首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After feeding marmosets different lipid supplements for 6 months, the distribution of phospholipid classes and the fatty acid composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and diphosphatidylglycerol (DPG) were determined in their cardiac membranes. Supplementing the diet with linoleic-acid-rich sunflower seed oil raised the level of 18:2,n-6 in both PC and PE, but did not change the level significantly in DPG. When 18:2,n-6 was increased, the level of arachidonic acid (20:4,n-6) was significantly decreased in PC and PE. No arachidonic acid was present in DPG. Supplementing the diet with mutton fat did not markedly increase the level of saturated fats, nor did it markedly reduce the level of arachidonic acid in any phospholipid component. No dietary treatment altered the distribution of the major phospholipid classes.  相似文献   

2.
The fatty acid composition of phospholipids and triglycerides in heart muscle was examined in normal and alloxan-diabetic male Wistar rats. In diabetes the major phospholipids, phosphatidyl choline and phosphatidyl ethanolamine, showed significant changes in fatty acid composition, whereas cardiolipin and phosphatidyl serine + phosphatidyl inositol did not show marked changes in fatty acid profile. In phosphatidyl choline there was a significant diminution in arachidonic acid, 20 : 4(n-6) and palmitic acid, 16 : 0, and a corresponding increase in linoleic acid, 18 : 2(n-6), and stearic acid, 18 : 0. In phosphatidyl ethanolamine the level of 20 : 4(n-6) was significantly reduced. The diabetic heart had normal levels of individual phospholipids, whereas the triglycerides were increased by 90% and contained significantly higher levels of 18 : 2(n-6). The results confirm that diabetes is associated with a diminution in fatty acid desaturation, affecting the fatty acid composition of phosphatidyl choline in particular. These changes may be relevant to development of atherosclerosis and relative resistance to catecholamine-induced cardiac necrosis in diabetes.  相似文献   

3.
S S Smith  M Neuringer  S R Ojeda 《Endocrinology》1989,125(3):1650-1659
This study assessed the effect of a dietary deficiency in the essential fatty acids (EFA) linoleic and linolenic acids on the onset of female puberty. EFA deficiency was produced in female rats by means of a semipurified diet and was biochemically documented by analyzing serum and erythrocyte fatty acid levels of more than 30 fatty acids, including all members of the n-6 and n-3 series. Levels of linoleic acid (18:2 n-6) and all n-6 derivatives, particularly arachidonic acid, were strikingly reduced. A less pronounced but clear-cut decrease in n-3 fatty acids, including docosahexaenoic acid (22:6 n-3) was also found. The times of puberty and first ovulation, as assessed by the ages at vaginal opening and first diestrus, were significantly delayed in EFA-deficient rats. The mechanisms underlying this delay appear to reside at both hypothalamic and ovarian sites. Simulation of preovulatory plasma estradiol (E2) levels via implantation of E2-containing Silastic capsules evoked a LH surge 30 h later in control juvenile rats, but not in EFA-deficient animals, indicating a delay in the development of the hypothalamic component of E2-positive feedback in the latter group. This delay appears to be due at least in part to reduced prostaglandin E2 (PGE2) synthesis, as the ability of the neurotransmitter norepinephrine to induce PGE2 release from median eminence nerve terminals was markedly reduced in EFA-deficient rats compared with that in controls. The decrease in hypothalamic PGE2 release was related to the EFA deficiency and not to reduced PG synthase activity, as determined by HPLC analysis of PG synthase products derived from exogenous [14C]arachidonic acid. Basal and hCG-stimulated PGE2 synthesis was also compromised in ovaries from EFA-deficient rats. Depressed gonadal function resulting from the EFA deficiency was further evidenced by a reduced gonadotropin receptor content, a blunted E2 response to hCG in vitro, and an increase in mean serum FSH levels. These results suggest that the delay in puberty resulting from EFA deficiency is due to a reduced availability of arachidonic acid for synthesis of bioactive metabolites. This results in delayed development of both the hypothalamic and ovarian components of the reproductive axis.  相似文献   

4.
The effect of dietary fish oils on development of hypertension and vascular response in vitro were studied in rats and a primate. Dietary fish oils (MaxEPA and an n-3 ethyl ester concentrate of higher EPA and DHA content) were administered to spontaneously hypertensive (SHR), stroke-prone spontaneously hypertensive (SHR-SP) and a backcross of SHR and Wistar Kyoto (SHR/WKY) rats from 4-16 weeks of age. Blood pressure was monitored during the feeding period and vascular responses measured in the aorta and mesenteric vascular bed in vitro. Depending on the strain of rat used and the composition of the fish oil the attenuation in blood pressure was 10-26 mmHg. Fish oils attenuated the response mediated by sympathetic nerve stimulation or intralumenal norepinephrine in the perfused mesenteric vascular bed preparation from the SHR. This attenuation was more pronouced for fish oils enriched with eicosapentaenoic acid and docosahexaenoic acid and was more prominent in the SHR and SHR/WKY backcross than it was in the SHR-SP. Prostanoid synthesis or nitric oxide modulation of aL-adrenoceptor responses were shown not to be involved in the attenuation of vascular responses produced by fish oil. The maximum contraction of aortic ring preparations in response to norepinephrine (NE) was significantly smaller in SHR than WKY rats fed olive oil and for SHR rats maintained on fish oils the contraction was close to WKY olive oil values. Evidence was obtained also for a modulation of vasoconstrictor responses by dietary fish oils in the perfused mesenteric bed of the marmoset monkey.  相似文献   

5.
Studies carried out on the adrenal glands of experimental diabetic rats have shown an important inhibition in polyenoic fatty acid biosynthesis. This effect was demonstrated by testing the activities of long-chain fatty acyl-CoA synthetase, the delta 5- and delta 6-desaturases of the (n-6) essential fatty-acid series and the delta 6-desaturase of the (n-3) series in liver and adrenal microsomes. The depression in desaturating activity in the insulin-deprived animals was independent of that produced on acyl-CoA-thioester biosynthesis. Experiments measuring the incorporation and transformation of [1-14C]eicosa-8,11,14-trienoic acid in adrenocortical cells isolated from streptozotocin-diabetic animals demonstrated a significant inhibition of arachidonic acid biosynthesis compared to controls. Insulin injections in diabetic rats partially restored the delta 5- and delta 6-desaturase activities. This effect could result from direct action by the hormone since the restoration was reproduced when arachidonic acid biosynthesis was measured after insulin was added to the incubation medium of adrenocortical cells isolated from diabetic animals. The results of the present study provide new information about the implication of this abnormal metabolism in the adrenal gland of diabetic rats.  相似文献   

6.
Fat-supplemented dies enriched with linoleic acid by the addition of 12% w/w sunflower seed oil or proportionally reduced in linoleic acid by addition of 12% mutton fat were fed to rats for 18 months before the fatty acid composition of perirenal storage fat and myocardial membranes (phospholipids) was determined. Although the fatty acid composition of perirenal fat generally reflected that of the diet, there was an inverse relationship between the consumption of n-6 and the deposition of n-9 fatty acids. In addition, enhanced deposition of oleic acid (18:1, n-9) appears to be related to the dietary intake of stearic acid (18:0). In contrast, in myocardial membranes the n-3 polyunsaturated fatty acids are found to be increased when the intake of n-6 polyunsaturated fatty acids is reduced. This is particularly evident for docosahexaenoic acid (22:6, n-3) which is significantly increased in phosphatidylcholine, phosphatidylethanolamine, and diphosphatidylglycerol fractions of myocardial membranes, when the mutton fat diet was fed. After feeding the sunflower seed oil diet, the increased consumption of linoleic acid produced only small changes in the 18:2, n-6 content of cardiac phosphatidylcholine and phosphatidylethanolamine. These major classes of membrane phospholipids also showed only small increases in 20:4, n-6. In diphosphatidylglycerol, increased 18:2, n-6 also followed increased dietary intake, but this was not accompanied by increased 20:4, n-6. These changes in myocardial phospholipid fatty acid composition are similar to those observed after short-term feeding reported previously and confirm that changes in dietary n-6/n-3 fatty acid intake affect the fatty acid composition of both myocardial membranes and storage fat. These changes persist for the duration of the feeding period.  相似文献   

7.
This study was designed to investigate the response to a high-cholesterol, n-3 polyunsaturated fatty acid (PUFA) or n-6 PUFA diet in rats and hamsters. Animals were fed n-3 or n-6 PUFA with a cholesterol-free diet, or with a diet enriched with cholesterol (0.5%, w/w) for 2 weeks. In rats and hamsters fed a cholesterol-free diet, plasma cholesterol, triglycerides and very-low-density lipoprotein (VLDL)-triglyceride levels in n-3 PUFA group were significantly lower than those in n-6 PUFA group. In contrast, when diets were supplemented with 0.5% cholesterol, the plasma cholesterol- and triglyceride-lowering effect of dietary n-3 PUFA disappeared. In hamsters fed with the atherogenic diet (0.5% dietary cholesterol) for 2 weeks, n-3 PUFA induced hypercholesterolemia more than n-6 PUFA, the increase being in the VLDL and low-density lipoprotein (LDL) fractions. Our data thus indicate that elevation of VLDL- and LDL-cholesterol in hamsters by n-3 PUFA, compared with n-6 PUFA, is dependent on 0.5% dietary cholesterol supplementation. In rats, on the other hand, dietary n-3 PUFA did not induce hypercholesterolemia more than n-6 PUFA when 0.5% cholesterol was supplemented. Although the effects of n-3 PUFA on plasma cholesterol, triglycerides and VLDL-triglycerides were similar in hamsters and rats, the interactive effects of n-3 PUFA and cholesterol on plasma and lipoprotein cholesterol levels differed in the two species. It was also found that plasma triglycerides, cholesterol and lipoprotein cholesterol levels in hamsters are higher than in rats in the presence and absence of dietary cholesterol. In addition, cholesterol feeding induces hypertriglyceridemia and hypercholesterolemia only in hamsters. Moreover, liver triglyceride concentrations increased in rats fed a cholesterol-rich diet and hepatic triglyceride levels of the n-3 PUFA-fed rats were significantly lower than those in the n-6 PUFA-fed rats in the presence and absence of dietary cholesterol. However, triglycerides did not accumulate in the liver in hamsters fed a cholesterol-rich diet and hepatic triglyceride levels of the n-3 PUFA-fed hamsters were not significantly different from those in the n-6 PUFA-fed hamsters in the presence and absence of dietary cholesterol. Therefore, these studies confirm marked species differences in response to the interactive effects of dietary n-3 PUFA and cholesterol.  相似文献   

8.
A randomized crossover study was carried out to investigate the fatty acid profile and concentrations of plasma lipids in male patients with myocardial infarction (MI) who supplemented their diet with 20 ml cod liver oil daily for 6 weeks. Subjects were divided into two groups, A and B. Group A received cod liver oil daily for 6 weeks after hospital discharge, but none for the subsequent 6 weeks. Group B did not start taking cod liver oil until 6 weeks after hospital discharge, and they then took cod liver oil for 6 weeks. Diet, medication or smoking habits were kept as constant as possible during the study. During the period of cod liver oil intake, eicosapentaenoic acid (20:5 (n-3), EPA) and docosahexaenoic acid (22:6 (n-3), DHA) increased significantly in phospholipids (PL), triglycerides (TG) and cholesterol esters (CE), whereas linoleic acid (18:2 (n-6), LA), dihomo-gamma-linolenic acid (20:3 (n-6), DHGLA) and arachidonic acid (20:4 (n-6), AA) were significantly decreased in phospholipids. The plasma level of TG was significantly decreased during the cod liver oil intake. Total cholesterol, high density lipoprotein (HDL) cholesterol, and levels of apolipoproteins A1 and B were not affected by cod liver oil in these MI patients.  相似文献   

9.
Rats were fed either a high linolenic acid (perilla oil) or high eicosapentaenoic + docosahexaenoic acid (fish oil) diet (8%), and the fatty acid and molecular species composition of ethanolamine phosphoglycerides was determined. Gene expression pattern resulting from the feeding of n-3 fatty acids also was studied. Perilla oil feeding, in contrast to fish oil feeding, was not reflected in total fatty acid composition of ethanolamine phosphoglycerides. Levels of the alkenylacyl subclass of ethanolamine phosphoglycerides increased in response to feeding. Similarly, levels of diacyl phosphatidylethanolamine molecular species containing docosahexaenoic acid (18:0/22:6) were higher in perilla-fed or fish oil-fed rat brains whereas those in ethanolamine plasmalogens remained unchanged. Because plasmalogen levels in the brains of rats fed a n-3 fatty acid-enriched diet increased, it is plausible, however, that docosahexaenoic acid taken up from the food or formed from linolenic acid was deposited in this phospholipid subclass. Using cDNA microarrays, 55 genes were found to be overexpressed and 47 were suppressed relative to controls by both dietary regimens. The altered genes included those controlling synaptic plasticity, cytosceleton and membrane association, signal transduction, ion channel formation, energy metabolism, and regulatory proteins. This effect seems to be independent of the chain length of fatty acids, but the n-3 structure appears to be important. Because n-3 polyunsaturated fatty acids have been shown to play an important role in maintaining normal mental functions and docosahexaenoic acid-containing ethanolamine phosphoglyceride (18:0/22:6) molecular species accumulated in response to n-3 fatty acid feeding, a casual relationship between the two events can be surmised.  相似文献   

10.
The influence of a supplement of linseed oil (LO), rich in linoleic acid (C18:3,n-3), was compared with one of fish oil (MaxEPA) rich in eicosapentaenoic acid (C20:5,n-3) and docosahexaenoic acid (22:6,n-3) on blood and tissue lipids in weanling rats receiving a high intake of linoleic acid. Both the LO and the MaxEPA supplement decreased plasma cholesterol concentrations. The MaxEPA supplement but not the linseed oil supplement also decreased the concentrations of plasma triglycerides and HDL cholesterol. The proportion of C20:5,n-3 was markedly increased in the platelet and erythrocyte lipids by the MaxEPA supplement but not in tissue lipids. However, the increase in the proportion of C20:5,n-3 in the platelet was small compared with other studies. Both supplements led to an increase in the proportion of C22:6,n-3 in blood and tissue lipids but the MaxEPA supplement was more potent than the LO supplement. The most marked change was observed in the heart lipids. These changes were accompanied by reciprocal changes in the proportions of arachidonic, adrenic and docosapentaenoic acid.  相似文献   

11.
The fatty-acid composition of rat heart phospholipids was examined after long-term, i.e. more than 12 months, feeding of diets supplemented with n-6 fatty acids as sunflower seed oil (SSO), or n-3 fatty acids as tuna fish oil (TFO) which is a particularly rich source of docosahexenoic acid (DHA). Although some small changes occurred in the relative proportions of palmitic and stearic acids and in the ratio of total saturates to total unsaturates, the most important changes were in the relative proportions of 18:2 n-6 and 20:4 n-6 to 20:5 n-3 and 22:6 n-3. In general, the n-6/n-3 ratio of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and diphosphatidyl glycerol (DPG) was altered in favour of the family of fatty acids administered, although the proportions of the individual long-chain polyunsaturated fatty acids which contributed to this ratio varied from one class of phospholipids to another. In cardiac PC and PE, feeding TFO supplements reduced the proportions of arachidonic acid (AA) and significantly elevated (p less than 0.01) the proportions of DHA but produced relatively little change in those of eicosapentenoic acid (EPA). In DPG, feeding TFO led to a significant increase in the proportion of AA as well as an increase in DHA. The level of EPA was relatively low in PC, PE and DPG even after TFO feeding and never reached comparable levels with that of either AA or DHA. Nevertheless the n-6/n-3 ratio in all these classes of major cardiac phospholipids was significantly reduced by feeding TFO compared to the SSO diet or the commercial rat chow (CC) reference group. In contrast to the reports of other workers who have studied the fatty-acid composition of platelet membranes after feeding various fish oil supplements, in the rat heart the major effect of tuna fish oil is an increase in the proportion of DHA rather than EPA in the cardiac phospholipids.  相似文献   

12.
Overproduction of vasoconstrictor prostanoids and reduced prostacyclin levels have been related to the male diabetic-linked vascular dysfunction. However, it is not clear yet if these changes also occur in diabetic females. The aim of this study was to verify the role of prostanoids in the vascular dysfunction of diabetic female rats. The parameters studied were the mesenteric arteriolar reactivity (intravital microscopy and isolated perfused arteriolar bed), prostanoid measurement (enzyme immunoassay), superoxide generation (intravital fluorescence microscopy), and the presence of peroxynitrite (Western blot for nitrotyrosine-containing proteins). The response to acetylcholine was decreased in arterioles of diabetic female rats and diclofenac, but not ridogrel, corrected the altered response. The unstimulated (basal) release of thromboxane B2 (TXB2), but not prostaglandin F2alpha (PGF2alpha) or 6-keto-PGF1alpha, was increased in the mesenteric perfusate from diabetic female rats. Increased production of PGF2alpha and 6-keto-PGF1alpha, but not TXB2, was induced by acetylcholine in diabetic arterioles. The superoxide generation was increased in diabetic female rats and diclofenac corrected it. Diabetes increased nitrotyrosine-containing proteins in mesenteric microvessels. In conclusion, our data show that the increase of constrictor prostanoid release, most likely PGF2alpha, could be involved in the reduced endothelium-dependent vasodilation of diabetic female rats. In addition, the enhanced activation of cyclooxygenase may be a source of superoxide anion generation in this model.  相似文献   

13.
BACKGROUND: Triacsin C, a fatty acid analog, inhibits endothelial nitric oxide synthetase (eNOS) palmitoylation, increases nitric oxide synthesis and enhances methacholine-induced relaxation of vascular rings. The experiments presented here tested the hypothesis that triacsin C increases the synthesis of PGI(2) and/or endothelial-derived hyperpolarizing factor. METHODS: Long-chain fatty acyl CoA synthetase activity (LCFACoAS), agonist-induced prostacyclin synthesis and agonist-induced release of radioactivity in endothelial cells labeled with [(3)H]arachidonic acid were measured in the presence and absence of triacsin C. RESULTS: Inhibition by triacsin C of palmitoyl CoA formation was significantly greater than inhibition of arachidonoyl CoA formation in solubilized endothelial cell preparations. While 24-hour triacsin C treatment significantly reduced basal 6-keto synthesis, it had no effect on agonist-stimulated synthesis. The release of arachidonic acid metabolites was examined in [(3)H]arachidonate-labeled cells. Triacsin C treatment had no effect on basal or vasopressin-, angiotensin-II-, bradykinin- or ionomycin-induced release of radioactivity, but significantly reduced release in response to isoproterenol or phenylephrine. Expression of neither immunoreactive eNOS nor immunoreactive inducible nitric oxide synthetase (iNOS) was changed by triacsin C treatment, but the fraction of immunoreactive eNOS in the cytoplasm of treated cells was significantly greater as compared to vehicle control cells. Phorbol myristoyl acetate or fenofibrate significantly increased in vitro LCFACoAS activity, and significantly decreased the nitrite/eNOS ratio. CONCLUSIONS: These data indicate that, while triacsin C can inhibit arachidonoyl CoA synthetase in endothelial cells, it does not increase the availability of endogenous substrate for basal or agonist-induced PGI(2) synthesis, nor does it enhance release of arachidonic acid or its metabolites.  相似文献   

14.
We recently reported that serum stimulatory activity on prostacyclin (PGI2) production by cultured bovine aortic endothelial cells decreased in noninsulin-dependent diabetic patients. In the present study, this activity was compared in streptozotocin-induced (STZ) diabetic rats and controls. Platelet-poor plasma-derived serum (PDS) from Wistar male rats stimulated 6-keto-PGF1 alpha production (a stable metabolite of PGI2) by cultured bovine aortic endothelial cells, rat lung fibroblasts, and rat aortic rings in a time- and dose-dependent manner. Namely, PDS from rats has a stimulatory activity on PGI2 production (PGI2 stimulatory activity; PSA). Furthermore, PSA in PDS from STZ diabetic rats (n = 12) significantly decreased as compared with that from control rats (n = 10) using three types of in vitro systems. The reduction in PDS-stimulated PGI2 production by the vascular wall may lead to platelet hyperaggregation and thrombus formation in diabetics, which is considered to be involved in the pathogenesis of diabetic macro- or microangiopathy.  相似文献   

15.
The field stimulation induced release of 3H-norepinephrine (NE) from the isolated portal vein and endogenous NE from the isolated caudal artery and perfused mesenteric arterial bed of spontaneously hypertensive rats (SHR) and age-matched normotensive rats (Wistar-Kyoto or Sprague-Dawley) was studied. There was a significantly greater release of NE from all three preparations obtained from 10- to 12-week-old SHR compared to normotensive animals. In addition, there was a greater release of NE from the caudal artery of 5- to 6-week-old SHR compared to controls. No differences were seen in the evoked release of NE from portal vein or caudal artery obtained from renal or DOCA salt hypertensives compared to vessels obtained from sham controls. Neuropeptide Y (NPY) produced a concentration-dependent decrease in the field stimulation induced release of NE from the perfused mesenteric artery. Low concentrations of NPY decreased while higher concentrations potentiated the increase in perfusion pressure. The NPY induced inhibition of evoked NE release was not altered by alpha 1- or alpha 2-adrenoceptor antagonists while the alpha 1-adrenoceptor antagonist, prazosin, prevented the postjunctional response. These results are consistent with there being an alteration of NE release at the vascular neuroeffector junction in SHR which may contribute to the development or maintenance of hypertension. NPY exerts a modulatory role in noradrenergic transmission at the vascular neuroeffector junction.  相似文献   

16.
A lipidomic analysis of nonalcoholic fatty liver disease   总被引:4,自引:0,他引:4  
The spectrum of nonalcoholic fatty liver disease (NAFLD) includes a nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). The specific types and amounts of lipids that accumulate in NAFLD are not fully defined. The free fatty acid (FFA), diacylglycerol (DAG), triacylglycerol (TAG), free cholesterol (FC), cholesterol ester, and phospholipid contents in normal livers were quantified and compared to those of NAFL and NASH, and the distribution of fatty acids within these classes was compared across these groups. Hepatic lipids were quantified by capillary gas chromatography. The mean (nmol/g of tissue) DAG (normal/NAFL/NASH: 1922 versus 4947 versus 3304) and TAG (13,609 versus 128,585 versus 104,036) increased significantly in NAFLD, but FFA remained unaltered (5533 versus 5929 versus 6115). There was a stepwise increase in the mean TAG/DAG ratio from normal livers to NAFL to NASH (7 versus 26 versus 31, P < 0.001). There was also a similar stepwise increment in hepatic FC (7539 versus 10,383 versus 12,863, P < 0.05 for NASH). The total phosphatidylcholine (PC) decreased in both NAFL and NASH. The FC/PC ratio increased progressively (0.34 versus 0.69 versus 0.71, P < 0.008 for both). Although the levels for linoleic acid (18:2n-6) and alpha-linolenic acid (18:3n-3) remained unaltered, there was a decrease in arachidonic acid (20:4n-6) in FFA, TAG, and PC (P < 0.05 for all) in NASH. Eicosapentanoic acid (20:5n-3) and docosahexanoic acid (22:6n-3) were decreased in TAG in NASH. The n-6:n-3 FFA ratio increased in NASH (P < 0.05). CONCLUSIONS: NAFLD is associated with numerous changes in the lipid composition of the liver. The potential implications are discussed.  相似文献   

17.
The objective of this study was to investigate the effect of long-term melatonin administration on plasma levels of triglycerides, insulin and leptin, and on the fatty-acid metabolism of plasma and hepatic lipids in type 2 diabetic rats. Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of type 2 diabetes mellitus, were divided into two groups: one untreated (n=6), and one implanted with time-releasing melatonin pellets (1.1 mg/day for 30 wk) under the abdominal skin (n=6). Age-matched Long-Evans Tokushima Otsuka (LETO) rats (n=6) were used as healthy controls. The untreated diabetic rats had the increased plasma levels of triglycerides, cholesterol, insulin and leptin at 35 wk, as compared with the healthy control rats (n=6). The diabetic rats also had augmented ratios of 20:3n-6/20:4n-6 fatty acids, owing to diminished activity of Delta-5 desaturase, an insulin-permissive enzyme, in the liver. Melatonin administration to OLETF rats reduced the hypertriglyceridemia (-39%, P < 0.05), hyperinsulinemia (-33%, P < 0.01) and hyperleptinemia (-43%, P < 0.01), and restored hepatic Delta-5 desaturase activity (148%, P < 0.005). This resulted in a return to normal ratios of 20:3n-6/20:4n-6 fatty acids in plasma and hepatic lipids. There was a significant correlation (r=0.64, P < 0.005) between plasma levels of insulin and the ratios of 20:3n-6/20:4n-6 in plasma phospholipids of all rats in the three groups. Thus, subcutaneous implantation of a melatonin-releasing pellet thus resulted in improved lipid metabolism in diabetic rats, probably through restored insulin resistance.  相似文献   

18.
A. Makino  K. Kamata 《Diabetologia》1998,41(12):1410-1418
Summary We hypothesized that in diabetes arterial reactivity to constrictors is attenuated by certain endothelium-derived substances. We examined the vasoconstriction induced by methoxamine (α1-agonist) in isolated mesenteric arterial beds from streptozotocin (STZ)-induced diabetic rats and age-matched control rats. The dose-response curve for methoxamine was shifted to the right and the maximum contractile response was impaired in mesenteric arterial beds from diabetic rats. The methoxamine vasoconstriction was reduced in endothelium-denuded preparations from controls rats, but increased in those from diabetic rats. Treatment with the nitric oxide synthase inhibitor NG-nitro-L-arginine enhanced the vasoconstrictions induced by methoxamine in both control and diabetic rats. Indomethacin had no effect on the methoxamine vasoconstriction in control rats, but it shifted the dose-response curve to the left in diabetic rats. Whether given with or without indomethacin, BQ-123, (an ETA-receptor antagonist) plus BQ-788 (an ETB-receptor antagonist) shifted the dose-response curve for methoxamine to the right in control rats (while reducing the maximum response) but to the left in diabetic rats. The methoxamine-stimulated release of 6-keto-prostaglandin F1α from the mesenteric arterial bed in diabetic rats was approximately four times that seen in the control rats, while the methoxamine-induced release of thromboxane B2 (TXB2), a metabolite of thromboxane A2 (TXA2), was less in diabetic rats than in the control animals. These results suggest that an increased production of prostaglandin I2 (PGI2) and decreased formation of TXA2 could be responsible for the attenuation of the methoxamine-induced mesenteric vasoconstriction seen in diabetic rats, and these changes in the diabetic state could be partly responsible for the lower blood pressure seen in our diabetic rats. [Diabetologia (1998) 41: 1410–1418] Received: 2 March 1998 and in final revised form: 10 August 1998  相似文献   

19.
OBJECTIVE: We investigated the role of dietary n-3 polyunsaturated fatty acids (n-3 PUFA) in the modulation of total antioxidant status in streptozotocin (STZ)-induced diabetic rats and their macrosomic offspring. DESIGN: Female wistar rats, fed on control diet or n-3 PUFA diet, were rendered diabetic by administration of five mild doses of STZ on day 5 and were killed on days 12 and 21 of gestation. The macrosomic (MAC) pups were killed at the age of 60 and 90 days. MEASUREMENTS: Lipid peroxidation was measured as the concentrations of plasma thiobarbituric acid reactive substances (TBARS), and the total antioxidant status was determined by measuring (i) plasma oxygen radical absorbance capacity (ORAC), (ii) plasma vitamin A, E and C concentrations, and (iii) antioxidant enzymes activities in erythrocytes. The plasma lipid concentrations and fatty acid composition were also determined. RESULTS: Diabetes increased plasma triglyceride and cholesterol concentrations, whereas macrosomia was associated with enhanced plasma cholesterol and triglyceride levels, which diminished by feeding n-3 PUFA diet. N-3 PUFA diet also reduced increased plasma TBARS and corrected the decreased ORAC values in diabetic rats and their macrosomic offspring. EPAX diet increased the diminished vitamin A levels in diabetic mothers and vitamin C concentrations in macrosomic pups. Also, this diet improved the decreased erythrocyte superoxide dismutase and glutathione peroxidase activities in diabetic and macrosomic animals. CONCLUSION: Diabetes and macrosomia were associated with altered lipid metabolism, antioxidant enzyme activities and vitamin concentrations. N-3 PUFA diet improved hyperlipidemia and restored antioxidant status in diabetic dams and MAC offspring.  相似文献   

20.
Monocrotaline pyrrole (MCTP) causes pulmonary endothelial cell injury and pulmonary hypertension in rats. Damage to endothelial cells in culture has been associated with altered prostacyclin (PGI2) production; therefore, it was of interest to determine if MCTP affected pulmonary PGI2 production. Release of the stable metabolites of PGI2 and thromboxane A2, 6-keto prostaglandin F1 alpha (6-keto PGF1 alpha) and thromboxane B2 (TxB2), respectively, was examined in isolated, buffer-perfused lungs from MCTP-treated rats at times when elevated pulmonary arterial pressure is first observed (day 7) and when the pulmonary hypertensive state has existed for some time (day 14), 6-keto PGF1 alpha release was not affected by MCTP treatment 7 or 14 days after a single intravenous injection of MCTP. TxB2 release was also unaffected at day 7, however 14 days after treatment TxB2 release was greater in lungs from MCTP-treated rats compared to controls. The concentration of both 6-keto PGF1 alpha and TxB2 increased when arachidonic acid was infused into lungs from control or treated rats. These data indicate that MCTP treatment increases the release of TxB2 from isolated lungs at a time when pulmonary hypertension is well-established, but not during early development of pulmonary hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号