首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
X-linked adrenoleukodystrophy (X-ALD) is an inherited neurometabolic disorder associated with elevated levels of saturated unbranched very-long-chain fatty acids (VLCFA; C > 22:0) in plasma and tissues, and reduced VLCFA beta-oxidation in fibroblasts, white blood cells, and amniocytes from X-ALD patients. The X-ALD gene (ABCD1) at Xq28 encodes the adrenoleukodystrophy protein (ALDP) that is related to the peroxisomal ATP-binding cassette (ABCD) transmembrane half-transporter proteins. The function of ALDP is unknown and its role in VLCFA accumulation unresolved. Previously, our laboratory has shown that sodium 4-phenylbutyrate (4PBA) treatment of X-ALD fibroblasts results in increased peroxisomal VLCFA beta-oxidation activity and increased expression of the X-ALD-related protein, ALDRP, encoded by the ABCD2 gene. In this study, the effect of various pharmacological agents on VLCFA beta-oxidation in ALD mouse fibroblasts is tested. 4PBA, styrylacetate and benzyloxyacetate (structurally related to 4PBA), and trichostatin A (functionally related to 4PBA) increase both VLCFA (peroxisomal) and long-chain fatty acid [LCFA (peroxisomal and mitochondrial)] beta-oxidation. Isobutyrate, zaprinast, hydroxyurea, and 5-azacytidine had no effect on VLCFA or LCFA beta-oxidation. Lovastatin had no effect on fatty acid beta-oxidation under normal tissue culture conditions but did result in an increase in both VLCFA and LCFA beta-oxidation when ALD mouse fibroblasts were cultured in the absence of cholesterol. The effect of trichostatin A on peroxisomal VLCFA beta-oxidation is shown to be independent of an increase in ALDRP expression, suggesting that correction of the biochemical abnormality in X-ALD is not dependent on pharmacological induction of a redundant gene (ABCD2). These studies contribute to a better understanding of the role of ALDP in VLCFA accumulation and may lead to the development of more effective pharmacological therapies.  相似文献   

2.
Inherited defects in the peroxisomal ATP-binding cassette (ABC) transporter adrenoleukodystrophy protein (ALDP) lead to the lethal peroxisomal disorder X-linked adrenoleukodystrophy (X-ALD), for which no efficient treatment has been established so far. Three other peroxisomal ABC transporters currently are known: adrenoleukodystrophy-related protein (ALDRP), 70 kDa peroxisomal membrane protein (PMP70) and PMP70- related protein. By using transient and stable overexpression of human cDNAs encoding ALDP and its closest relative ALDRP, we could restore the impaired peroxisomal beta-oxidation in fibroblasts of X-ALD patients. The pathognomonic accumulation of very long chain fatty acids could also be prevented by overexpression of ALDRP in immortalized X-ALD cells. Immunofluorescence analysis demonstrated that the functional replacement of ALDP by ALDRP was not due to stabilization of the mutated ALDP itself. Moreover, we were able to restore the peroxisomal beta-oxidation defect in the liver of ALDP-deficient mice by stimulation of ALDRP and PMP70 gene expression through a dietary treatment with the peroxisome proliferator fenofibrate. These results suggest that a correction of the biochemical defect in X-ALD could be possible by drug-induced overexpression or ectopic expression of ALDRP.  相似文献   

3.
Impaired peroxisomal beta-oxidation of saturated very long chain fatty acids (VLCFA, >/=C22:0) results in increased VLCFA levels in the tissues and body fluids of patients with disorders of peroxisomal biogenesis (i.e., Zellweger syndrome and neonatal adrenoleukodystrophy) and single peroxisomal protein defects (i.e., X-linked adrenoleukodystrophy (X-ALD) and acyl-CoA oxidase deficiency). We show that SV40T transformation also results in impaired peroxisomal beta-oxidation and VLCFA accumulation despite the presence of abundant peroxisomes. To explore the mechanism responsible for this observation, we have examined expression of key components of peroxisomal VLCFA beta-oxidation. We found that expression of both acyl-CoA oxidase, the rate limiting enzyme of peroxisomal VLCFA beta-oxidation and the adrenoleukodystrophy protein (ALDP), the defective gene product in X-ALD, are reduced after SV40T transformation. Surprisingly, ALDP overexpression by itself restores peroxisomal VLCFA beta-oxidation in SV40T-transformed control and X-ALD cells. These results demonstrate that ALDP is a fundamental component in VLCFA peroxisomal beta-oxidation and may serve as a "gatekeeper" for VLCFA homeostasis.  相似文献   

4.
X-Linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by reduced peroxisomal very long chain fatty acid (VLCFA) beta-oxidation. The X - ALD gene product (ALDP) is a peroxisomal transmembrane protein with an ATP binding cassette (ABC). ALDP and three other ABC proteins (PMP70, ALDR, P70R) localize to the peroxisomal membrane. The function of this family of peroxisomal membrane proteins is unknown. We used complementation studies to begin analysis of their role in VLCFA beta-oxidation and on the peroxisomal membrane. Expression of either ALDP or PMP70 restores VLCFA beta- oxidation in X-ALD fibroblasts, indicating overlapping functions. Their expression also restores peroxisome biogenesis in cells that are deficient in the peroxisomal membrane protein Pex2p. Thus it is likely that complex protein interactions are involved in the function and biogenesis of peroxisomal membranes that may contribute to disease heterogeneity.   相似文献   

5.
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene that encodes a peroxisomal membrane located ABC half-transporter named ALDP. Mutations in ALDP result in elevated levels of very long-chain fatty acids (VLCFA) and reduced VLCFA beta-oxidation in peroxisomes. The peroxisomal membrane harbors three additional closely related ABC half-transporters, ALDRP, PMP70 and PMP69 (PMP70R). ABC half-transporters must dimerize to form a functional full-transporter. Whether ALDP forms a homodimer or a heterodimer has not yet been resolved, but most indirect evidence favors homodimerization. The peroxisomal ABC half-transporters are functionally related. Over-expression of ALDRP can correct the biochemical defect both in X-ALD patients cells and the Abcd1 knockout mouse, providing an exciting new possibility for treatment of X-ALD patients. This paper provides an overview of current knowledge and the problems that have been encountered.  相似文献   

6.
The adrenoleukodystrophy protein (ALDP) is a half-ABC (ATP-binding cassette) transporter localized in the peroxisomal membrane. Dysfunction of this protein is the cause of the human genetic disorder X-linked adrenoleukodystrophy (X-ALD), which is characterized by accumulation of saturated, very-long-chain fatty acids (VLCFAs). This observation suggests that ALDP is involved in the metabolism of these compounds. Whether ALDP transports VLCFAs or their derivatives across the peroxisomal membrane or some cofactors essential for the efficient peroxisomal -oxidation of these fatty acids is still unknown. In this work, we used a protease-based approach to search for substrate-induced conformational alterations on ALDP. Our results suggest that ALDP is directly involved in the transport of long- and very-long-chain acyl-CoAs across the peroxisomal membrane.  相似文献   

7.
X-linked adrenoleukodystrophy (X-ALD) is a progressive neurodegenerative disorder characterized by the accumulation of saturated and mono-unsaturated very long-chain fatty acids (VLCFA) and reduced peroxisomal VLCFA beta-oxidation activity. In this study, we investigated the role of VLCFA biosynthesis in X-ALD fibroblasts. Our data demonstrate that elongation of both saturated and mono-unsaturated VLCFAs is enhanced in fibroblasts from patients with peroxisomal beta-oxidation defects including X-ALD, and peroxisome biogenesis disorders. These data indicate that enhanced VLCFA elongation is a general phenomenon associated with an impairment in peroxisomal beta-oxidation, and not specific for X-ALD alone. Analysis of plasma samples from patients with X-ALD and different peroxisomal beta-oxidation deficiencies revealed increased concentrations of VLCFAs up to 32 carbons. We infer that enhanced elongation does not result from impaired peroxisomal beta-oxidation alone, but is due to the additional effect of unchecked chain elongation. We demonstrate that elongated VLCFAs are incorporated into complex lipids. The role of chain elongation was also studied retrospectively in samples from patients with X-ALD previously treated with "Lorenzo's oil." We found that the decrease in plasma C26:0 previously found is offset by the increase of mono-unsaturated VLCFAs, not measured previously during the trial. We conclude that evaluation of treatment protocols for disorders of peroxisomal beta-oxidation making use of plasma samples should include the measurement of saturated and unsaturated VLCFAs of chain lengths above 26 carbon atoms. We also conclude that chain elongation offers an interesting target to be studied as a possible mode of treatment for X-ALD and other peroxisomal beta-oxidation disorders.  相似文献   

8.
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative and endocrine disorder resulting from mutations in ABCD1 which encodes a peroxisomal membrane protein in the ATP binding cassette superfamily. The biochemical signature of X-ALD is increased levels of saturated very long-chain fatty acids (VLCFA; carbon chains of 22 or more) in tissues and plasma that has been associated with decreased peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity and decreased peroxisomal VLCFA beta-oxidation. It has been hypothesized that ABCD1, which has no demonstrable VLCS activity itself, has an indirect effect on peroxisomal VLCS activity and VLCFA beta-oxidation by transporting fatty acid substrates, VLCS protein or some required co-factor into peroxisomes. Here we report the characterization of a Vlcs knockout mouse that exhibits decreased peroxisomal VLCS activity and VLCFA beta-oxidation but does not accumulate VLCFA. The XALD/Vlcs double knockout mouse has the biochemical abnormalities observed in the individual knockout mice but does not display a more severe X-ALD phenotype. These data lead us to conclude that (1) VLCFA levels are independent of peroxisomal fatty acid beta-oxidation, (2) there is no ABCD1/VLCS interaction and (3) the common severe forms of X-ALD cannot be modeled by decreasing peroxisomal VLCS activity in the XALD mouse.  相似文献   

9.
X-linked adrenoleukodystrophy: role of very long-chain acyl-CoA synthetases   总被引:3,自引:0,他引:3  
The principal biochemical abnormality in the neurodegenerative disorder X-linked adrenoleukodystrophy (X-ALD) is elevated plasma and tissue levels of very long-chain fatty acids (VLCFA). Enzymes with very long-chain acyl-CoA synthetase (VLACS) activity are required for VLCFA metabolism, including degradation by peroxisomal beta-oxidation or incorporation into complex lipids, and may also participate in VLCFA synthesis. Two enzymes with VLACS activity, ACSVL1 and BG1, were investigated for their potential role in X-ALD biochemical pathology. Skin fibroblast mRNA levels for ACSVL1, an enzyme previously shown to be in peroxisomes and to participate in VLCFA beta-oxidation, were not significantly different between normal controls, patients with childhood cerebral X-ALD, and patients with adrenomyeloneuropathy. Similar results were obtained with mRNA for BG1, a non-peroxisomal enzyme that is highly expressed in nervous system, adrenal gland, and testis, the principal tissues pathologically affected in X-ALD. No significant differences in the immunohistochemical staining patterns of tissues expressing either ACSVL1 or BG1 were observed when wild-type and X-ALD mice were compared. Western blot analysis of BG1 protein levels showed no differences between fibroblasts from controls, cerebral X-ALD, or adrenomyeloneuropathy patients. BG1 protein levels were similar in wild-type and X-ALD mouse brain, spinal cord, testis, and adrenal gland. We hypothesized that one function of BG1 was to direct VLCFA into the cholesterol ester synthesis pathway. However, BG1 depletion in Neuro2a cells using RNA interference did not decrease incorporation of labeled VLCFA into cholesterol esters. We conclude that the role, if any, of ACSVL1 and BG1 in X-ALD biochemical pathology is indirect.  相似文献   

10.
11.
X-linked adrenoleukodystrophy is a serious and often fatal disorder, affecting the white matter of the nervous system, the adrenal cortex, and the testis. The gene mutated in X-ALD encodes a peroxisomal membrane protein, ALDP. The presence of very long chain fatty acids in plasma is highly diagnostic for affected males and carrier females, but exclusion of carrier status biochemically is unreliable. Molecular analysis of the X-ALD gene has the potential to either identify or rule out carrier status accurately, but is complicated by the existence of autosomal paralogs. We have developed and validated a robust DNA diagnostic test for this disorder involving nonnested genomic amplification of the X-ALD gene, followed by fluorescent dye-primer sequencing and analysis. This protocol provides a highly reliable means of determining carrier status in women at risk for transmitting X-ALD and is applicable to a clinical diagnostic laboratory.  相似文献   

12.
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder caused by an impairment in peroxisomal β-oxidation of very long straight-chain fatty acids (VLCFAs). Six clinical phenotypes have been delineated: childhood cerebral (CCALD), adolescent cerebral (AdolCALD), adult cerebral (ACALD), adrenomyeloneuropathy (AMN), Addison-only (AO), and presymptomatic (PALD). The distribution of phenotypes varies in different countries. We have diagnosed biochemically 60 X-ALD Spanish patients belonging to 48 kindreds. Their phenotypic distribution was: CCALD plus AdolCALD, 33%; ACALD, 16%; AMN, 27%; AO, 12%; and PALD, 12%. These results contrast with the distribution described in other countries, due to a higher prevalence of the ACALD form. Regarding the expression of the protein product (ALDP), we studied 17 kindreds using immunochemical techniques and found absence of ALDP in 84% of cases. We also studied 13 females from 7 negative ALDP kindreds in order to correlate ALDP expression and the carrier status established by VLCFA measurement. In one case with normal VLCFA levels in serum and fibroblasts, we observed mosaicism in ALDP expression. This fact supports the use of this technique for identifying carriers. Am. J. Med. Genet. 76:424–427, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
A. Poulos    H. Singh    B. Paton    P. Sharp  N. Derwas 《Clinical genetics》1986,29(5):397-408
The accumulation of very long chain fatty acids in plasma and skin fibroblasts was measured in at least four separate inherited disease states. Both the magnitude and the nature of the fatty acid changes reflected the clinical status of individual patients. In Zellweger's syndrome, and to a lesser extent in infantile Refsum's disease, there was an increase in 24:0, 26:0, 26:1, and a number of even longer chain fatty acids, while in the X-linked form of adrenoleukodystrophy these changes were less pronounced. Zellweger fibroblasts in culture took up lignoceric, phytanic and stearic acids and incorporated them into a variety of lipids in a manner comparable to control fibroblasts. However, these cells were unable to convert phytanic or lignoceric acid to CO2. Infantile Refsum's and X-linked adrenoleukodystrophy fibroblasts showed normal conversion of these acids to CO2. Normal fibroblast homogenates produced radioactive acetate from [1-14C] stearic and [1-14C] lignoceric acids indicating that both substrates were beta-oxidised under these conditions. Homogenates of fibroblasts from all patients patients with biochemical evidence of accumulation of very long chain fatty acids showed normal or near-normal stearic acid beta-oxidation, but were deficient in lignoceric acid beta-oxidation. Residual lignoceric acid beta-oxidation activity varied from approximately 15% in Zellweger syndrome up to 50% in X-linked adrenoleukodystrophy. It is postulated that the accumulation of very long chain fatty acids results from defects in peroxisomal beta-oxidation. In Zellweger's syndrome, and possibly in infantile Refsum's disease, it is probable that this defect is secondary to a primary abnormality affecting the structure and/or function of peroxisomes, while the primary defect in X-linked adrenoleukodystrophy may be confined to a pathway specific for the oxidation of very long chain fatty acids.  相似文献   

14.
X-linked adrenoleukodystrophy (X-ALD) is an inherited neurodegenerative disease that affects approximately 1 in 25 000 males. It is characterized by elevated levels of saturated very long chain fatty acids (VLCFA), i.e., >C22:0, particularly in ganglioside and cholesterol ester fractions of brain white matter and adrenal cortex. Failure of peroxisomal very long chain fatty acyl-CoA synthetase (VLCS) to activate these VLCFA prevents their degradation by peroxisomal beta-oxidation. X-ALD maps to Xq28 and the gene encodes a peroxisomal membrane protein and not the gene for VLCS. The two most common forms of X-ALD are the cerebral (CER) form, with an inflammatory demyelinating reaction that resembles multiple sclerosis (MS), and adrenomyeloneuropathy (AMN), which involves the spinal cord and in which the inflammatory reaction is mild or absent. Investigations into the nature of the cerebral inflammatory demyelinating reaction in X-ALD will be the subject of this review.  相似文献   

15.
X-linked adrenoleukodystrophy (X-ALD, OMIM 300100) is a severe inherited neurodegenerative disease, associated with the accumulation of very long-chain fatty acids (VLCFA). The recent unexpected observation that the accumulation of VLCFA in tissues of the Abcd1-deficient mouse model for X-ALD is not due to a deficiency in VLCFA degradation, led to the hypothesis that mitochondrial abnormalities might contribute to X-ALD pathology. Here, we report that in spite of substantial accumulation of VLCFA in whole muscle homogenates, normal VLCFA levels were detected in mitochondria obtained by organellar fractionation. Polarographic analyses of the respiratory chain as well as enzymatic assays of isolated muscle mitochondria revealed no differences between X-ALD and control mice. Moreover, analysis by electron microscopy, revealed normal size, structure and localization of mitochondria in muscle of both groups. Similar to the results obtained in skeletal muscle, the mitochondrial enzyme activities in brain homogenates of Abcd1-deficient and wild-type animals also did not differ. Finally, studies on mitochondrial oxidative phosphorylation in permeabilized human skin fibroblasts of X-ALD patients and controls revealed no abnormalities. Thus, we conclude that the accumulation of VLCFA per se does not cause mitochondrial abnormalities and vice versa-mitochondrial abnormalities are not responsible for the accumulation of VLCFA in X-ALD mice.  相似文献   

16.
X‐linked adrenoleukodystrophy (X‐ALD) is the most common peroxisomal disorder. The disease is characterized by the accumulation of very long‐chain fatty acids (VLCFA; >C22) in plasma and tissues. X‐ALD is caused by mutations in the ABCD1 gene encoding ALDP, an adenosine triphosphate (ATP)‐binding‐cassette (ABC) transporter located in the peroxisomal membrane. In this paper, we describe the current knowledge on the function of ALDP, its role in peroxisomal VLCFA beta‐oxidation and the consequences of a defect in ALDP on VLCFA metabolism. Furthermore, we pay special attention to the role of the VLCFA elongation system in VLCFA homeostasis, with elongation of very long‐chain fatty acids like‐1 (ELOVL1) as key player, and its relevance to X‐ALD.  相似文献   

17.
X-linked Adrenoleukodystrophy (X-ALD) is the most frequent peroxisomal disease. It mainly involves the nervous system white matter, adrenal cortex and testes. Several distinct clinical phenotypes are known. The principal biochemical abnormality is the accumulation of saturated very-long-chain fatty acids (VLCFAs : > C22:0, mainly C26:0), which is due to impaired capacity for beta-oxidation in peroxisomes. Diagnosis is usually based on the VLCFA levels in plasma or cultured skin fibroblasts in both patients and carriers. In 0.1% of affected males, however, the plasma C26:0 level is borderline normal, and 15% of obligate female carriers have normal results. Effective mutation detection in these families is therefore fundamental to unambiguously determine the genetic status of each individual at risk. Of particular concern are female members of kindreds segregating X-ALD mutations, because normal VLCFA levels do not guarantee lack of carrier status. We describe a fast method for detection of X-ALD mutations. The method is based on SSCP analysis of nested PCR fragments followed by sequence-determination reactions. Using this methodology we have found X-ALD mutations in 30 kindreds, including 15 not previously reported.  相似文献   

18.
X-连锁肾上腺脑白质营养不良产前诊断探讨   总被引:2,自引:0,他引:2  
目的探讨X-连锁肾上腺脑白质营养不良(adrenoleukodystrophy,ALD)产前诊断的方法。方法应用气相色谱-质谱联用法对17例ALD高危孕妇进行了18次羊水细胞中极长链脂肪酸(very long chain fatty acids,VLCFAs)水平测定,其中8例胎儿出生后或引产后进行了血浆VLCFAs水平检测。应用PCR和测序方法对8例胎儿羊水细胞或生后外周血细胞DNA进行了基因突变分析(其中4例羊水细胞VLCFAs水平增高,4例VLCFAs正常)。应用Western杂交对同一家系的两例胎儿羊水细胞进行了ALD蛋白(ALD protein,ALDP)的检测(两例胎儿VLCFAs均增高,1例女性,1例男性)。结果18例胎儿中,11例羊水细胞VLCFAs水平正常,7例增高(3例男性,4例女性)。8例胎儿出生后或引产后血浆VLCFAs水平检测,3例增高,5例正常,与产前诊断结果相一致。其中4例羊水细胞VLCFAs水平增高的胎儿,均有ABCD1基因突变,4例羊水细胞VLCFAs水平正常者,均未发现突变。VLCFAs增高的男性胎儿,未检测到ALDP,VLCFAs增高的女性胎儿,可检测到ALDP。结论羊水细胞中VLCFAs水平检测可以准确地进行X-ALD产前诊断,结合基因突变分析及ALDP的测定,可进一步保证产前诊断的准确性。  相似文献   

19.
X-linked adrenoleukodystrophy (X-ALD) is a progressive demyelinating disorder whose neurological signs and symptoms can manifest in childhood as cerebral ALD or in adulthood in the form of a progressive myelopathy (AMN). The consistent metabolic abnormality in all forms of X-ALD is an inherited defect in the peroxisomal beta-oxidation of very long chain (VLC) fatty acids (>C(22:0)) which may in turn lead to a neuroinflammatory process associated with demyelination of the cerebral white matter. The current treatment for X-ALD with Lorenzo's oil aims to lower the excessive quantities of VLC fatty acids that accumulate in the patients' plasma and tissues, but does not directly address the inflammatory process in X-ALD. We have previously demonstrated that lovastatin and other 3-HMG-CoA reductase inhibitors are capable of normalizing VLC fatty acid levels in primary skin fibroblasts derived from X-ALD patients. Lovastatin can block the induction of inducible nitric oxide synthase and proinflammatory cytokines in astrocytes, microglia, and macrophages in vitro. In a preliminary report, we demonstrated that lovastatin therapy can normalize VLC fatty acids in the plasma of patients with X-ALD. Here we report our clinical and biochemical observations on 12 patients with X-ALD who were treated with lovastatin for up to 12 months. Our results show that the high plasma levels of hexacosanoic acid (C(26:0)) showed a decline from pretreatment values within 1 to 3 months of starting therapy with 40 mg of lovastatin per day and stabilized at various levels during a period of observation up to 12 months. The percentage decline from pretreatment values varied and did not correlate with the type of ALD gene mutation (point mutation versus gene deletion). In 6 patients, in whom red cell membrane fatty acid composition was studied, a mean correction of 50% of the excess C(26:0) was observed after 6 months of therapy suggesting sustained benefit. In a few patients who discontinued lovastatin therapy plasma C(26:0) levels reverted to pretreatment values suggesting a cause and effect relationship between these events. Two patients dropped out of the study claiming no clinical benefit, 1 was withdrawn due to adverse effects, and an adult patient with cerebral involvement died during the study. A 10-year-old boy with severe cerebral involvement showed worsening of his neurological status. All patients with AMN remained neurologically stable or showed modest subjective improvement. All patients who did not have Addison's disease at the time of enrollment maintained normal adrenal function throughout the study. The implications of our findings for developing an effective therapy for X-ALD are discussed.  相似文献   

20.
Adrenoleukodystrophy is a severe genetic demye-llnating diseaseassociated with an impairment of ß-oxidation of verylong chain fatty acids (VLCFA) In peroxisomes. Earlier studieshad suggested that a deficiency in VLCFA CoA synthetase wasthe primary defect. A candidate adrenoleukodystrophy gene hasrecently been cloned and was found unexpectedly to encode aputative ATP-binding cassette transporter. We have raised monoclonalantibodies against this protein, that detect a 75kDa band. Thisprotein was absent in several patients with adrenoleukodystrophy.Immunofluorescence and Immunoelectron microscopy showed thatthe adrenoleukodystrophy protein (ALDP) is associated with theperoxisomal membrane. Distinct Immunofluorescence patterns wereobserved in cell lines from patients with Zellweger syndrome(a peroxisomal biogenesis disorder) belonging to different complementationgroups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号