首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specific glycine transporter 1 (GlyT1) inhibitor, SSR504734, is highly effective in enhancing N-methyl-d-aspartate receptor (NMDAR) function by elevating the availability of the NMDAR co-agonist, glycine, in the vicinity of NMDAR-containing glutamatergic synapses. According to the glutamatergic hypofunction hypothesis of schizophrenia, SSR504734 may therefore possess antipsychotic potential. Here, we evaluated the effects of SSR504734 in response to three psychomimetic drugs: phencyclidine, amphetamine, and apomorphine in male C57BL/6 mice. SSR504734 attenuated phencyclidine-induced (5 mg/kg, i.p.) hyperlocomotion, but potentiated the motor stimulant and motor depressant effects of amphetamine (2.5 mg/kg, i.p.) and apomorphine (0.75 mg/kg, s.c.), respectively. Hence, SSR504734 not only confers resistance to NMDAR blockade, but also enhances the locomotor response to dopaminergic stimulation. The latter finding adds to reports that SSR504734 may modulate dopamine-mediated behaviour by interference with normal glutamate-dopamine interaction. The specificity of this action of SSR504734 will be highly relevant to its potential application as an antipsychotic agent.  相似文献   

2.

Rationale

Inhibition of glycine transporter 1 (GlyT1) elevates extracellular glycine and can thus increase N-methyl-d-aspartate receptor (NMDAR) excitability in the brain. The potent GlyT1 inhibitor, SSR504734, has also been shown to potentiate the behavioral effects of direct and indirect dopamine agonists. Thus, an acute systemic dose of SSR504734 was sufficient to exacerbate the motor-stimulant effect of the dopamine releaser amphetamine in C57BL/6 mice, even though SSR504734 alone exerted no significant effect on motor activity.

Objectives

Here, we explore if SSR504734 might modulate dopamine-dependent sensory gating in the paradigm of prepulse inhibition (PPI) of the acoustic startle reflex.

Methods

Experiment 1 characterized the effect of SSR504734 (10 and 30 mg/kg i.p.) on PPI expression when administered alone. Experiments 2 and 3 investigated the impact of SSR504734 when administered in conjunction with the dopamine receptor agonist, apomorphine (1 and 2 mg/kg s.c.), which is known to reliably disrupt PPI.

Results

When administered alone, acute SSR504734 enhanced PPI only at 30 mg/kg—a dose that has been shown to improve cognitive functions including working memory, which has been linked to enhanced NMDAR function resulting from the elevation of extracellular glycine. However, this effect did not allow SSR504734 to antagonize the PPI-disruptive effect of apomorphine. At the lower dose of 10 mg/kg—that was insufficient to enhance PPI when administered alone—SSR504734 even exacerbated the deleterious effect of apomorphine on PPI.

Conclusions

The therapeutic potential of GlyT1 inhibition against distinct behavioral/cognitive deficiency might require different magnitudes of GlyT1 inhibition.  相似文献   

3.
On native human, rat and mouse glycine transporter-1(GlyT1), SSR130800 behaves as a selective inhibitor with IC50 values of 1.9, 5.3 and 6.8 nM, respectively. It reversibly blocked glycine uptake in mouse brain cortical homogenates, increased extracellular levels of glycine in the rat prefrontal cortex, and potentiated NMDA-mediated excitatory postsynaptic currents in rat hippocampal slices. SSR103800 (30 mg/kg, p.o.) decreased MK-801- and PCP-induced locomotor hyperactivity in rodents. SSR103800 (1 and 10 mg/kg, p.o.) attenuated social recognition deficit in adult rats induced by neonatal injections of PCP (10 mg/kg, s.c., on post-natal day 7, 9 and 11). SSR103800 (3 mg/kg, p.o.) counteracted the deficit in short-term visual episodic-like memory induced by a low challenge dose of PCP (1 mg/kg, i.p.), in PCP-sensitized rats (10 mg/kg, i.p.). SSR103800 (30 mg/kg, i.p.) increased the prepulse inhibition of the startle reflex in DBA/1J mice. SSR103800 decreased defensive- and despair-related behaviors in the tonic immobility test in gerbils (10 and 30 mg/kg, p.o.) and in the forced-swimming procedure in rats (1 and 3 mg/kg, p.o.), respectively. These findings suggest that SSR103800 may have a therapeutic potential in the management of the core symptoms of schizophrenia and comorbid depression states.  相似文献   

4.

Rationale

SSR103800 and SSR504734 are novel glycine transport 1 (GlyT1) inhibitors with therapeutic potential for the treatment of schizophrenia.

Objective

The present studies investigated the effects of GlyT1 inhibitors in acute pharmacological and neurodevelopmental models of schizophrenia using latent inhibition in the rat; these latent inhibition (LI) models are believed to be predictive for treatments of positive, negative, and cognitive aspects of schizophrenia.

Materials and methods

LI, the poorer conditioning to a previously irrelevant stimulus, was measured in a conditioned emotional response procedure in male rats. The effects of SSR103800 or SSR504734 (both at 1, 3, and 10 mg/kg, i.p.) were determined on amphetamine-induced disrupted LI, MK-801-induced abnormally persistent LI, and neurodevelopmentally induced abnormally persistent LI in adult animals that had been neonatally treated with a nitric oxide synthase inhibitor.

Results

SSR103800 (1 and 3 mg/kg) and SSR504734 (1 and 10 mg/kg) potentiated LI under conditions where LI was not present in nontreated controls and SSR103800 (1 mg/kg) reversed amphetamine-induced disrupted LI while not affecting LI on its own. Additionally, SSR103800 (1 and 3 mg/kg) and SSR504734 (3 and 10 mg/kg) reversed abnormally persistent LI induced by MK-801. In the neurodevelopmental model, SSR504734 (3 and 10 mg/kg) reverted the LI back to control (normal) levels.

Conclusions

These preclinical data, from acute and neurodevelopmental models, suggest that GlyT1 inhibition may exhibit activity in the positive, negative, and cognitive symptom domains of schizophrenia.  相似文献   

5.
Singer P  Feldon J  Yee BK 《Psychopharmacology》2009,202(1-3):371-384

Rationale

Inhibition of the glycine transporter 1 (GlyT1) activity increases extra-cellular glycine availability in the CNS. At glutamatergic synapses, increased binding to the glycine-B site located in the N-methyl-d-aspartate receptor (NMDAR) can enhance neurotransmission via NMDARs. Systemic treatment of 2-chloro-N-[(S)-phenyl [(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide, monohydrochloride (SSR504734), a selective GlyT1 inhibitor, is effective against social recognition impairment induced by neonatal phencyclidine treatment and enhances pre-pulse inhibition in a mouse strain (DBA/2) with intrinsic sensorimotor gating deficiency, suggesting that SSR504734 may be an effective cognitive enhancer.

Objective

The objective of the study was to examine if SSR504734 exhibits a promnesic effect on working memory function in wild-type C57BL/6 mice using an automatic continuous alternation task.

Materials and methods

Hungry mice were trained to alternate their nose pokes between two food magazines across successive discrete trials in an operant chamber in order to obtain food reward. Correct choice on a given trial thus followed a non-matching or win-shift rule in relation to the preceding trial, with manipulation of the demand on memory retention, by varying the delay between successive trials.

Results

Pre-treatment with SSR504734 (30 mg/kg, i.p.) improved choice accuracy when the delay from the previous trial was extended to 12–16 s. Furthermore, a dose–response analysis (3, 10, 30 mg/kg) revealed a clear dose-dependent efficacy of the drug: 3 mg/kg was without effect, whilst 10 mg/kg led to an intermediate enhancement in performance.

Conclusion

The present findings represent the first demonstration of the promnesic effects of SSR504734 under normal physiological conditions, lending further support to the suggestion of its potential as a cognitive enhancer.
  相似文献   

6.
Schizophrenia has been initially associated with dysfunction in dopamine neurotransmission. However, the observation that antagonists of the glutamate N-methyl--aspartate (NMDA) receptor produce schizophrenic-like symptoms in humans has led to the idea of a dysfunctioning of the glutamatergic system via its NMDA receptor. As a result, there is a growing interest in the development of pharmacological agents with potential antipsychotic properties that enhance the activity of the glutamatergic system via a modulation of the NMDA receptor. Among them are glycine transporter-1 (GlyT1) inhibitors such as SSR103800, which indirectly enhance NMDA receptor function by increasing the glycine (a co-agonist for the NMDA receptor) levels in the synapse. This study aimed at investigating the potential antipsychotic-like properties of SSR103800, with a particular focus on models of hyperactivity, involving either drug challenge (ie, amphetamine and MK-801) or transgenic mice (ie, NMDA Nr1neo−/− and DAT−/−). Results showed that SSR103800 (10–30 mg/kg p.o.) blocked hyperactivity induced by the non-competitive NMDA receptor antagonist, MK-801 and partially reversed spontaneous hyperactivity of NMDA Nr1neo−/− mice. In contrast, SSR103800 failed to affect hyperactivity induced by amphetamine or naturally observed in dopamine transporter (DAT−/−) knockout mice (10–30 mg/kg p.o.). Importantly, both classical (haloperidol) and atypical (olanzapine, clozapine and aripiprazole) antipsychotics were effective in all these models of hyperactivity. However, unlike these latter, SSR103800 did not produce catalepsy (retention on the bar test) up to 30 mg/kg p.o. Together these findings show that the GlyT1 inhibitor, SSR103800, produces antipsychotic-like effects, which differ from those observed with compounds primarily targeting the dopaminergic system, and has a reduced side-effect potential as compared with these latter drugs.  相似文献   

7.
SSR180711 (4-bromophenyl 1,4diazabicyclo(3.2.2) nonane-4-carboxylate, monohydrochloride) is a selective alpha7 nicotinic receptor (n-AChR) partial agonist. Based on the purported implication of this receptor in cognitive deficits associated with schizophrenia, the present study assessed efficacy of SSR180711 (i.p. and p.o.) in different types of learning and memory involved in this pathology. SSR180711 enhanced episodic memory in the object recognition task in rats and mice (MED: 0.3 mg/kg), an effect mediated by the alpha7 n-AChR, as it was no longer seen in mice lacking this receptor. Efficacy was retained after repeated treatment (eight administrations over 5 days, 1 mg/kg), indicating lack of tachyphylaxia. SSR180711 also reversed (MED: 0.3 mg/kg) MK-801-induced deficits in retention of episodic memory in rats (object recognition). The drug reversed (MED: 0.3 mg/kg) selective attention impaired by neonatal phencyclidine (PCP) treatment and restored MK-801- or PCP-induced memory deficits in the Morris or linear maze (MED: 1-3 mg/kg). In neurochemical and electrophysiological correlates of antipsychotic drug action, SSR180711 increased extracellular levels of dopamine in the prefrontal cortex (MED: 1 mg/kg) and enhanced (3 mg/kg) spontaneous firing of retrosplenial cortex neurons in rats. Selectivity of SSR180711 was confirmed as these effects were abolished by methyllycaconitine (3 mg/kg, i.p. and 1 mg/kg, i.v., respectively), a selective alpha7 n-AChR antagonist. Additional antidepressant-like properties of SSR180711 were demonstrated in the forced-swimming test in rats (MED: 1 mg/kg), the maternal separation-induced ultrasonic vocalization paradigm in rat pups (MED: 3 mg/kg) and the chronic mild stress procedure in mice (10 mg/kg o.d. for 3 weeks). Taken together, these findings characterize SSR180711 as a promising new agent for the treatment of cognitive symptoms of schizophrenia. The antidepressant-like properties of SSR180711 are of added interest, considering the high prevalence of depressive symptoms in schizophrenic patients.  相似文献   

8.
Accumulating evidence suggests that cognitive processes may be regulated by glycine concentration in the local environment of glutamate N-methyl-d-aspartate receptor (NMDAR). The concentration of glycine is controlled, among other factors, by the glycine transporter 1 (GlyT1). While GlyT1 inhibitors are developed for a number of indications including cognitive improvement, little is known about their effects in tasks depending on prefrontal cortical function. We examined the effect of GlyT1 inhibitor SSR-504734 on cognitive flexibility assessed in the attentional set-shifting task in rats (ASST). The second goal was to elucidate whether SSR-504734 effect has been due to the compound's action at glycine/NMDAR site. Rats treated with SSR-504734 (3 and 10?mg/kg, IP) required significantly less trials to criteria during extra-dimensional shift (EDs) phase of the ASST. The effect of SSR-504734 (3?mg/kg) was completely prevented by the glycine/NMDAR site antagonist, L-687,414 (30?mg/kg, IP) that by itself exerted no effect on cognitive flexibility. Present study demonstrates that the elevation of glycine concentration through the blockade of its reuptake facilitates cognitive flexibility. As this effect was fully blocked by glycine/NMDAR antagonist, SSR-504734-induced cognitive improvement is likely mediated through glycine action at NMDAR. It is suggested that GlyT1 inhibitors like SSR-504734 may represent a useful pharmacological approach for cognitive enhancement, especially in domains critically affected in schizophrenia.  相似文献   

9.
The in vitro and in vivo pharmacology of two glycine transporter-1 (GlyT1) inhibitors, N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)-propyl]sarcosine (NFPS) and R,S-(+/-)N-methyl-N-[(4-trifluoromethyl)phenoxy]-3-phenyl-propylglycine (Org 24461), was studied. NFPS and Org 24461 inhibited the uptake of [3H]glycine in hippocampal synaptosomal preparation with IC(50) values of 0.022 and 2.5 microM. Neither NFPS nor Org 24461 (0.1 microM) showed significant binding to alpha-1, alpha-2, and beta-adrenoceptors, D(1) and D(2) dopamine receptors, and 5-HT(1A) and 5-HT(2A) serotonin receptors in membranes prepared from rat brain or to cloned 5-HT(6) and 5-HT(7) receptors. At 10 microM concentrations, binding affinity was measured for NFPS to 5-HT(2A) and 5-HT(2C) serotonin receptors and alpha-2 adrenoceptors and for NFPS and Org 24461 to 5-HT(7) serotonin receptors. Glycine (0.1 mM) and sarcosine (5 mM) increased [3H]glycine efflux from superfused rat hippocampal slices preloaded with [3H]glycine. NFPS and Org 24461 (0.1 mM) did not influence [3H]glycine efflux, however, they inhibited glycine-induced [3H]glycine release. These findings indicate that NFPS and Org 24461 selectively inhibit glycine uptake without being substrates of the transporter protein. Several antipsychotic tests were used to characterize antipsychotic effects of NFPS and Org 24461 in vivo. These compounds did not alter apomorphine-induced climbing and stereotypy in a dose of 10 mg/kg p.o. in mice and did not induce catalepsy in a dose of 10 mg/kg i.p. in rats. The ID(50) values of NFPS were 21.4 mg/kg and higher than 30 mg/kg i.p. for inhibition of phencyclidine (PCP)- and D-amphetamine-induced hypermotility in mice and these values were 2.5 and 8.6 mg/kg i.p. for Org 24461. NFPS and Org 24461 did not exhibit anxiolytic effects in light-dark test in mice, in the meta-chlorophenylpiperazine (mCPP)-induced anxiety test (minimal effective dose or MED was higher than 3 mg/kg i.p.) and in the Vogel conflict drinking test in rats (MED was higher than 10 mg/kg i.p.). Both NFPS and Org 24461 (1-10 mg/kg i.p.) reversed PCP-induced changes in EEG power spectra in conscious rats. These data support the view that GlyT1 inhibitors may have potential importance in treatment of negative symptoms of schizophrenia.  相似文献   

10.
In the forebrain, synaptic glycine concentrations are regulated through the glycine transporter GlyT1. Because glycine is a coagonist of the N-methyl-D-aspartate (NMDA) receptor (NMDAR), which has been implicated in schizophrenia, inhibition of GlyT1 is thought to provide an option for the treatment of schizophrenia. In support of this hypothesis, GlyT1 inhibitors facilitate in vivo NMDAR function and demonstrate antipsychotic-like effects in animal models. Among the specific GlyT1 inhibitors, substituted N-methyl-glycine (sarcosine) derivatives (e.g., (R)-N[3-(4'fluorophenyl)-3-(4'phenyl-phenoxy)propyl]-sarcosine [NFPS], (R)-N[3-phenyl-3-(4'-(4-toluoyl)phenoxy)-propyl]sarcosine [(R)-NPTS], and (R,S)-(+/-)N-methyl-N-[(4-trifluoromethyl)phenoxy]-3-phenyl-propylglycine [Org24589]), and non-sarcosine-containing inhibitors, such as 2-chloro-N-[(S)-phenyl[(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide, monohydrochloride (SSR504734), have been described. In the present study, we analyzed the mode of interaction of these compounds with GlyT1 by using electrophysiological measurements in Xenopus laevis oocytes, and with two binding assays, using [(3)H](R)-NPTS or 2-chloro-N-[(S)-phenyl[(2S)-N-methylpiperidin-2-yl]-methyl]-3-trifluoromethyl benzamide monohydrochloride ([(3)H]N-methyl-SSR504734) as radioligands. Inhibition of electrogenic glycine transport by sarcosine-based compounds was apparently irreversible and independent of glycine concentration. The latter indicates a noncompetitive mode of action. In contrast, both SSR504734 and N-methyl-SSR504734 exhibited reversible and competitive inhibition of glycine transport. In GlyT1-expressing membranes, the binding of the novel radioligand [(3)H]N-methyl-SSR504734 to a single site on GlyT1 was competitively displaced by glycine and SSR504734 but noncompetitively by sarcosine-based compounds. Inversely, [(3)H](R)-NPTS binding was competitively inhibited by sarcosine-based compounds, whereas glycine, SSR504734, and N-methyl-SSR504734 noncompetitively decreased maximal binding. Our data indicate that besides exerting an apparently irreversible or reversible inhibition, GlyT1 inhibitors differ by exhibiting either a noncompetitive or competitive mode of inhibition. The divergent modes of inhibition may significantly affect the efficacy and tolerability of these drugs.  相似文献   

11.
There is a growing interest in the potential anxiolytic- and antidepressant-like effects of compounds that target neurokinin receptors. Since the structure and the pharmacology of the human neurokinin receptor resembles that of gerbils, rather than that of mice or rats, we decided to investigate the anxiolytic- and /or antidepressant-like effects of NK1 (SSR240600), NK2 (saredutant) and NK3 (osanetant) receptor antagonists in gerbils. It was found that saredutant (3-10 mg/kg, p.o.) and osanetant (3-10 mg/kg, p.o.) produced anxiolytic-like effects in the gerbil social interaction test. These effects were similar to those obtained with the V1b receptor antagonist SSR149415 (3-10 mg/kg, p.o.), diazepam (1 mg/kg, p.o.) and buspirone (10 mg/kg, p.o.). Fluoxetine and SSR240600 were devoid of effects in this test. In the tonic immobility test in gerbils, saredutant (5-10 mg/kg, i.p.) and osanetant (5-10 mg/kg, i.p.) produced similar effects to those observed with fluoxetine (7.5-15 mg/kg, i.p.), SSR149415 (10-30 mg/kg, p.o.) and buspirone (3 mg/kg, i.p.). Diazepam and SSR240600 were inactive in this paradigm. In conclusion, the present study indicates further that NK2 and NK3 receptor antagonists may have therapeutic potential in the clinical management of anxiety and depression.  相似文献   

12.
Hypofunction of brain N-methyl-d-aspartate (NMDA) receptors has been implicated in psychiatric disorders such as schizophrenia and Alzheimer's disease. Inhibition of glycine transporter-1 (GlyT1) is expected to increase glycine, a co-agonist of the NMDA receptor and, consequently, to facilitate NMDA receptor function. We have identified ASP2535 (4-[3-isopropyl-5-(6-phenyl-3-pyridyl)-4H-1,2,4-triazol-4-yl]-2,1,3-benzoxadiazole) as a novel GlyT1 inhibitor, and here describe our in vitro and in vivo characterization of this compound. ASP2535 potently inhibited rat GlyT1 (IC(50)=92 nM) with 50-fold selectivity over rat glycine transporter-2 (GlyT2). It showed minimal affinity for many other receptors except for μ-opioid receptors (IC(50)=1.83 μM). Oral administration of ASP2535 dose-dependently inhibited ex vivo [(3)H]-glycine uptake in mouse cortical homogenate, suggesting good brain permeability. This profile was confirmed by pharmacokinetic analysis. We then evaluated the effect of ASP2535 on animal models of cognitive impairment in schizophrenia and Alzheimer's disease. Working memory deficit in MK-801-treated mice and visual learning deficit in neonatally phencyclidine (PCP)-treated mice were both attenuated by ASP2535 (0.3-3mg/kg, p.o. and 0.3-1mg/kg, p.o., respectively). ASP2535 (1-3mg/kg, p.o.) also improved the PCP-induced deficit in prepulse inhibition in rats. Moreover, the working memory deficit in scopolamine-treated mice and the spatial learning deficit in aged rats were both attenuated by ASP2535 (0.1-3mg/kg, p.o. and 0.1mg/kg, p.o., respectively). These studies provide compelling evidence that ASP2535 is a novel and centrally-active GlyT1 inhibitor that can improve cognitive impairment in animal models of schizophrenia and Alzheimer's disease, suggesting that ASP2535 may satisfy currently unmet medical needs for the treatment of these diseases.  相似文献   

13.
The glutamatergic hypothesis of schizophrenia states that the positive, negative and cognitive symptoms of this devastating disease originate with a deficit in transmission at the NMDA class of glutamate receptors. By regulating levels of the NMDA co-agonist glycine, the type 1 transporter for glycine (GlyT1) may play a role in restoring normal levels of NMDA function in schizophrenic patients. This article extends an earlier review in this journal by reviewing recent advances in this field, and focuses on a recent series of GlyT1 inhibitors disclosed by Sanofi. In particular, the extensive characterisation reported for their lead compound, SSR-504734, reveals a promising profile for a novel antipsychotic agent.  相似文献   

14.
Glycine has multiple neurotransmitter functions in the central nervous system (CNS). In the spinal cord and brainstem of vertebrates, it serves as a major inhibitory neurotransmitter. In addition, it participates in excitatory neurotransmission by modulating the activity of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. The extracellular concentrations of glycine are regulated by Na+/Cl(-)-dependent glycine transporters (GlyTs), which are expressed in neurons and adjacent glial cells. Considerable progress has been made recently towards elucidating the in vivo roles of GlyTs in the CNS. The generation and analysis of animals carrying targeted disruptions of GlyT genes (GlyT knockout mice) have allowed investigators to examine the different contributions of individual GlyT subtypes to synaptic transmission. In addition, they have provided animal models for two hereditary human diseases, glycine encephalopathy and hyperekplexia. Selective GlyT inhibitors have been shown to modulate neurotransmission and might constitute promising therapeutic tools for the treatment of psychiatric and neurological disorders such as schizophrenia and pain. Therefore, pharmacological and genetic studies indicate that GlyTs are key regulators of both glycinergic inhibitory and glutamatergic excitatory neurotransmission. This chapter describes our present understanding of the functions of GlyTs and their involvement in the fine-tuning of neuronal communication.  相似文献   

15.
The tibial nerve injury model is a novel, surgically uncomplicated, rat model of neuropathic pain based on a unilateral transection (neurotomy) of the tibial branch of the sciatic nerve. The aim of the present study was to describe some behavioral and molecular features of the model, and to test its sensitivity to a number of drugs which are currently used for the treatment of neuropathic pain. The model was characterized by a pronounced mechanical allodynia which was present in all subjects and a less robust thermal hyperalgesia. Mechanical allodynia developed within 2 weeks post-surgery and was reliably present for at least 9 weeks. Neurotomized rats showed no autotomy and their body weight developed normally. Gene expression in ipsilateral L5 dorsal root ganglia, analyzed by quantitative polymerase chain reaction (PCR), showed a pronounced up-regulation of galanin and vasointestinal peptide (VIP). This up-regulation developed rapidly (within 1 to 2 days following neurotomy) and remained present for at least 12 days. On the other hand, expression of calcitonin gene-related peptide (CGRP) and substance P mRNA was down-regulated 12 days following neurotomy. Mechanical allodynia was completely reversed by morphine [minimal effective dose (MED): 8 mg/kg, i.p.] and partially reversed by carbamazepine (MED: 64 mg/kg, i.p.), baclofen (MED: 3 mg/kg, i.p.) and amitriptyline (trend for efficacy at 32 mg/kg, i.p.), but not by gabapentin (50-100 mg/kg, i.p.). The finding that the tibial nerve injury model shows a robust and persistent mechanical allodynia which is sensitive to a number of established analgesics, as well as a gene expression profile which is compatible with that obtained in other models of neuropathic pain, further supports its validity as a reliable and surgically uncomplicated model for the study of neuropathic pain.  相似文献   

16.
A new psychoactive 5H-2,3-benzodiazepine with a unique spectrum of activity   总被引:1,自引:0,他引:1  
The neuropharmacological effects of 1-(4-amino-phenyl)-4-methyl-7,8-dimethoxy-5H-2,3-benzodiazepine (GYKI 52 322) were investigated and compared with those of chlordiazepoxide and chlorpromazine. This novel 2,3-benzodiazepine displays neuroleptic activity in the apomorphine-climbing (ED50 = 1.15 mg/kg i.p.) and swim-induced grooming (ED50 = 6.9 mg/kg i.p.) tests in mice and it inhibits the conditioned avoidance response in rats (ED50 = 8.2 mg/kg i.p. and 9.8 mg/kg p.o.). However, it does not antagonize apomorphine-evoked vomiting in dogs; or stereotypy, hypermotility and turning in rats even at as high a dose as 50 mg/kg i.p. On the other hand it is active in the hole board test in mice (MED (minimal effective dose) = 0.5 mg/kg i.p.) and in the lick conflict assay in rats (MED = 5 mg/kg i.p.), indicating anxiolytic property. It shows antiaggressive effect in the fighting mice test (ED50 = 8.1 mg/kg p.o.) and the carbachol-rage procedure in cats (active at 10 mg/kg i.p.) According to the biochemical findings, this compound does not bind to the central dopamine receptors (IC50 greater than 10(-4) mol/l), but it shows affinity to the 5-HT1 receptors (IC50 = 7.1 x 10(-6) mol/l) and inhibits brain cAMP-phosphodiesterase (IC50 = 2.4 x 10(-5) mol/l). The substance causes no elevation of dopamine turnover and serum prolactin level suggesting fewer side effects. So the term "atypical neuroleptic agent" is proposed to characterize this molecule.  相似文献   

17.
Modulation of MK-801-induced behaviour by noradrenergic agents in mice   总被引:2,自引:0,他引:2  
RATIONALE: Inhibition of glutamatergic N-methyl-D-aspartate (NMDA) receptors following the administration of NMDA receptor antagonists results in psychotic-like behaviour. Whereas it is known that pharmacological manipulation of dopaminergic and serotonergic pathways affect this drug-induced psychosis, a role for noradrenaline has not yet been clearly defined. OBJECTIVES: Thus, in the present study, we assessed a possible role for noradrenaline in the behavioural response to the non-competitive NMDA receptor anatgonist, MK-801, in male CD-I mice. RESULTS: MK-801 (0.02-1.28 mg/kg; ED50 0.2 mg/kg; s.c.) induced a dose-dependent increase in locomotor, stereotypic and ataxic behaviours. Pre-treatment with the noradrenaline re-uptake inhibitors, desipramine (10 mg/kg; i.p.) and reboxetine (20 mg/kg; i.p.), attenuated the locomotor, stereotypic and ataxic response to MK-801 (0.2 mg/kg; s.c.). The noradrenergic system was lesioned with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4, 50 mg/kg; i.p., 7 and 4 days prior to challenge) to reduce noradrenaline concentrations in the cortex by 70%-80%. Whereas DSP-4 lesioning had little effect on the response to MK-801, it completely reversed the attenuating effects of reboxetine. Pre-treatment with the alpha2 adrenoceptor agonist, clonidine (0.2 mg/kg; i.p.), and the antagonist, yohimbine (2 mg/kg; i.p.), attenuated and potentiated the response to MK-801, respectively. Pre-treatment with the alpha1 adrenoceptor antagonist, prazosin (2 mg/kg; i.p.), reduced the MK-801-induced response. CONCLUSIONS: It therefore appears that presynaptic noradrenergic alpha2 and postsynaptic alpha1 adrenoceptor stimulation exert opposing effects on the behavioural expression of MK-801 in mice.  相似文献   

18.
Multiple lines of evidence support the notion that hypofunction of glutamatergic neurotransmission is involved in the pathophysiology of schizophrenia. Moreover, glycine and glycine modulators have beneficial effects in patients with schizophrenia, particularly when added on to existing therapy. As glycine is an obligatory co-agonist at the NR1 subunit of the NMDA receptor, blockade of glycine uptake at the glycine transporter type-1 (GlyT1) can enhance low glutamatergic tone. L-687,414 is an antagonist at the glycine modulatory site of the NMDA complex and, behaviorally, increases locomotion. A series of GlyT1 inhibitors along with other psychoactive compounds were examined for their ability to enhance or inhibit the action of L-687,414. GlyT1 inhibitors and the other compounds were examined initially for effects on [3H]-glycine uptake in CHO cells expressing hGlyT1b cDNA and for their ability to displace the NMDA-glycine site ligand [3H]-L-689,560 from isolated rat forebrain membrane preparations. The in vivo activity of these compounds was determined in mice by measuring their ability to prevent L-687,414-induced hyperlocomotion. GlyT1 inhibitors blocked [3H]-glycine uptake in cells expressing the human transporter; other compounds had little or no activity. None of the compounds had affinity for the glycine site of the NMDA receptor complex. Hyperlocomotion induced by L-687,414 was dose-dependently reduced by GlyT1 inhibitors and antipsychotic drugs but not by morphine, fluoxetine or a moderate dose of diazepam. Therefore, this behavioral approach can reliably detect GlyT1 inhibitors which, in turn, may have some activity in common with drugs having antipsychotic effects.  相似文献   

19.
Prepulse inhibition (PPI) of the startle reflex in rats is disrupted by N-methyl-D-aspartate (NMDA) receptor non-competitive antagonists (phencyclidine-like compounds). In order to explore more thoroughly the control exerted by NMDA receptors on PPI, we assessed the effects of i.p. administration, in Sprague-Dawley rats, of compounds acting as antagonists or agonists at the five binding sites of the NMDA receptor complex. The non-competitive NMDA receptor antagonists phencyclidine (1-6 mg/kg) and MK-801 (dizocilpine: 0.05-0.2 mg/kg) robustly and dose-dependently disrupted PPI. A similar effect was obtained with the competitive NMDA receptor antagonists CGS 19755 (1-20 mg/kg) and CPP (3-20 mg/kg), but not with the cation Mg2+ (100 and 200 mg/kg), the glycine/NMDA binding site antagonist L-701,324 (1-10 mg/kg), or the polyamine/NMDA binding site antagonist eliprodil (3-20 mg/kg). Potentiation of glutamatergic neurotransmission by NMDA (10-50 mg/kg), and the glycine/NMDA site partial agonist d-cycloserine (1-30 mg/kg) also failed to modify PPI, though d-cycloserine diminished PPI at higher doses (50-200 mg/kg). Co-administration of sub-threshold doses of CPP (3 mg/kg) and phencyclidine (2 mg/kg) resulted in an additive effect, disrupting PPI. In contrast, co-administration of L-701,324 (6 mg/kg) with phencyclidine (2 mg/kg), eliprodil (20 mg/kg), or CPP (3 mg/kg), did not disrupt PPI. These results demonstrate that PPI-disrupting effects can only be obtained with phencyclidine-like compounds and NMDA receptor competitive antagonists. Treatment with compounds that potentially augment glutamatergic tone were without effect. Finally, despite the permissive control of the glycine/NMDA binding site on glutamatergic neurotransmission, the glycine/NMDA binding site antagonist L-701,324 did not produce synergistic activity when combined with antagonists at the glutamate, polyamine/NMDA or phencyclidine-like compound binding sites.  相似文献   

20.
1. Calcium is proposed to play a role in the genesis of epileptic seizures, and a number of established antiepileptic drugs limit the transport of extracellular calcium into neuronal cells. 2. The aim of the present study was to explore the potential antiepileptic activity of three calcium antagonists: nifedipine (20 mg/kg i.p.), which blocks the calcium channel at its outer mouth; verapamil (30 mg/kg i.p.), which blocks the calcium channel at its inner mouth; and propyl-methylenedioxyindene (pr-MDI; 68, 100 and 120 mg/kg i.p.), which acts intracellularly to inhibit calcium mobilization from the endoplasmic reticulum. 3. In the maximal electroshock test, none of the calcium antagonists provided protection against tonic seizures in mice. Phenytoin (20 mg/kg i.p.), on the other hand, afforded complete protection. 4. In the pentylenetetrazol-induced seizure test, the order of effectiveness of the three calcium antagonists in attenuating the severity of the clonic and tonic seizures in mice was: nifedipine greater than verapamil greater than pr-MDI. All three calcium antagonists were less effective than ethosuximide (200 mg/kg i.p.). 5. These findings indicate that the calcium antagonists would be of no value in the treatment of grand mal epilepsy, while only those agents acting at the outer side of the membrane would have limited usefulness at best against petit mal seizures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号