首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glia maturation factor-beta (GMF-beta) is a 17 kDa protein purified and sequenced from bovine brains. Using the monoclonal antibody G2-09 directed against GMF-beta, we previously demonstrated endogenous GMF-beta in astroblasts, Schwann cells, and their tumors in culture. In the present study, we have used indirect immunofluorescence microscopy with G2-09 to examine the effects of transection, crush, and regeneration of sciatic nerve on the expression of GMF-beta in Schwann cells in situ and to study the time course of GMF-beta induction in Schwann cells in vitro. For comparison, a parallel study was carried out with monoclonal antibodies directed against nerve growth factor (NGF) receptor. We found that (1) neither GMF-beta nor NGF receptor was detectable in intact sciatic nerves, (2) all Schwann cells of the distal segment of the transected nerve expressed GMF-beta as early as 3 d after axotomy that persisted up to 3 weeks, (3) axonal regeneration repressed the Schwann cell expression of GMF-beta, (4) isolated Schwann cells derived from rat sciatic and adult human sural nerves developed intracellular GMF-beta in culture following an initial lag period, and (5) the induction of Schwann cell NGF receptor coincided temporally with that of GMF-beta in the transected nerve and in culture. These results show that the expression of GMF-beta in Schwann cells, as is the case with the NGF receptor, is induced by the loss of the normal axon-Schwann cell contact. We propose that the induction of GMF-beta, as well as NGF receptor, in Schwann cells after nerve injury plays a role in axonal regeneration.  相似文献   

2.
《中国神经再生研究》2016,(12):2012-2017
Magnesium(Mg) wire has been shown to be biodegradable and have anti-inflammatory properties. It can induce Schwann cells to secrete nerve growth factor and promote the regeneration of nerve axons after central nervous system injury. We hypothesized that biodegradable Mg wire may enhance compressed peripheral nerve regeneration. A rat acute sciatic nerve compression model was made, and AZ31 Mg wire(3 mm diameter; 8 mm length) bridged at both ends of the nerve. Our results demonstrate that sciatic functional index, nerve growth factor, p75 neurotrophin receptor, and tyrosine receptor kinase A m RNA expression are increased by Mg wire in Mg model. The numbers of cross section nerve fibers and regenerating axons were also increased. Sciatic nerve function was improved and the myelinated axon number was increased in injured sciatic nerve following Mg treatment. Immunofluorescence histopathology showed that there were increased vigorous axonal regeneration and myelin sheath coverage in injured sciatic nerve after Mg treatment. Our findings confirm that biodegradable Mg wire can promote the regeneration of acute compressed sciatic nerves.  相似文献   

3.
The monoclonal antibody 4C5 recognizes a cell surface antigen of the developing central nervous system (CNS) and peripheral nervous system (PNS). In vitro antibody perturbation experiments have shown that the 4C5 antigen is involved in horizontal and vertical migration processes of granule cells during development of the rodent cerebellum. Moreover, results concerning the cellular localization and temporal expression of the 4C5 antigen during development and after injury of the rat sciatic nerve suggested that it may participate in Schwann cell migrations that occur during the above processes. To test this possibility, we examined the effects of our function-blocking antibody on Schwann cell migration in three in vitro bioassays: in tissue cultures from developing sciatic nerve, in dorsal root ganglion cultures on cryostat sections of normal or denervated adult sciatic nerve, and in pure Schwann cell cultures. The results showed that the presence of monoclonal antibody 4C5 in all the above culture systems strongly inhibited Schwann cell migration, indicating that the 4C5 antigen participates in migration processes that take place during development and regeneration of the peripheral nervous system. Moreover, staining of migrating Schwann cells in the presence of monoclonal antibody 4C5 with rhodamine-phalloidin showed that 4C5 antigen activity is associated with actin cytoskeletal organization of these cells, and more specifically with lamellipodia formation.  相似文献   

4.
5.
Macica CM  Liang G  Lankford KL  Broadus AE 《Glia》2006,53(6):637-648
Parathyroid hormone-related peptide (PTHrP) is widely distributed in the rat nervous system, including the peripheral nervous system, where its function is unknown. PTHrP mRNA expression has recently been shown to be significantly elevated following axotomy of sympathetic ganglia, although the role of PTHrP was not investigated. The role of PTHrP in peripheral nerve injury was investigated in this study using the sciatic nerve injury model and dorsal root ganglion (DRG) explant model of nerve regeneration. We find that PTHrP is a constitutively secreted peptide of proliferating Schwann cells and that the PTHrP receptor (PTH1R) mRNA is expressed in isolated DRG and in sciatic nerve. Using the sciatic nerve injury model, we show that PTHrP is significantly upregulated in DRG and in sciatic nerve. In addition, in situ hybridization revealed significant localization of PTHrP mRNA to Schwann cells in the injured sciatic nerve. We also find that PTHrP causes a dramatic increase in the number of Schwann cells that align with and bundle regrowing axons in explants, characteristic of immature, dedifferentiated Schwann cells. In addition to stimulating migration of Schwann cells along the axonal membrane, PTHrP also stimulates migration on a type 1 collagen matrix. Furthermore, treatment of purified Schwann cell cultures with PTHrP results in the rapid phosphorylation of the cAMP response element protein, CREB. We propose that PTHrP acts by promoting the dedifferentiation of Schwann cells, a critical requirement for successful nerve regeneration and an effect consistent with known PTHrP functions in other cellular differentiation programs.  相似文献   

6.
We have investigated the expression of transforming growth factor (TGF)-β1,-β2, and -β3 in developing, degenerating, and regenerating rat peripheral nerve by immunohistochemistry and Northern blot analysis. In normal adult sciatic nerve, TGF-β1, -β2, and -β3 are detected in the cytoplasm of Schwann cells, and the levels of TGF-β1 and -β3 mRNAs are constant during post-natal development. When sciatic nerves are transected to cause axonal degeneration and prevent axonal regeneration, the level of TGF-β1 mRNA in the distal nerve-stump increases markedly and remains elevated, whereas the level of TGF-β3 mRNA falls modestly and remains depressed. When sciatic nerves are crushed to cause axonal degeneration and allow axonal regeneration, the level of TGF-β1 mRNA initially increases as axons degenerate, and then falls as axons regenerate. TGF-β2 mRNA was not detected in developing or lesioned sciatic nerves at any time. Cultured Schwann cells have high levels of TGF-β1 mRNA, the amount of which is reduced by forskolin, which mimicks the effect of axonal contact. These data demonstrate that Schwann cells express TGF-β1, -β2, and -β3, and that TGF-β1 and -β3 mRNA predominate over TGF-β2 mRNA in peripheral nerve. Axonal contact and forskolin decrease the expression of TGF-β1 in Schwann cells. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Axotomy of sciatic nerve fibers in adult rats induces expression of NGF receptor in the entire population of Schwann cells located distal to the injury (Taniuchi et al., 1986b). In the present study we have used immunocytochemistry, with a monoclonal antibody directed against the rat NGF receptor, to examine axotomized peripheral nerves by light and electron microscopy. We have found that (1) the NGF receptor molecules were localized to the cell surface of Schwann cells forming bands of Bungner; (2) axonal regeneration into the distal portion of sciatic nerve coincided temporally and spatially with a decrease in Schwann cell expression of NGF receptor; (3) Schwann cell NGF receptor could be induced by axotomy of NGF-independent neurons, such as motoneurons and parasympathetic neurons; and (4) the presence of axon-Schwann cell contact was inversely related to expression of Schwann cell NGF receptor. Using biochemical assays we have found that, in striking contrast to peripheral nerves, there was no detectable induction of NGF receptor in the spinal cord and brain after axotomy of NGF receptor-bearing fibers. Filtration assays of 125I-NGF binding to the induced NGF receptors of Schwann cells measured a Kd of 1.5 nM and a fast dissociation rate, both characteristics of class II receptor sites. We conclude that Wallerian degeneration induces Schwann cells, but not central neuroglia, to produce and position upon their plasmalemmal surface the class II NGF receptor molecules. The induction is ubiquitous among Schwann cells, irrespective of the type of axon they originally ensheathed. Expression of Schwann cell NGF receptor is negatively regulated by axonal contact, being induced when axons degenerate and suppressed when regenerating axons grow out along the Schwann cell surface. We propose that the induced NGF receptors function to bind NGF molecules upon the Schwann cell surface and thereby provide a substratum laden with trophic support and chemotactic guidance for regenerating sensory and sympathetic neurons.  相似文献   

8.
In an attempt to identify and characterize novel Schwann cell surface molecules with putative functions during development, maintenance, and regeneration of the peripheral nervous system (PNS), we have produced monoclonal antibodies against viable neonatal rat Schwann cells. Using a sensitive live cell ELISA protocol, three monoclonal antibodies reactive with cultured Schwann cells, designated 27B10, 26F2, and 27C7 were isolated. The 27B10 and 26F2 antibodies specifically labelled forskolin-stimulated secondary Schwann cells in vitro as determined by live cell ELISA implying that the expression of the antigens in situ is regulated by axonal contact. The observation that the antigens seemed to be associated with both Schwan cell phenotypes clearly discriminated them from the well characterized myelin proteins as well as from molecules known to be confined to the non-myelin-forming phenotype. Interestingly, both antigens were found to be concentrated at the nodes of Ranvier. Further studies therefore have to show whether the identified antigens share structural or functional homology with adhesion or channel molecules, which display a similar distribution. Following transection of the adult sciatic nerve, the 26F2 antigen was rapidly down-regulated in the distal nerve stump. The 27C7 antibody reacted with an 80 kDa cell surface molecule common to non-myelin-forming Schwann cells. No differences in expression of the antigen between forskolin-treated and untreated Schwann cells in vitro were found, suggesting that the antigen is expressed independently from axonal contract. Two weeks after nerve transection in the absence of myelinating Schwann cells, the antigen was associated with S-100-positive Schwann cells of the distal nerve stump. The antigen was found to be expressed also by non-neuronal tissues, the level fo the protein declined towards the adult stage. Comparison of the 27C7 antigen with previously described marker molecules suggests that we have identified a novel Schwann cell surface antigen of the non-myelin-forming phenotype. GLIA 19:213–226, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
The non-receptor-type Src tyrosine kinases are key components of intracellular signal transduction that are expressed at high levels in the nervous system. To improve understanding of the cascades of molecular events underlying peripheral nerve regeneration, we analyzed active Src expression in the crushed or cut rat sciatic nerves using a monoclonal antibody (clone 28) that recognizes the active form of Src tyrosine kinases, including c-Src and c-Fyn. Western blots showed that active Src expressed in the normal sciatic nerve transiently increased up to threefolds after both types of injury. Immunohistochemistry using clone 28 showed that axonal components are the primary sites of active Src expression in the normal sciatic nerve. Soon after both types of injury, active Src was abundantly expressed in Schwann cells of the segments distal to the injury site. The expression of active Src in the cells decreased with restoration of the axon-Schwann cell relationship and eventually became depleted to very low levels after crushing, but was sustained at high levels in the cut model until the end of the experiment. Regenerated axons consistently expressed active Src throughout nerve regeneration and these eventually became the major sites of active Src expression in the crushed nerve. Among the Src tyrosine kinases, active c-Src selectively increased after crushing according to immunoprecipitation and immunoblotting analyses. Due to its potent biological activity, the increased amounts of the active form of Src probably enhance axonal regrowth, the Schwann cell response, and axon-Schwann cell contact for peripheral nerve regeneration.  相似文献   

10.
Transferrin, the iron carrier protein, has been shown to be involved in oligodendroglial cell differentiation in the central nervous system but little is known about its role in the peripheral nervous system. In the present work, we have studied the presence of transferrin and of its mRNA in rat sciatic nerves and in Schwann cells isolated at embryonic and adult ages as well as during the regeneration process that follows nerve crush. We have also studied the correlation between the expression of the mRNAs of transferrin and the expression of mature myelin markers in the PNS. We show that transferrin is present in whole sciatic nerves at late stages of embryonic life as well as at postnatal day 4 and in adult rats. We demonstrate for the first time, that in normal conditions, the transferrin mRNA is expressed in Schwann cells isolated from sciatic nerves between embryonic days 14 and 18, being absent at later stages of development and in adult animals. In adult rats, 3 days after sciatic nerve crushing, the mRNA of transferrin is expressed in the injured nerve, but 7 days after injury its expression disappears. Transferrin protein in the sciatic nerve closely follows the expression of its mRNA indicating that under these circumstances, it appears to be locally synthesized. Transferrin in the PNS could have a dual role. During late embryonic ages it could be locally synthesized by differentiating Schwann cells, acting as a pro-differentiating factor. A similar situation would occur during the regeneration that follows Wallerian degeneration. In the adult animals on the other hand, Schwann cells could pick up transferrin from the circulation or/and from the axons, sub serving possible trophic actions closely related to myelin maintenance.  相似文献   

11.
Netrin-1 and peripheral nerve regeneration in the adult rat   总被引:8,自引:0,他引:8  
Axonal guidance during development of the nervous system is thought to be highly regulated through interactions of axons with attractive, repulsive, and trophic cues. Similar mechanisms regulate axonal regeneration after injury. The netrins have been shown to influence the guidance of several classes of developing axons. Although netrins have been implicated as axonal guidance cues in the developing peripheral nervous system, there has been no direct evidence of netrin-1 expression in either developing or adult peripheral nerve. The present study utilized competitive PCR and immunohistochemistry to demonstrate the localization of netrin-1 within adult rat sciatic nerve. The expression of netrin-1 mRNA and protein was compared for normal or regenerated sciatic nerve 2 weeks following either a crush or a transection and repair injury. The PCR data show that netrin-1 mRNA is normally expressed at low levels in peripheral nerve, and similar low levels are found 2 weeks following a crush injury. However, 2 weeks following nerve transection and repair there is approximately a 40-fold increase in netrin-1 mRNA levels. Immunohistochemistry data show that Schwann cells are the major source of netrin-1 protein in peripheral nerve. Our results suggest that netrin-1 mRNA levels are profoundly affected during peripheral nerve injury and regeneration. The localization of netrin-1 to Schwann cells suggests that this protein is strategically situated to influence axon regeneration in adult peripheral nerve.  相似文献   

12.
Schwann cells contribute to efficient axonal regeneration after peripheral nerve injury and, when grafted to the central nervous system (CNS), also support a modest degree of central axonal regeneration. This study examined (1) whether Schwann cells grafted to the CNS exhibit normal patterns of differentiation and association with spinal axons and what signals putatively modulate these interactions, and (2) whether Schwann cells overexpressing neurotrophic factors enhance axonal regeneration. Thus, primary Schwann cells were transduced to hypersecrete human nerve growth factor (NGF) and were grafted to spinal cord injury sites in adult rats. Comparisons were made to nontransfected Schwann cells. From 3 days to 6 months later, grafted Schwann cells exhibited a phenotypic and temporal course of differentiation that matched patterns normally observed after peripheral nerve injury. Schwann cells spontaneously aligned into regular spatial arrays within the cord, appropriately remyelinated coerulospinal axons that regenerated into grafts, and appropriately ensheathed but did not myelinate sensory axons extending into grafts. Coordinate expression of the cell adhesion molecule L1 on Schwann cells and axons correlated with establishment of appropriate patterns of axon-Schwann cell ensheathment. Transduction of Schwann cells to overexpress NGF robustly increased axonal growth but did not otherwise alter the nature of interactions with growing axons. These findings suggest that signals expressed on Schwann cells that modulate peripheral axonal regeneration and myelination are also recognized in the CNS and that the modification of Schwann cells to overexpress growth factors significantly augments their capacity to support extensive axonal growth in models of CNS injury.  相似文献   

13.
The ability of immature central nervous system (CNS) glia to promote axonal regeneration was studied by grafting segments of embryonic and neonatal rat optic nerves into the sciatic nerves of adult rats. Unexpectedly, very few axons regenerated through these grafts. The majority of the axons bypassed the grafts and were associated with Schwann cells. These results were similar to those obtained with grafts of adult rat optic nerves. The failure of immature CNS glia to promote axonal regeneration under these conditions suggests that they may be less effective than Schwann cells in promoting the regeneration and growth of axons.  相似文献   

14.
While the peripheral nervous system has regenerative ability,restoration of sufficient function remains a challenge.Vimentin has been shown to be localized in axonal growth fronts and associated with nerve regeneration,including myelination,neuroplasticity,kinase signaling in nerve axoplasm,and cell migration;however,the mechanisms regulating its expression within Schwann cell(SC) remain unexplored.The aim of this study was to profile the spatial and temporal expression profile of micro RNA(mi RNA) in a regenerating rat sciatic nerve after transection,and explore the potential role of mi R-138-5 p targeting vimentin in SC proliferation and migration.A rat sciatic nerve transection model,utilizing a polyethylene nerve guide,was used to investigate mi RNA expression at 7,14,30,60,and 90 days during nerve regeneration.Relative levels of mi RNA expression were determined using microarray analysis and subsequently validated with quantitative real-time polymerase chain reaction.In vitro assays were conducted with cultured Schwann cells transfected with mi RNA mimics and assessed for migratory and proliferative potential.The top seven dysregulated mi RNAs reported in this study have been implicated in cell migration elsewhere,and GO and KEGG analyses predicted activities essential to wound healing.Transfection of one of these,mi RNA-138-5 p,into SCs reduced cell migration and proliferation.mi R-138-5 p has been shown to directly target vimentin in cancer cells,and the luciferase assay performed here in rat Schwann cells confirmed it.These results detail a role of mi R-138-5 p in rat peripheral nerve regeneration and expand on reports of it as an important regulator in the peripheral nervous system.  相似文献   

15.
16.
Nogo-C is sufficient to delay nerve regeneration   总被引:2,自引:0,他引:2  
Axonal regeneration succeeds in the peripheral but not central nervous system of adult mammals. Peripheral clearance of myelin coupled with selective CNS expression of axon growth inhibitors, such as Nogo, may account for this reparative disparity. To assess the sufficiency of Nogo for limiting axonal regeneration, we generated transgenic mice expressing Nogo-C in peripheral Schwann cells. Nogo-C includes the panisoform inhibitory Nogo-66 domain, but not a second Nogo-A-specific inhibitory domain, allowing a selective consideration of the Nogo-66 region. The oct-6::nogo-c transgenic mice regenerate axons less rapidly than do wild-type mice after mid-thigh sciatic nerve crush. The delayed axonal regeneration is associated with a decreased recovery rate for motor function after sciatic nerve injury. Thus, expression of the Nogo-66 domain by otherwise permissive myelinating cells is sufficient to hinder axonal reextension after trauma.  相似文献   

17.
Peripheral nerve transection or crush induces expression of class 3 semaphorins by epineurial and perineurial cells at the injury site and of the neuropilins neuropilin-1 and neuropilin-2 by Schwann and perineurial cells in the nerve segment distal to the injury. Neuropilin-dependent class 3 semaphorin signaling guides axons during neural development, but the significance of this signaling system for regeneration of adult peripheral nerves is not known. To test the hypothesis that neuropilin-2 facilitates peripheral-nerve axonal regeneration, we crushed sciatic nerves of adult neuropilin-2-deficient and littermate control mice. Axonal regeneration through the crush site and into the distal nerve segment, repression by the regenerating axons of Schwann cell p75 neurotrophin receptor expression, remyelination of the regenerating axons, and recovery of normal gait were all significantly slower in the neuropilin-2-deficient mice than in the control mice. Thus, neuropilin-2 facilitates peripheral-nerve axonal regeneration.  相似文献   

18.
19.
Schwann cells support and facilitate axonal growth during development and successful regeneration in the peripheral nerve. In the regenerating rat sciaticnerve, Schwann cells provide a trophic milieu for primary sensory, sympathetic, and motoneurons. We have characterized a neurotrophic activity produced by adult rat sciatic nerve Schwann cells and a spontaneously immortal Schwann cell clone (iSC). This activity elicits neurite outgrowth from chick embryo explants of both CNS and PNS. The iSC activity has been concentrated by cation-exchange chromatography and compared to known neurotrophins in bioassay. Pooled bound fractions elicit neurite outgrowth from sympathetic, ciliary and motoneurons. In collagen matrix cocultures of iSC and E4 ventral horn(before motor axon extension to muscle targets), the iSC activity can direct the initial axonal extension from motoneurons. The data presented suggest that Schwann cell-produced activity may mediate motoneuron axonal extension before contact with their peripheral source of neurotrophin. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Glucose‐dependent insulinotropic polypeptide (GIP) was initially described to be rapidly regulated by endocrine cells in response to nutrient ingestion, with stimulatory effects on insulin synthesis and release. Previously, we demonstrated a significant up‐regulation of GIP mRNA in the rat subiculum after fornix injury. To gain more insight into the lesion‐induced expression of GIP and its receptor (GIPR), expression profiles of the mRNAs were studied after rat sciatic nerve crush injury in 1) affected lumbar dorsal root ganglia (DRG), 2) spinal cord segments, and 3) proximal and distal nerve fragments by means of quantitative RT‐PCR. Our results clearly identified lesion‐induced as well as tissue type‐specific mRNA regulation of GIP and its receptor. Furthermore, comprehensive immunohistochemical stainings not only confirmed and exceeded the previous observation of neuronal GIP expression but also revealed corresponding GIPR expression, implying putative modulatory functions of GIP/GIPR signaling in adult neurons. In complement, we also observed expression of GIP and its receptor in myelinating Schwann cells and oligodendrocytes. Polarized localization of GIPR in the abaxonal Schwann cell membranes, plasma membrane‐associated GIPR expression of satellite cells, and ependymal GIPR expression strongly suggests complex cell type‐specific functions of GIP and GIPR in the adult nervous system that are presumably mediated by autocrine and paracrine interactions, respectively. Notably, in vivo analyses with GIPR‐deficient mice suggest a critical role of GIP/GIPR signal transduction in promoting spontaneous recovery after nerve crush, insofar as traumatic injury of GIPR‐deficient mouse sciatic nerve revealed impaired axonal regeneration compared with wild‐type mice. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号