首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we demonstrated that the heptapeptide angiotensin-(1-7) (Ang-[1-7]) exhibits a favorable kinetic of nitric oxide (NO) release accompanied by extremely low superoxide (O2-) production. In this report we describe AVE 0991, a novel nonpeptide compound that evoked effects similar to Ang-(1-7) on the endothelium. AVE 0991 and unlabeled Ang-(1-7) competed for high-affinity binding of [125I]-Ang-(1-7) to bovine aortic endothelial cell membranes with IC50 values of 21+/-35 and 220+/-280 nmol/L, respectively. Stimulated NO and O2- release from bovine aortic endothelial cells was directly and simultaneously measured on the cell surface by selective electrochemical nanosensors. Peak concentrations of NO and O2- release by AVE 0991 and Ang-(1-7) (both 10 micromol/L) were not significantly different (NO: 295+/-20 and 270+/-25 nmol/L; O2-: 18+/-2 and 20+/-4 nmol/L). However, the released amount of bioactive NO was approximately 5 times higher for AVE 0991 in comparison to Ang-(1-7). The selective Ang-(1-7) antagonist [D-Ala(7)]-Ang-(1-7) inhibited the AVE 0991-induced NO and O2- production by approximately 50%. A similar inhibition level was observed for the Ang II AT1 receptor antagonist EXP 3174. In contrast, the Ang II AT2 receptor antagonist PD 123,177 inhibited the AVE 0991-stimulated NO production by approximately 90% but without any inhibitory effect on O2- production. Both NO and O2- production were inhibited by NO synthase inhibition ( approximately 70%) and by bradykinin B2 receptor blockade (approximately 80%). AVE 0991 efficiently mimics the effects of Ang-(1-7) on the endothelium, most probably through stimulation of a specific, endothelial Ang-(1-7)-sensitive binding site causing kinin-mediated activation of endothelial NO synthase.  相似文献   

2.
The aim of this study was to evaluate the angiotensin (Ang)-(1-7) effects in isolated mouse hearts. The hearts of male C57BL/6J and knockout mice for the Ang-(1-7) receptor Mas were perfused by the Langendorff method. After a basal period, the hearts were perfused for 20 minutes with Krebs-Ringer solution (KRS) alone (control) or KRS containing Ang-(1-7) (0.22 pmol/L), the Mas antagonist A-779 (115 nmol/L), the angiotensin type 1 receptor antagonist losartan (2.2 micromol/L), or the angiotensin type 2 receptor antagonist PD123319 (130 nmol/L). To evaluate the involvement of Ang receptors, prostaglandins, and nitric oxide in the Ang-(1-7) effects, the hearts were perfused for 20 to 30 minutes with KRS containing either A-779, losartan, PD123319, indomethacin, or NG-nitro-L-arginine methyl ester (L-NAME) alone or in association with subsequent Ang-(1-7) perfusion. In addition, hearts from Mas-knockout mice were perfused for 20 minutes with KRS containing Ang-(1-7) (0.22 pmol/L) and losartan. Ang-(1-7) alone did not change the perfusion pressure. Strikingly, in the presence of losartan, 0.22 pmol/L Ang-(1-7) induced a significant decrease in perfusion pressure, which was blocked by A-779, indomethacin, and L-NAME. Furthermore, this effect was not observed in Mas-knockout mice. In contrast, in the presence of PD123319, Ang-(1-7) produced a significant increase in perfusion pressure. This change was not modified by the addition of A-779. Losartan reduced but did not abolish this effect. Our results suggest that Ang-(1-7) produces complex vascular effects in isolated, perfused mouse hearts involving interaction of its receptor with angiotensin type 1- and type 2-related mechanisms, leading to the release of prostaglandins and nitric oxide.  相似文献   

3.
The antihypertrophic action of angiotensin (Ang)-converting enzyme (ACE) inhibitors in the heart is attributed in part to potentiation of bradykinin. Bradykinin prevents hypertrophy of cultured cardiomyocytes by releasing nitric oxide (NO) from endothelial cells, which increases cardiomyocyte guanosine 3'5'-cyclic monophosphate (cyclic GMP). It is unknown whether cyclic GMP is essential for the action of bradykinin, or whether findings in isolated cardiomyocytes apply in whole hearts, in the presence of other cell types and mechanical/dynamic activity. We now examine the contribution of cyclic GMP to the antihypertrophic action of bradykinin in cardiomyocytes and perfused hearts. In adult rat isolated cardiomyocytes cocultured with bovine aortic endothelial cells, the inhibitory action of bradykinin (10 micromol/L) against Ang II (1 micromol/L)-induced [3H]phenylalanine incorporation was abolished by the soluble guanylyl cyclase inhibitor [1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (10 micromol/L). In Langendorff-perfused rat hearts, Ang II (10 nmol/L)-induced increases in [3H]phenylalanine incorporation and atrial natriuretic peptide mRNA expression were prevented by bradykinin (100 nmol/L), the NO donor sodium nitroprusside (3 micromol/L), and the ACE inhibitor ramiprilat (100 nmol/L). The acute antihypertrophic action of bradykinin was accompanied by increased left ventricular cyclic GMP, and the ramiprilat effect was attenuated by HOE 140 (1 micromol/L, a B2-kinin receptor antagonist) or [1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (100 nmol/L). In conclusion, bradykinin exerts a direct inhibitory action against the acute hypertrophic response to Ang II in rat isolated hearts, and elevation of cardiomyocyte cyclic GMP may be an important antihypertrophic mechanism used by bradykinin and ramiprilat in the heart.  相似文献   

4.
Release of norepinephrine (NE) by the hypothalamic nuclei may contribute to regulation of sympathetic nervous system (SNS) activity. Angiotensin-(1-7) [Ang-(1-7)] has an antihypertensive effect and may decrease SNS activity. We tested the hypothesis that Ang-(1-7) inhibits the release of NE in hypothalami, via the Ang-(1-7) and angiotensin II type 2 (AT2) receptors, acting through a bradykinin (BK)/NO-dependent mechanism. Hypothalami from normotensive controls and spontaneously hypertensive rats (SHR) were isolated and endogenous NE stores labeled by incubating the tissues with [3H]NE. [3H]NE release from the hypothalami was stimulated by KCl in the presence or absence of Ang-(1-7) alone or combined with various antagonists and inhibitors. Ang-(1-7) significantly attenuated K+-induced NE release by hypothalami from normotensive rats but was more potent in SHR. The Ang-(1-7) receptor antagonist [D-Ala7]Ang-(1-7), the AT2 receptor antagonist PD 123319, and the BK B2) receptor antagonist icatibant all blocked the inhibitory effect of Ang-(1-7) on K+-stimulated NE release in SHR. The inhibitory effect of Ang-(1-7) disappeared in the presence of the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester and was restored by the precursor of NO, l-arginine. The diminished NE release caused by Ang-(1-7) was blocked by a soluble guanylyl cyclase inhibitor as well as by a cGMP-dependent protein kinase (PKG). We concluded that Ang-(1-7) decreases NE release from the hypothalamus via the Ang-(1-7) or AT2 receptors, acting through a BK/NO-mediated mechanism that stimulates cGMP/PKG signaling. In this way, Ang-(1-7) may decrease SNS activity and exert an antihypertensive effect.  相似文献   

5.
Recent studies have shown that angiotensin-(1-7) (Ang-[1-7]), which is generated endogenously from both Ang I and II, is a bioactive component of the renin-angiotensin system and may play an important role in the regulation of blood pressure. However, little is known about its role in regulating the reactivity of the afferent arteriole or the mechanism(s) involved. We hypothesized that Ang-(1-7), acting on specific receptors, participates in the control of afferent arteriole tone. We first examined the direct effect of Ang-(1-7) on rabbit afferent arterioles microperfused in vitro, and we tested whether endothelium-derived relaxing factor/NO and cyclooxygenase products are involved in its actions. To assess the vasodilator effect of Ang-(1-7), afferent arterioles were preconstricted with norepinephrine, and increasing concentrations of Ang-(1-7) were added to the lumen. We found that 10(-10) to 10(-6) mol/L Ang-(1-7) produced dose-dependent vasodilatation, increasing luminal diameter from 8.9+/-1.0 to 16.3+/-1.1 microm (P<0.006). Indomethacin had no effect on Ang-(1-7)-induced dilatation. N(G)-nitro-L-arginine methyl ester, a NO synthesis inhibitor, abolished the dilatation induced by Ang-(1-7). We attempted to determine which angiotensin receptor subtype is involved in this process. We found that 10(-6) mol/L [d-Ala7]-Ang-(1-7), a potent and selective Ang-(1-7) antagonist, abolished the dilatation induced by Ang-(1-7). An angiotensin II type 1 receptor antagonist (L158809) and an angiotensin II type 2 receptor antagonist (PD 123319) at 10(-6) mol/L had no effect on Ang-(1-7)-induced dilatation. Our results show that Ang-(1-7) causes afferent arteriole dilatation. This effect may be due to production of NO, but not the action of cyclooxygenase products. Ang-(1-7) has a receptor-mediated vasodilator effect on the rabbit afferent arteriole. This effect may be mediated by Ang-(1-7) receptors, because angiotensin type 1 and type 2 receptor antagonists could not block Ang-(1-7)-induced dilatation. Thus, our data suggest that Ang-(1-7)opposes the action of Ang II and plays an important role in the regulation of renal hemodynamics.  相似文献   

6.
Recently we showed that angiotensin (Ang) II potentiates platelet aggregation, while Ang-(1-7) potentiates the anti-aggregatory action of the nitric oxide (NO) donor sodium nitroprusside (SNP), and may therefore counteract platelet NO resistance that accompanies cardiovascular disease and is associated with increased levels of superoxide (O(2)(-)). In the current study, we investigated whether the effect of Ang-(1-7) on platelet NO responsiveness is associated with the modulation of O(2)(-) release and is mediated by a specific Ang-(1-7) receptor. In whole blood, SNP (10 micromol/L) inhibited ADP (2.5 micromol/L)-induced platelet aggregation by 21 +/- 8% (p < 0.02), measured via extent of aggregation. Ang-(1-7) did not directly affect platelet aggregation, but potentiated the inhibitory action of SNP. This effect of Ang-(1-7) was bimodal, with maximal increase in SNP-induced inhibition of aggregation by incremental 18 +/- 2% (2-fold, on average; p<0.01) at 10-100 nmol/L Ang-(1-7) (Cmax), and was abolished at higher concentrations of Ang-(1-7). The Ang-(1-7) receptor antagonist D-ala7-Ang-(1-7) (1 micromol/L) completely eliminated the potentiating effects of Ang-(1-7). Platelet aggregation was accompanied by O(2)(-) release (assessed via lucigenin-derived chemiluminescence). SNP suppressed this O(2)(-) release, and Ang-(1-7) at Cmax augmented (by incremental 23 +/- 8%, p<0.03) the effect of SNP. In order to examine possible association of Ang-(1-7) receptor with platelets, we performed aggregation experiments in platelet-rich plasma. However, in these experiments Ang-(1-7) did not potentiate the anti-aggregatory action of SNP. Furthermore, in isolated polymorphonuclear leukocytes (PMN), a major cellular source of O(2)(-) in blood, Ang-(1-7) did not modify O(2)(-) release (after stimulation with fMLP, PMA or ADP), either in the absence or presence of SNP. Hence, Ang-(1-7) effects occurred only in whole blood. In conclusion, Ang-(1-7) potentiates the anti-aggregatory effects of NO donor, presumably via a specific Ang-(1-7) receptor. This potentiation is associated with the suppression of O(2)(-) release during aggregation and arises via an interaction between platelets and PMN.  相似文献   

7.
OBJECTIVE: The heptapeptide angiotensin-(1-7) [Ang-(1-7)] has been identified as a versatile, endogenous inhibitor of the renin-angiotensin system (RAS). As the therapeutic response to exogenous RAS inhibitors, such as AT1 receptor antagonists, is altered by changes in salt intake, we investigated the effect of a low, normal and high sodium diet on the antagonism of Ang II by Ang-(1-7). The role of angiotensin receptor subtypes and the endothelium was assessed. METHODS: Male Wistar rats received a normal sodium (0.3% NaCl), high sodium (2.0% NaCl) or low sodium (0.05% NaCl) diet for 10 days. Vascular responses were assessed ex vivo in thoracic aortic rings in the presence of the nitric oxide (NO) inhibitor N-monomethyl-l-arginine (l-NMMA) to avoid aspecific vasodilator effects of Ang-(1-7). RESULTS: After a normal or high salt diet, Ang-(1-7) significantly decreased maximal Ang II-induced vascular constrictions by 40-50%. After a low salt diet this non-competitive antagonism disappeared. The AT2 receptor antagonist PD 123319 and the Ang-(1-7) receptor antagonist A779 attenuated the effect of Ang-(1-7) found in rats fed with a normal or high sodium diet. Further, removal of endothelium and pretreatment with the prostaglandin synthesis inhibitor indomethacin (10 mol/l) abolished the non-competitive antagonism by Ang-(1-7). CONCLUSION: Ang-(1-7) elicits a specific, endothelium-dependent and non-competitive antagonism of Ang II, which involves AT2 and Ang-(1-7) receptors but is independent of NO production. This non-competitive antagonism of Ang-(1-7) is abolished by a low sodium intake in normotensive rats, suggesting that it serves as a negative feedback towards Ang II in response to an altered sodium intake.  相似文献   

8.
Over the past two decades, enormous progress has been made in understanding the possible physiological significance of alternate renin-angiotensin system processing pathways and angiotensin fragments, such as angiotensin (Ang)-(1-7). Evidence from in vivo and ex vivo studies in humans and various animal models suggests a possible role for this heptapeptide in blood pressure regulation, although the mechanisms involved are most likely indirect, involving some combination of bradykinin and nitric oxide signaling. In contrast, a growing body of in vivo and in vitro evidence supports direct cardioprotective (antihypertrophic, antifibrotic) actions of Ang-(1-7). Here, we review key studies investigating the blood pressure and tissue-protective roles of Ang-(1-7), and summarize potential genomic and pharmacologic therapeutic strategies previously advanced by our group and others.  相似文献   

9.
It is well established that renin-angiotensin system blockers exert NO/prostacyclin-dependent antithrombotic effects. Because some beneficial effects of these drugs are mediated by angiotensin (Ang)-(1-7), in the present study we examined if their antithrombotic action could be mediated by Ang-(1-7). Intravenous infusion of Ang-(1-7) (1, 10, or 100 pmol/kg per minute for 2 hours) into rats developing venous thrombosis caused 50% to 70% reduction of the thrombus weight. This effect was dose-dependently reversed by cotreatment with A-779 (selective Ang-[1-7] receptor antagonist) or EXP 3174 (angiotensin type 1 receptor antagonist) but not by PD 123,319 (angiotensin type 2 receptor antagonist). Similarly, the antithrombotic effects of captopril (ACE inhibitor) and losartan (angiotensin type 1 receptor blocker) were attenuated by A-779 in a dose-dependent manner. The effect of Ang-(1-7) was completely abolished by concomitant administration of NO synthase inhibitor (N(G)-nitro-L-arginine methyl ester) and prostacyclin synthesis inhibitor (indomethacin), as has been shown previously for captopril and losartan. Thus, the antithrombotic effect of renin-angiotensin system blockers involves Ang-(1-7)-evoked release of NO and prostacyclin.  相似文献   

10.
OBJECTIVE: Angiotensin (Ang) is broken down enzymatically to several different metabolites which, in addition to Ang II, may have important biological effects in the kidney. This study investigates the role of Ang metabolites on vascular resistance and noradrenaline release in the rat kidney. METHODS AND RESULTS: In rat isolated kidney Ang I, Ang II, Ang III, Ang IV and des-Asp-Ang I induced pressor responses and enhanced noradrenaline release to renal nerve stimulation (RNS) in an concentration-dependent manner, with the following rank order of potency (EC(50)): Ang II >or= Ang III > Ang I = des-Asp-Ang I > Ang IV. All effects were blocked by the AT(1)-receptor antagonist EXP 3174 (0.1 micromol/l) but not by the AT(2)-receptor antagonist PD 123319 (1 micromol/l). Angiotensin-converting enzyme (ACE) inhibition by captopril (10 micromol/l) abolished the effect of Ang I and des-Asp-Ang I but had no influence on the effect of the other metabolites. Ang-(1-7) blocked the effects of Ang I and Ang II, being 10 times more potent against Ang I than Ang II. The selective Ang-(1-7) receptor blocker d-Ala7-Ang-(1-7) (10 micromol/l) did not influence the inhibitory effects of Ang-(1-7). Ang-(1-7) (10 micromol/l) by itself had no influence on vascular resistance and RNS-induced noradrenaline release. CONCLUSION: Ang I, Ang II, Ang III, Ang IV and des-Asp-Ang I regulate renal vascular resistance and noradrenaline release by activation of AT(1) receptors. In the case of Ang I and des-Asp-Ang I this depends on conversion by ACE. Ang-(1-7) may act as a potent endogenous inhibitor/antagonist of ACE and the AT(1)-receptors, respectively.  相似文献   

11.
OBJECTIVE: Angiotensin (Ang)-(1-7) generated from Ang I and II is reported to act as an endogenous angiotensin-converting enzyme (ACE) inhibitor and angiotensin type 1 (AT1)-receptor antagonist in vitro and in vivo. Ang-(1-7) has been suggested to play an important role in hypertension. METHODS AND RESULTS: Therefore, we tested whether Ang-(1-7) differentially modulates vascular resistance and neurotransmission in isolated kidneys of spontaneously hypertensive rats stroke prone (SHR-SP) and Wistar-Kyoto rats (WKY). Ang-(1-7) was administered in three concentrations (0.1, 1 and 10 micromol/l) to prevent Ang I- and Ang II-induced pressor responses and facilitation of noradrenaline release. There were indeed concentration-dependent strain differences. Ang-(1-7) prevented Ang I- and Ang II-mediated changes in vascular resistance more potently in SHR-SP than in WKY by inhibiting ACE and by blocking AT1-receptors. Ang-(1-7) by itself had no influence on renal vascular tone in both strains. Ang-(1-7) inhibited Ang I-mediated facilitation of noradrenaline release more potently than Ang II-mediated facilitation of noradrenaline release. Ang-(1-7) by itself enhanced noradrenaline release from SHR-SP, but not from WKY kidneys. CONCLUSION: Ang-(1-7) had a greater impact on Ang I and Ang II modulation of renal vascular resistance in SHR-SP than in normotensive rats. Furthermore, Ang-(1-7) by itself has facilitatory presynaptic effects on noradrenaline release but no postsynaptic effects on renal vascular resistance in SHR-SP. Since plasma levels of Ang-(1-7) accumulate during ACE-inhibitor or AT1-receptor antagonist therapy, Ang-(1-7) could contribute to antihypertensive effects of these agents.  相似文献   

12.
Clark MA  Diz DI  Tallant EA 《Hypertension》2001,37(4):1141-1146
Angiotensin (Ang)-(1-7) is a biologically active peptide of the renin-angiotensin system that has both vasodilatory and antiproliferative activities that are opposite the constrictive and proliferative effects of angiotensin II (Ang II). We studied the actions of Ang-(1-7) on the Ang II type 1 (AT(1)) receptor in cultured rat aortic vascular smooth muscle cells to determine whether the effects of Ang-(1-7) are due to its regulation of the AT(1) receptor. Ang-(1-7) competed poorly for [(125)I]Ang II binding to the AT(1) receptor on vascular smooth muscle cells, with an IC(50) of 2.0 micromol/L compared with 1.9 nmol/L for Ang II. The pretreatment of vascular smooth muscle cells with Ang-(1-7) followed by treatment with acidic glycine to remove surface-bound peptide resulted in a significant decrease in [(125)I]Ang II binding; however, reduced Ang II binding was observed only at micromolar concentrations of Ang-(1-7). Scatchard analysis of vascular smooth muscle cells pretreated with 1 micromol/L Ang-(1-7) showed that the reduction in Ang II binding resulted from a loss of the total number of binding sites [B(max) 437.7+/-261.5 fmol/mg protein in Ang-(1-7)-pretreated cells compared with 607.5+/-301.2 fmol/mg protein in untreated cells, n=5, P<0.05] with no significant effect on the affinity of Ang II for the AT(1) receptor. Pretreatment with the AT(1) receptor antagonist L-158,809 blocked the reduction in [(125)I]Ang II binding by Ang-(1-7) or Ang II. Pretreatment of vascular smooth muscle cells with increasing concentrations of Ang-(1-7) reduced Ang II-stimulated phospholipase C activity; however, the decrease was significant (81.2+/-6.4%, P<0.01, n=5) only at 1 micromol/L Ang-(1-7). These results demonstrate that pharmacological concentrations of Ang-(1-7) in the micromolar range cause a modest downregulation of the AT(1) receptor on vascular cells and a reduction in Ang II-stimulated phospholipase C activity. Because the antiproliferative and vasodilatory effects of Ang-(1-7) are observed at nanomolar concentrations of the heptapeptide, these responses to Ang-(1-7) cannot be explained by competition of Ang-(1-7) at the AT(1) receptor or Ang-(1-7)-mediated downregulation of the vascular AT(1) receptor.  相似文献   

13.
Given that angiotensin-(1-7) (Ang-[1-7]) has been frequently reported to exert direct in vitro vascular effects but less often in vivo, we investigated whether a vasodepressor effect of Ang-(1-7) could be unmasked acutely in conscious spontaneously hypertensive rats (SHR) against a background of angiotensin II type 1 (AT1) receptor blockade. Mean arterial pressure (MAP) and heart rate were measured over a 5-day protocol in various groups of rats randomized to receive the following drug combinations: saline, AT1 receptor (AT1R) antagonist candesartan (0.01 or 0.1 mg/kg IV) alone, Ang-(1-7) (5 pmol/min) alone, candesartan plus Ang-(1-7), and candesartan plus Ang-(1-7) and angiotensin II type 2 (AT2) receptor (AT2R) antagonist PD123319 (50 microg/kg per minute). In Wistar-Kyoto (WKY) rats, saline, Ang-(1-7), or candesartan alone caused no significant alteration in MAP, whereas Ang-(1-7) coadministered with candesartan caused a marked, sustained reduction in MAP. A similar unmasking of a vasodepressor response to Ang-(1-7) during AT1R blockade was observed in SHR. Moreover, the AT(2)R antagonist PD123319 markedly attenuated the enhanced depressor response evoked by the Ang-(1-7)/candesartan combination in SHR and WKY rats, whereas in other experiments, the putative Ang-(1-7) antagonist A-779 (5 and 50 pmol/min) did not attenuate this vasodepressor effect. In separate experiments, the bradykinin type 2 receptor antagonist HOE 140 (100 microg/kg IV) or the NO synthase inhibitor Nomega-nitro-L-arginine methyl ester (1 mg/kg IV) abolished the depressor effect of Ang-(1-7) in the presence of candesartan. Collectively, these results suggest that Ang-(1-7) evoked a depressor response during AT1R blockade via activation of AT2R, which involves the bradykinin-NO cascade.  相似文献   

14.
Angiotensin II receptor blockers (ARBs) are widely used for the treatment of hypertension. It is believed that treatment with an ARB increases the level of plasma angiotensin II (Ang II) because of a lack of negative feedback on renin activity. However, Ichikawa (Hypertens Res 2001; 24: 641-646) reported that long-term treatment of hypertensive patients with olmesartan resulted in a reduction in plasma Ang II level, though the mechanism was not determined. It has been reported that angiotensin 1-7 (Ang-(1-7)) potentiates the effect of bradykinin and acts as an angiotensin-converting enzyme (ACE) inhibitor. It is known that ACE2, which was discovered as a novel ACE-related carboxypeptidase in 2000, hydrolyzes Ang I to Ang-(1-9) and also Ang II to Ang-(1-7). It has recently been reported that olmesartan increases plasma Ang-(1-7) through an increase in ACE2 expression in rats with myocardial infarction. We hypothesized that over-expression of ACE2 may be related to a reduction in Ang II level and the cardioprotective effect of olmesartan. Administration of 0.5 mg/kg/day of olmesartan for 4 weeks to 12-week-old stroke-prone spontaneously hypertensive rats (SHRSP) significantly reduced blood pressure and left ventricular weight compared to those in SHRSP given a vehicle. Co-administration of olmesartan and (D-Ala7)-Ang-(1-7), a selective Ang-(1-7) antagonist, partially inhibited the effect of olmesartan on blood pressure and left ventricular weight. Interestingly, co-administration of (D-Ala7)-Ang-(1-7) with olmesartan significantly increased the plasma Ang II level (453.2+/-113.8 pg/ml) compared to olmesartan alone (144.9+/-27.0 pg/ml, p<0.05). Moreover, olmesartan significantly increased the cardiac ACE2 expression level compared to that in Wistar Kyoto rats and SHRSP treated with a vehicle. Olmesartan significantly improved cardiovascular remodeling and cardiac nitrite/ nitrate content, but co-administration of olmesartan and (D-Ala7)-Ang-(1-7) partially reversed this anti-remodeling effect and the increase in nitrite/nitrate. These findings suggest that olmesartan may exhibit an ACE inhibitory action in addition to an Ang II receptor blocking action, prevent an increase in Ang II level, and protect cardiovascular remodeling through an increase in cardiac nitric oxide production and endogenous Ang-(1-7) via over-expression of ACE2.  相似文献   

15.
-The stimulation of endothelium-dependent NO release by angiotensin-(1-7) [Ang-(1-7)] has been indirectly shown in terms of vasodilation, which was diminished by NO synthase inhibition or removal of the endothelium. However, direct measurement of endothelium-derived NO has not been analyzed. With a selective porphyrinic microsensor, NO release was directly assessed from single primary cultured bovine aortic endothelial cells. Ang-(1-7) caused a concentration-dependent release of NO of 1 to 10 μmol/L, which was attenuated by NO synthase inhibition. [D-Ala(7)]Ang-(1-7) (5 μmol/L), described as a selective antagonist of Ang-(1-7) receptors, inhibited Ang-(1-7)-induced NO release only by approximately 50%, whereas preincubation of bovine aortic endothelial cells with the angiotensin II subtype 1 and 2 receptor antagonists EXP 3174 and PD 123,177 (both at 0.1 μmol/L) led to an inhibition of 60% and 90%, respectively. A complete blockade of the Ang-(1-7)-induced NO release was observed on preincubation of the cells with 1 μmol/L concentration of the bradykinin subtype 2 receptor antagonist icatibant (HOE 140), suggesting an important role of local kinins in the action of Ang-(1-7). Simultaneous direct measurement of superoxide (O(2)(-)) detected by an O(2)(-)-sensitive microsensor revealed that the moderately Ang-(1-7)-stimulated NO release was accompanied by a very slow concomitant O(2)(-) production with a relative low peak concentration in comparison to the O(2)(-) production of the strong NO releasers bradykinin and, especially, calcium ionophore. Thus, Ang-(1-7) might preserve the vascular system, among others, due to its low formation of cytotoxic peroxynitrite by the reaction between NO and O(2)(-).  相似文献   

16.
The peroxisome proliferator activated receptor (PPARgamma) agonist rosiglitazone has been reported to yield cardiovascular benefits in patients by a mechanism that is not completely understood. We tested whether oral rosiglitazone (25 mg/kg per day, 21 days) treatment improves blood pressure and vascular function in a transgenic mouse expressing both human renin and human angiotensinogen transgenes (R(+)A(+)). Rosiglitazone decreased systolic (138+/-5 versus 128+/-5 mm Hg) and mean blood pressure (145+/-5 versus 126+/-7 mm Hg) of R(+)A(+) mice as measured by tail-cuff and indwelling carotid catheters, respectively. Relaxation of carotid arteries to acetylcholine and authentic nitric oxide, but not papaverine, was impaired in R(+)A(+) mice when compared with littermate controls (RA(-)). There were no effects of rosiglitazone on RA(-) mice; however, relaxation to acetylcholine (49+/-10 versus 82+/-9% at 100 micromol/L) and nitric oxide (51+/-11 versus 72+/-6% at 10 micromol/L) was significantly improved in treated R(+)A(+) mice. Rosiglitazone treatment of R(+)A(+) mice did not alter the expression of genes, including endothelial nitric oxide synthase (eNOS), angiotensin 1 receptors, and preproendothelin-1, nor did it alter the levels of eNOS or soluble guanylyl cyclase protein. In separate studies, carotid arteries from R(+)A(+) and RA(-) mice relaxed in a concentration-dependent manner to rosiglitazone, suggesting possible PPARgamma-independent effects in the vasculature. This response was not inhibited with the nitric oxide synthase inhibitor N(omega)-nitro-l-arginine methyl ester (200 micromol/L) or the PPARgamma antagonist bisphenol A diglycidyl ether; 4,4'-isopropylidenediphenol diglycidyl ether (100 micromol/L). These data suggest that in addition to potential genomic regulation caused by PPARgamma activation, the direct effect of rosiglitazone in blood vessels may contribute to the improved blood pressure and vessel function.  相似文献   

17.
目的 研究血管紧张素Ⅱ、血管紧张素(1-7)对胰岛β细胞胰岛素信号通路的影响.方法 小鼠胰岛β细胞株NIT-1予(1)0、10-7、10-6、10-5和10-4 mol/L浓度血管紧张素Ⅱ处理24h;(2)0、10-7、10-6、10-5和10-4mol/L浓度血管紧张素(1-7)处理24h;(3)血管紧张素Ⅱ、血管紧张素(1-7)联合处理24h,分为对照、10-5 mol/L血管紧张素Ⅱ、10-6 mol/L血管紧张素(1-7)、10-5 mol/L血管紧张素Ⅱ+10-6 mol/L血管紧张素(1-7)组.Western印迹检测胰岛素受体β亚基酪氨酸磷酸化(IR-β-Tyr)及蛋白激酶β丝氨酸磷酸化(Akt-Ser)水平.结果 血管紧张素Ⅱ浓度10-5和10-4mol/L时,胰岛素刺激的IR-β-Tyr、Akt-Ser表达显著降低;不同浓度血管紧张素(1-7)作用下,胰岛素刺激的IR-β-Tyr、Akt-Ser表达与对照组相比无差异;加入血管紧张素(1-7)共同孵育可逆转血管紧张素Ⅱ对Akt-Ser表达的抑制,而血管紧张素Ⅱ对IR-β-Tyr表达的抑制无效应.结论 在β细胞中,血管紧张素Ⅱ抑制胰岛素信号传导,血管紧张素(1-7)可拮抗血管紧张素Ⅱ对胰岛素刺激的Akt-Ser的抑制.  相似文献   

18.
We exposed 63 adult spontaneously hypertensive rats (SHR) and 10 (mRen-2)27 transgenic hypertensive rats to a 12-day regimen of either a normal diet (0.5%) or a low-salt diet (0.05%) to evaluate the hypothesis that the vasodepressor heptapeptide, angiotensin-(1-7) [Ang-(1-7)], buffers the pressor effects of angiotensin II during endogenous stimulation of the renin-angiotensin system. Catheters were inserted into a carotid artery and jugular vein under light anesthesia the day before the experiment. Separate groups of conscious instrumented SHR were given short-term infusions of an affinity-purified monoclonal Ang-(1-7) antibody or the neprilysin inhibitor SCH 39370. In addition, SHR and (mRen-2)27 rats were given the Ang-(1-7) receptor antagonist [D-Ala(7)]Ang-(1-7). Exposure to the low-salt diet increased plasma renin activity and elevated plasma levels of angiotensin I and angiotensin II in SHR by 81% and 68%, respectively, above values determined in SHR fed a normal salt diet. Concentrations of angiotensin I and angiotensin II were also higher in the kidney of salt-depleted SHR, whereas plasma and renal tissue levels of Ang-(1-7) were unchanged. Infusion of the Ang-(1-7) antibody produced dose-dependent pressor and tachycardic responses in salt-depleted SHR but no effect in SHR maintained on a normal-salt diet. A comparable cardiovascular response was produced in salt-depleted SHR given either SCH 39370 or [D-Ala(7)]Ang-(1-7). These agents had negligible effects on SHR fed a normal-salt diet. Blockade of Ang-(1-7) receptors produced a similar cardiovascular response in (mRen-2)27 transgenic hypertensive rats fed a low-salt diet. Injections of the heat-inactivated antibody or the subsequent infusion of the antibody to rats given [D-Ala(7)]Ang-(1-7) produced no additional effects. The data support the hypothesis that the hemodynamic effects of neurohormonal activation after salt restriction stimulate a tonic depressor action of Ang-(1-7).  相似文献   

19.
Tallant EA  Clark MA 《Hypertension》2003,42(4):574-579
Angiotensin (Ang) peptides play a critical role in regulating vascular reactivity and structure. We showed that Ang-(1-7) reduced smooth muscle growth after vascular injury and attenuated the proliferation of vascular smooth muscle cells (VSMCs). This study investigated the molecular mechanisms of the antiproliferative effects of Ang-(1-7) in cultured rat aortic VSMCs. Ang-(1-7) caused a dose-dependent release of prostacyclin from VSMCs, with a maximal release of 277.9+/-25.2% of basal values (P<0.05) by 100 nmol/L Ang-(1-7). The cyclooxygenase inhibitor indomethacin significantly attenuated growth inhibition by Ang-(1-7). In contrast, neither a lipoxygenase inhibitor nor a cytochrome p450 epoxygenase inhibitor prevented the antiproliferative effects of Ang-(1-7). These results suggest that Ang-(1-7) inhibits vascular growth by releasing prostacyclin. Ang-(1-7) caused a dose-dependent release of cAMP, which might result from prostacyclin-mediated activation of adenylate cyclase. The cAMP-dependent protein kinase inhibitor Rp-adenosine-3',5'-cyclic monophosphorothioate attenuated the Ang-(1-7)-mediated inhibition of serum-stimulated thymidine incorporation. Finally, Ang-(1-7) inhibited Ang II stimulation of mitogen-activated protein kinase activities (ERK1/2). Incubation of VSMCs with concentrations of Ang-(1-7) up to 1 micromol/L had no effect on ERK1/2 activation. However, preincubation with increasing concentrations of Ang-(1-7) caused a dose-dependent reduction in Ang II-stimulated ERK1/2 activities. Ang-(1-7) (1 micromol/L) reduced 100 nmol/L Ang II-stimulated ERK1 and ERK2 activation by 42.3+/-6.2% and 41.2+/-4.2%, respectively (P<0.01). These results suggest that Ang-(1-7) inhibits vascular growth through the release of prostacyclin, through the prostacyclin-mediated production of cAMP and activation of cAMP-dependent protein kinase, and by attenuation of mitogen-activated protein kinase activation.  相似文献   

20.
BACKGROUND: It has been clearly demonstrated that angiotensin(1-7) potentiates the vasodilating effect of bradykinin in isolated vessels of animals. OBJECTIVE: To investigate the interaction between angiotensin(1-7) Ang(1-7) and bradykinin in human forearm resistant vessels of normotensive healthy men in vivo, by the measurement of forearm blood flow using venous occlusion, strain-gauge plethysmography with intra-arterial infusions of peptides in a placebo-controlled, double-blind, cross-over design. METHODS: In eight men, bradykinin was infused intra-arterially twice; placebo, Ang(1-7), or angiotensin II was co-infused with the second infusion. The effect of inhibition of nitric oxide synthase on the interaction between Ang(1-7) and bradykinin was also tested in eight other individuals. The effects of Ang(1-7) were analyzed by analysis of variance (ANOVA) and by the ratios of individually derived areas under the dose-response curves (AUC) of bradykinin, adjusted for changes in the AUCs by repeated infusions of bradykinin with placebo. RESULTS: Ang(1-7) (1000 pmol/min) significantly potentiated the vasodilating effect of bradykinin compared with the effect of saline (P = 0.0471, ANOVA) and in a dose-dependent manner (adjusted AUC ratio [95% confidence interval (CI)] 2.75 (1.72 to 3.78) with 1000 pmol/min, 1.62 (1.31 to 1.93) with 100 pmol/min, and 0.98 (0.80, to 1.09) with 10 pmol/min). This effect was completely abolished by co-infusion of NG-monomethyl-l-arginine [AUC ratio 0.98 (0.90 to 1.04)]. Ang(1-7) did not affect the vasodilating effects of either acetylcholine or sodium nitroprusside. CONCLUSIONS: Ang(1-7) potentiates the vasodilating effect of bradykinin, possibly through a mechanism(s) involving nitric oxide release, in human forearm resistance vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号