective plastic surgery.RESULTS: CD1d showed strong immunostaining in human scalp skin epidermis, pilosebaceous units, and eccrine glands. In the epidermis, CD1d was strongly expressed by basal and granular keratinocytes. In hair follicles, CD1d was expressed in the epithelial compartment and showed hair cycle related alterations, with an increase in the anagen and a reduction in the catagen and telogen phases.CONCLUSIONS: These results suggest that CD1d plays a role in human scalp skin immunology and protection against lipid antigen rich infectious microbes. They also raise the question of whether keratinocytes of the immuno-privileged anagen hair follicle can present lipid antigens to natural killer T cells. These data could help provide new strategies for the manipulation of hair related disorders.  相似文献   

15.
Tong X  Coulombe PA 《Genes & development》2006,20(10):1353-1364
Mammalian hair follicles cycle between stages of rapid growth (anagen) and metabolic quiescence (telogen) throughout life. Transition from anagen to telogen involves an intermediate stage, catagen, consisting of a swift, apoptosis-driven involution of the lower half of the follicle. How catagen is coordinated, and spares the progenitor cells needed for anagen re-entry, is poorly understood. Keratin 17 (K17)-null mice develop alopecia in the first week post-birth, correlating with hair shaft fragility and untimely apoptosis in the hair bulb. Here we show that this abnormal apoptosis reflects premature entry into catagen. Of the proapoptotic challenges tested, K17-null skin keratinocytes in primary culture are selectively more sensitive to TNFalpha. K17 interacts with TNF receptor 1 (TNFR1)-associated death domain protein (TRADD), a death adaptor essential for TNFR1-dependent signal relay, suggesting a functional link between this keratin and TNFalpha signaling. The activity of NF-kappaB, a downstream target of TNFalpha, is increased in K17-null skin. We also find that TNFalpha is required for a timely anagen-catagen transition in mouse pelage follicles, and that its ablation partially rescues the hair cycling defect of K17-null mice. These findings identify K17 and TNFalpha as two novel and interdependent regulators of hair cycling.  相似文献   

16.
17.
The hair follicle undergoes a lifelong developmental cycle that depends on the integration between activating and inhibitory signals acting to regulate and guide the proliferation and differentiation of pluripotent epithelial stem cells. The effectors and mechanisms responsible for re-entry of quiescent telogen hair follicles into the hair-producing anagen stage in mature skin remain incompletely understood. In the June 1, 2013, issue of Genes & Development, Yucel and colleagues (pp. 1217–1222) reported the unexpected finding that CaV1.2, the pore-forming subunit in a well-characterized voltage-gated, L-type calcium channel, is expressed in hair follicle stem cells and contributes to anagen re-entry but does so in a calcium flux-independent fashion.  相似文献   

18.
19.
Epithelial stem cells (EP-SCs) located in the bulge region of a hair follicle (HF) have the potential to give rise to hair follicle stem/progenitor cells that migrate down to regenerate HFs. Bone morphogenetic protein (BMP) signaling has been shown to regulate the HF cycle by inhibiting anagen induction. Here we show that active BMP signaling functions to prevent EP-SC activation and expansion. Dynamic expression of Noggin, a BMP antagonist, releases EP-SCs from BMP-mediated restriction, leading to EP-SC activation and initiation of the anagen phase. Experimentally induced conditional inactivation of the BMP type IA receptor (Bmpr1a) in EP-SCs leads to overproduction of HF stem/progenitor cells and the eventual formation of matricomas. This genetic manipulation of the BMP signaling pathway also reveals unexpected activation of beta-catenin, a major mediator of Wnt signaling. We propose that BMP activity controls the HF cycle by antagonizing Wnt/beta-catenin activity. This is at least partially achieved by BMP-mediated enhancement of transforming growth factor-beta-regulated epithelial cell-specific phosphatase (PTEN) function. Subsequently, PTEN, through phosphatidyl inositol 3-kinase-Akt, inhibits the activity of beta-catenin, the convergence point of the BMP and Wnt signaling pathways.  相似文献   

20.
Controls of hair follicle cycling   总被引:58,自引:0,他引:58  
Nearly 50 years ago, Chase published a review of hair cycling in which he detailed hair growth in the mouse and integrated hair biology with the biology of his day. In this review we have used Chase as our model and tried to put the adult hair follicle growth cycle in perspective. We have tried to sketch the adult hair follicle cycle, as we know it today and what needs to be known. Above all, we hope that this work will serve as an introduction to basic biologists who are looking for a defined biological system that illustrates many of the challenges of modern biology: cell differentiation, epithelial-mesenchymal interactions, stem cell biology, pattern formation, apoptosis, cell and organ growth cycles, and pigmentation. The most important theme in studying the cycling hair follicle is that the follicle is a regenerating system. By traversing the phases of the cycle (growth, regression, resting, shedding, then growth again), the follicle demonstrates the unusual ability to completely regenerate itself. The basis for this regeneration rests in the unique follicular epithelial and mesenchymal components and their interactions. Recently, some of the molecular signals making up these interactions have been defined. They involve gene families also found in other regenerating systems such as fibroblast growth factor, transforming growth factor-beta, Wnt pathway, Sonic hedgehog, neurotrophins, and homeobox. For the immediate future, our challenge is to define the molecular basis for hair follicle growth control, to regenerate a mature hair follicle in vitro from defined populations, and to offer real solutions to our patients' problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号