首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The hypothesis that irreversible ischemic injury is related to sub-sarcolemmal blebbing and an inherent osmotic fragility of the blebs was tested by subjecting isolated control and ischemically preconditioned (IPC) or calyculin A (CalA)-pretreated (protected) rabbit cardiomyocytes to ischemic pelleting followed by resuspension in 340, 170 or 85 mosmol medium containing trypan blue. At time points from 0-240 min, osmotic fragility was assessed by the percentage of trypan blue permeable cells. Membrane blebs were visualized with India ink preparations. Bleb formation, following acute hypo-osmotic swelling, developed by 75 min and increased with longer periods of ischemia. Osmotic fragility developed only after 75 min. Cells resuspended in 340 mosmol media did not form blebs and largely retained the ability to exclude trypan blue, even after 240 min ischemia. Although the latent tendency for osmotic blebbing preceded the development of osmotic fragility, most osmotically fragile cells became permeable without evident sarcolemmal bleb formation. The onset of osmotic fragility was delayed in protected cells, but protection did not reduce the bleb formation. It is concluded that blebbing and osmotic fragility are independent manifestations of ischemic injury. The principal locus of irreversible ischemic injury and the protection provided by IPC may lie within the sarcolemma rather than at sarcolemmal attachments to underlying adherens junctions.  相似文献   

2.
3.
Because the absence of sarcolemmal dystrophin renders cardiomyocytes vulnerable to mechanical force, the present study investigated whether sarcolemmal membrane fragility upon reperfusion is associated with the loss of membrane dystrophin. Dystrophin was distributed exclusively in the sarcolemmal membrane of buffer-perfused rat cardiomyocytes, but was translocated to the myofibrils during 30 min of ischemia and then lost during reperfusion. Upon reperfusion, the membrane impermeable dye, Evans blue (EB), accumulated in cardiomyocytes depleted of dystrophin. Reperfusion with the contractile blocker 2,3-butanedione monoxime (BDM) resulted in no accumulation of EB in cardiomyocytes despite the loss of dystrophin. Upon withdrawal of BDM, however, EB accumulated in dystrophin-depleted cardiomyocytes. Loss of sarcolemmal dystrophin may be involved in the mechanism of contractile force-induced reperfusion injury.  相似文献   

4.
Summary (1) The location of dystrophin in normal muscle, its molecular structure and associations, characterize it as a component of the submembrane cytoskeleton. When dystrophin is missing the cystoskeleton will therefore be defective, and it has been supposed that this renders the muscle membrane more vulnerable to mechanical damage. With the discovery of animal strains lacking in dystrophin, this hypothesis has been put to experimental tests. Contradictory results have been obtained by workers using different exercise regimens and different indices of fibre damage.(2) Direct measurements of the tensile strength of the membrane have been made on patches of cultured myotubes or isolated muscle fibres, and on sarcolemmal vesicles by pipette aspiration. Neither method has revealed a difference in the tensile strength between normal and dystrophic membrane. The most plausible explanation is that the tensile strength of the membrane is a property more of the lipid bilayer than of the cytoskeleton.(3) In another experimental approach tensile membrane stress has been produced by exposing isolated muscle fibres and myotubes in culture to hypotonic solutions. In such experiments fibres and myotubes lacking dystrophin have been found to lyse more readily than do normal ones. This difference does not conflict with the similarity in tensile strength of normal and dystrophic fibre membranes noted above. Rather, the predisposition to osmotic lysis of dystrophic fibres and myotubes may signify a lower ratio of membrane surface to cell volume, perhaps as a result of loss of some of the spare membrane normally possessed by skeletal muscle fibres and myotubes.(4) In red blood cells the membrane cytoskeleton functions to maintain membrane deformability and stability. Deficiency in spectrin, the main cytoskeletal component, predisposes red cells to cytoskeletal rupture and membrane loss when they experience shear stress. Skeletal muscle fibres, especially long fibres contracting eccentrically, are susceptible to shear stress as a result of uneven contraction along their length. In that event, fibres lacking dystrophin may similarly shed membrane more readily.  相似文献   

5.
Isolated dystrophin molecules as seen by electron microscopy.   总被引:6,自引:0,他引:6       下载免费PDF全文
Dystrophin, the protein product of the Duchenne muscular dystrophy locus [Hoffman, E. P., Brown, R. H., Jr., & Kunkel, L. M. (1987) Cell 51, 919-928], is expressed in striated and smooth muscles as well as in non-muscle tissues. Examination of its primary structure has revealed that the molecule is composed of four domains, three of which share many features with the membrane cytoskeletal proteins spectrin and actinin. Dystrophin has thus been predicted to adopt a rod shape [Koenig, M., Monaco, A. P. & Kunkel, L. M. (1988) Cell 53, 219-228]. In the present study, we describe its isolation from the chicken gizzard smooth muscle and present electron microscopic images of the molecule. Polyclonal antibodies were first prepared from a dystrophin fragment derived from the chicken skeletal muscle gene (residues 1173-1728). A dystrophin-enriched membrane preparation from chicken gizzard muscle was then purified by passing it through an affinity chromatography column made with the anti-dystrophin antibodies. Electron microscopy of isolated and rotatory-shadowed dystrophin molecules revealed that the lengths measured for the dystrophin monomers (175 +/- 15 nm) are compatible with a structural arrangement of the repeat sequence segments in triple-barrel alpha-helices connected by short-turn regions, as was earlier postulated for the repeat domains of spectrin and actinin. Electron microscopic images indicate that in addition the dystrophin molecules could present the same capacity of self-association in oligomeric structures as these cytoskeletal proteins and may thus be a part of a complex molecular meshwork essential to muscle cell function.  相似文献   

6.
The dystrophin glycoprotein complex (DGC) is a specialization of cardiac and skeletal muscle membrane. This large multicomponent complex has both mechanical stabilizing and signaling roles in mediating interactions between the cytoskeleton, membrane, and extracellular matrix. Dystrophin, the protein product of the Duchenne and X-linked dilated cardiomyopathy locus, links cytoskeletal and membrane elements. Mutations in additional DGC genes, the sarcoglycans, also lead to cardiomyopathy and muscular dystrophy. Animal models of DGC mutants have shown that destabilization of the DGC leads to membrane fragility and loss of membrane integrity, resulting in degeneration of skeletal muscle and cardiomyocytes. Vascular reactivity is altered in response to primary degeneration in striated myocytes and arises from a vascular smooth muscle cell-extrinsic mechanism.  相似文献   

7.
The relationship between myocardial cell contracture and injury during total metabolic inhibition (amylobarbital and iodoacetic acid) and ischemia was examined, using 5-50 mM butanedione monoxime (BDM) as an inhibitor of contracture. BDM had no apparent effect on control myocytes during 180 min incubations, but inhibited contracture following anoxia or ischemia in a dose-dependent fashion, as directly quantitated by length/width ratios. Cellular ATP levels decreased at a similar rate in the absence or presence of BDM, following metabolic inhibition. BDM-mediated inhibition of contracture was associated with accelerated cell injury, as defined by: the uptake of an extracellular marker (trypan blue) by the cardiomyocytes, by direct analysis of myoglobin released into the supernatant and by ultrastructural demonstration of defects in sarcolemmal membrane integrity. Calcium was not required for BDM's enhancement of injury, in that cells incubated in calcium free-EGTA buffer showed a similar BDM-mediated acceleration of injury. In the presence or absence of calcium, enhancement of injury was more marked in cells osmotically stressed with a brief incubation in hypotonic buffer, than in cells resuspended in isotonic media. It is concluded that BDM enhances development of osmotic fragility of inhibited or ischemic cardiomyocytes and that contracture is not a necessary contributing factor to myocardial cell death.  相似文献   

8.
Impairment of sarcolemmal permeability after the initiation of acute ischemic myocardial injury was studied using an ionic lanthanum (La3+) probe in electron microscopy. Acute ischemic myocardium was induced by ligation of the left anterior descending coronary artery in dogs. In normal cardiac myocytes La is localized exclusively in the extracellular space. i.e. on the glycocalyx, in the T-system and in intercalated discs, with normal fine structures. In ischemic myocardial cells, La deposits were found in the cytosolic space in 22% of subendocardial cells with mild to moderate, but non-necrotic, fine structural changes as early as 30 min. The number of myocytes with La deposition increased with advancing ischemic injury, and necrotic fine structural changes were recognized following ischemia for 60 min. These results indicate that deposition of La occurs before the appearance of irreversible morphologic alterations in ischemic myocardial cells, and suggest an increased permeability of the sarcolemma for Ca2+ and the development of degradation of plasma membrane integrity.  相似文献   

9.
Dystrophin has been shown to occur in Torpedo electrocyte [Chang, H. W., Bock, E. & Bonilla, E. (1989) J. Biol. Chem. 264, 20831-20834], a highly polarized syncytium that is embryologically derived from skeletal muscle and displays functionally distinct plasma membrane domains on its innervated and noninnervated faces. In the present study, we investigated the subcellular distribution of dystrophin in the adult electrocyte from Torpedo marmorata and the evolution of its distribution during embryogenesis. Immunofluorescence experiments performed on adult electrocytes with a polyclonal antibody directed against chicken dystrophin revealed that dystrophin immunoreactivity codistributed exclusively with the acetylcholine receptor along the innervated membrane. At the ultrastructural level, dystrophin immunoreactivity appears confined to the face of the subsynaptic membrane exposed to the cytoplasm. In developing electrocytes (45-mm embryo), dystrophin is already detectable at the acetylcholine receptor-rich ventral pole of the cells before the entry of the electromotor axons. Furthermore, we show that dystrophin represents a major component of purified membrane fractions rich in acetylcholine receptor. A putative role of dystrophin in the organization and stabilization of the subsynaptic membrane domain of the electrocyte is discussed.  相似文献   

10.
The protein dystrophin, normally found on the cytoplasmic surface of skeletal muscle cell membranes, is absent in patients with Duchenne muscular dystrophy as well as mdx (X-linked muscular dystrophy) mice. Although its primary structure has been determined, the precise functional role of dystrophin remains the subject of speculation. In the present study, we demonstrate that dystrophin-deficient muscle fibers of the mdx mouse exhibit an increased susceptibility to contraction-induced sarcolemmal rupture. The level of sarcolemmal damage is directly correlated with the magnitude of mechanical stress placed upon the membrane during contraction rather than the number of activations of the muscle. These findings strongly support the proposition that the primary function of dystrophin is to provide mechanical reinforcement to the sarcolemma and thereby protect it from the membrane stresses developed during muscle contraction. Furthermore, the methodology used in this study should prove useful in assessing the efficacy of dystrophin gene therapy in the mdx mouse.  相似文献   

11.
The relationship between cell swelling and plasma membrane disruption has been evaluated in thin myocardial slices incubated in oxygenated or anoxic Krebs-Ringer phosphate media. Electron microscopy and measurements of inulin-diffusible space were used to monitor plasma membrane integrity. Inulin is excluded from the intracellular space of intact cells; therefore, an increase in tissue inulin content is an excellent marker of loss of plasma membrane integrity. Cell volume was increased during exposure of aerobic slices to hypotonic media, but the inulin-diffusible space was not increased and electron micrographs showed no detectable plasma membrane alterations. Likewise, during prolonged anoxic isotonic incubation, no evidence of plasma membrane damage was observed. Incubation in anoxic hypotonic media for 60 minutes resulted in a larger increase in cell volume than under aerobic conditions, but plasma membrane integrity was maintained. Extended anoxic hypotonic incubation (300 minutes) produced no further change in tissue water, but the inulin-diffusible space was increased and electron micrographs revealed breaks in the plasma membranes primarily in association with large subsarcolemmal blebs. Likewise, myocardial slices incubated in isotonic anoxic media for 240 minutes and hypotonic anoxic media for 60 minutes had an increased inulin-diffusible space and the ultrastructural appearance was similar. This ultrastructural appearance is indistinguishable from that observed in myocytes lethally injured by ischemia. Measurements of tissue osmolarity during total ischemia showed that osmotically induced cell swelling could occur in ischemic myocardium prior to the onset of plasma membrane disruption. Our results indicate that cell swelling per se is incapable of rupturing plasma membranes; however, after prolonged periods of energy deficiency, the plasma membrane or its cytoskeletal scaffold become injured, which allows the membrane to rupture if the cell is swollen, as might occur during ischemia or reperfusion.  相似文献   

12.
AIMS: Cardiac myopathies are the second leading cause of death in patients with Duchenne and Becker muscular dystrophy, the two most common and severe forms of a disabling striated muscle disease. Although the genetic defect has been identified as mutations of the dystrophin gene, very little is known about the molecular and cellular events leading to progressive cardiac muscle damage. Dystrophin is a protein linking the cytoskeleton to a complex of transmembrane proteins that interact with the extracellular matrix. The fragility of the cell membrane resulting from the lack of dystrophin is thought to cause an excessive susceptibility to mechanical stress. Here, we examined cellular mechanisms linking the initial membrane damage to the dysfunction of dystrophic heart. METHODS AND RESULTS: Cardiac ventricular myocytes were enzymatically isolated from 5- to 9-month-old dystrophic mdx and wild-type (WT) mice. Cells were exposed to mechanical stress, applied as osmotic shock. Stress-induced cytosolic and mitochondrial Ca(2+) signals, production of reactive oxygen species (ROS), and mitochondrial membrane potential were monitored with confocal microscopy and fluorescent indicators. Pharmacological tools were used to scavenge ROS and to identify their possible sources. Osmotic shock triggered excessive cytosolic Ca(2+) signals, often lasting for several minutes, in 82% of mdx cells. In contrast, only 47% of the WT cardiomyocytes responded with transient and moderate intracellular Ca(2+) signals. On average, the reaction was 6-fold larger in mdx cells. Removal of extracellular Ca(2+) abolished these responses, implicating Ca(2+) influx as a trigger for abnormal Ca(2+) signalling. Our further experiments revealed that osmotic stress in mdx cells produced an increase in ROS production and mitochondrial Ca(2+) overload. The latter was followed by collapse of the mitochondrial membrane potential, an early sign of cell death. CONCLUSION: Overall, our findings reveal that excessive intracellular Ca(2+) signals and ROS generation link the initial sarcolemmal injury to mitochondrial dysfunctions. The latter possibly contribute to the loss of functional cardiac myocytes and heart failure in dystrophy. Understanding the sequence of events of dystrophic cell damage and the deleterious amplification systems involved, including several positive feed-back loops, may allow for a rational development of novel therapeutic strategies.  相似文献   

13.
The role of protein kinase C (PKC) in the protection of ischemic preconditioning (PC) is still controversial, partly because of the multiple isozymes of PKC and the inability to directly measure PKC activity in vivo. In this study we have used novel peptide inhibitors which correspond to part of the amino acid sequence from the isozyme-specific RACK-binding site on the PKC molecule. The peptides prevent binding of a specific activated PKC isozyme to its RACK, thus halting isozyme translocation and function. The inhibitor peptides are cross-linked to the membrane-translocating antennapedia homeodomain peptide that allows their entry into cells. The effect of inhibitors of PKC-beta, -delta, -epsilon and -eta were evaluated. Rabbit adult ventricular myocytes were obtained by enzymatic dissociation. Ischemia was simulated by centrifuging the myocytes into an oxygen-free pellet for 180 min. PC was induced by 10 min of pelleting followed by resuspension in oxygenated medium for 15 min. During simulated ischemia cells undergo a predictable increase in osmotic fragility as judged by determination of the number of stained cells following their incubation in hypotonic (85 mOsm) trypan blue. The percentage of cells experiencing membrane rupture, and thus cell staining, was considered to be an index of ischemic injury. PC significantly delayed the progression of osmotic fragility during simulated ischemia (P<0.01). The protection of PC was abolished by the peptide inhibitor of PKC-epsilon but not by the peptide inhibitors selective for PKC-beta, PKC-delta, or PKC-eta; each was applied at 100 n N. Protection could also be induced by the PKC activator oleoylacetyl glycerol, and that protection was aborted by the inhibitor selective for PKC-epsilon, but not by the inhibitor for PKC-delta. None of the above peptide treatments affected the osmotic fragility in non-PC cells during simulated ischemia. Our studies further support PKC as a critical part of the signal transduction pathway in PC and indicate that PKC-epsilon alone is responsible for the early phase of PC's protection in rabbit cardiomyocytes.  相似文献   

14.
The volume measurement of macrophages from rabbit lungs was carried out using an automatic computerized cell counter. The size of freshly prepared macrophages was 669 +/- 62 fl at 4 degrees C. The cell volume increased gradually when the cells were suspended in an isotonic saline solution. Cytochalasin B initially enhanced the increase in cell volume but then caused a reduction. The reduction was considered to be due to structural changes in filament network of contractile proteins. Under hypotonic conditions, cytochalasin B-treated cells showed increased osmotic fragility and reduced expansibility. The increased fragility was considered to result from impairment of the network structure. These findings of the effect of cytochalasin B on the volume change suggest that contractile proteins play a protective role in the membrane against hypotonic expansion.  相似文献   

15.
Sodium-calcium ion exchange in cardiac membrane vesicles.   总被引:10,自引:0,他引:10       下载免费PDF全文
Membrane vesicles isolated from rabbit ventricular tissue rapidly accumulated Ca2+ when an outwardly directed Na+ gradient was formed across the vesicle membrane. Vesicles loaded internally with K+ showed only 10% of the Ca2+ uptake activity observed with Na+-loaded vesicles. Dissipation of the Na+ gradient with the monovalent cation exchange ionophores nigericin or narasin caused a rapid decline in Ca2+ uptake activity. The Ca2+-ionophore A23187 inhibited Ca2+ uptake by Na+-loaded vesicles and enhanced the rate of Ca2+ loss from the vesicles after uptake. Efflux of preaccumulated Ca2+ from the vesicles was stimulated 30-fold by the presence of 50 mM Na+ in the external medium. Na+-dependent uptake and efflux of Ca2+ were both inhibited by La3+. The results indicate that cardiac membrane vesicles exhibit Na+-Ca2+ exchange activity. Fractionation of the vesicles by density gradient centrifugation revealed a close correspondence between Na+-Ca2+ exchange activity and specific ouabain-binding activity among the various fractions. This relationship suggests that the observed Na+-Ca2+ exchange activity derives from the sarcolemmal membranes within the vesicle preparation.  相似文献   

16.
Enteroviral infection can cause an acquired form of dilated cardiomyopathy. We recently reported that dystrophin is cleaved, functionally impaired, and morphologically disrupted in vitro as well as in vivo during infection with coxsackievirus B3. Genetic dystrophin truncations lead to a marked decrease in dystrophin-associated glycoproteins, whereas expression of only the naturally occurring dystrophin carboxyl terminus, Dp-71, restores the sarcolemmal association of the dystrophin-associated glycoproteins. We sought to determine whether acute cleavage of dystrophin leads to a dissociation of the carboxyl-terminal dystrophin fragment and of the sarcoglycans from the sarcolemma during coxsackievirus B3 infection. We found that in cultured cardiac myocytes and murine hearts infected with coxsackievirus B3, the sarcolemmal localization of the dystrophin carboxyl terminus is lost. The dystrophin-associated glycoproteins alpha-, beta-, gamma-, and delta-sarcoglycan and beta-dystroglycan were markedly decreased in the membrane fraction of infected cells in culture, and the typical sarcolemmal localization for each of these proteins was lost in coxsackievirus-B3-infected cardiomyocytes in vivo. Furthermore, sucrose gradient ultracentrifugation demonstrated that delta-sarcoglycan was physically dissociated from dystrophin within the membrane fraction. In vivo, the sarcolemmal integrity was functionally impaired with Evans blue dye uptake even though there was no generalized disruption of the sarcolemma of infected myocytes evidenced by intact wheat germ agglutinin staining. In analogy to hereditary sarcoglycanopathies, this disintegration of the sarcoglycan complex may, in addition to the dystrophin cleavage, play an important role in the pathogenesis of enterovirus-induced cardiomyopathy. These results imply a potential role for disruption of the sarcoglycans in an acquired form of heart failure.  相似文献   

17.
Reperfusion-induced calcium gain provides a marker of irreversible injury, but whether the cells gain calcium because of irreversible injury caused by the ischemic episode, or whether it is the reperfusion-induced calcium gain that triggers the irreversible injury has yet to be established. Using isolated rat hearts made ischemic for either 30 or 60 minutes, and reperfusing with Krebs-Henseleit buffer or Krebs-Henseleit buffer containing either 2,3-butanedione monoxime (to inhibit contractile activity) or 2,4-dinitrophenol or nitrogen-gassed substrate-free Krebs-Henseleit buffer (to inhibit oxidative phosphorylation), the effect of reperfusion was monitored in terms of calcium gain and ultrastructural changes including loss of sarcolemmal integrity. The results establish that the routes of calcium entry during postischemic reperfusion are complex. The calcium gain can occur in the absence of mitochondrial oxidative phosphorylation and is modulated by interventions introduced at the moment of reperfusion which affect the contractile state. There are at least 2 routes of calcium entry: contraction-dependent and contraction independent. The former is probably associated with the development of sarcolemmal discontinuities. The results also establish that when sarcolemmal integrity has been destroyed, the cells can gain excess calcium under conditions that prevent mitochondrial calcium uptake. Accordingly, the mitochondria cannot be the only intracellular organelles that accumulate calcium under these conditions. Additional studies are needed to identify the other sites of calcium binding under conditions of adenosine triphosphate deprivation.  相似文献   

18.
Previous studies from this laboratory have demonstrated that basolateral membrane vesicles isolated from Necturus maculosus small intestinal epithelial cells possess a K(+) channel that is inhibited by ATP. In the present studies, we demonstrate that these vesicles, which are essentially devoid of soluble cytoplasmic contaminants, exhibit volume regulatory responses that parallel those of intact epithelial cells. Thus, suspension of these vesicles in a solution that is hypotonic to the intravesicular solution increases channel activity whereas suspension in a solution that is hypertonic to the intravesicular solution decreases, and may abolish, channel activity. These volume regulatory responses appear to be mediated by the same K(ATP) channel and depend on an intact actin cytoskeletal network. The responses to both hypotonic and hypertonic challenge are abolished by cytochalasin D or by incubating the vesicles under conditions that are known to depolymerize actin. Phalloidin, which is known to stabilize actin filaments, partially prevents the action of cytochalasin D. Thus, the present results indicate that the K(ATP) channel activity of basolateral membrane vesicles from Necturus basolateral membranes respond to hypo- and hypertonic challenge monotonically around an isotonic "set point" and that these responses depend on an intact actin cytoskeleton.  相似文献   

19.
Na-loading single frog atrial cells produce changes in membrane currents that are similar to the creep currents originally observed in Na-loaded cardiac Purkinje fibers. Exposure to the Na ionophore, monensin, was used to induce creep currents in isolated atrial cells. The sensitivity of myocardial creep currents to three compounds that have been shown to be inhibitors of Na-Ca exchange flux activity in isolated sarcolemmal vesicles was assessed. Dodecylamine, quinacrine, and the amiloride analog, 3',4'-dichlorobenzamil block creep currents at concentrations well below those required to block Na-dependent Ca uptake in sarcolemmal vesicles. The estimated Ki's for inhibition of myocardial creep currents were 3 microM for dodecylamin, 10 micron for quinacrine, and 4 microM for 3',4'-dichlorobenzamil. The sensitivity of creep currents to these compounds is consistent with the hypothesis that creep currents may represent the electrogenic activity of a Na-Ca exchange carrier. In an additional series of experiments, the relative specificity of these compounds was tested by examining their effects on myocardial membrane channels. Both dodecylamine and 3',4'-dichlorobenzamil were found to inhibit myocardial Ca and K currents over the same range of concentrations in which block of exchange activity occurs. These results seriously question the use of these exchange carrier inhibitors as selective experimental probes for defining the role of Na-Ca exchange in various physiological processes.  相似文献   

20.
Oxygen free radicals have the ability to oxidize cholesterol. However, nothing is known about the effects of cholesterol oxidation on ion transport in isolated myocardial membranes. The purpose of the present study was to investigate the effects of in situ oxidative modification of sarcolemmal cholesterol on Ca2+ flux. Cholesterol oxidase was used to oxidatively modify membrane cholesterol. After incubation of cardiac sarcolemmal vesicles with cholesterol oxidase, cholest-4-en-3-one (cholestenone) was the predominant species of oxidated cholesterol produced. Cholesterol oxidase inhibited sarcolemmal Na(+)-Ca2+ exchange in a concentration-dependent manner. Both the Vmax and Km of the reaction were altered after cholesterol oxidase treatment. Extensive treatment of the sarcolemmal membranes with cholesterol oxidase increased the passive permeability characteristics of the membrane. Passive Ca2+ efflux from the sarcolemmal vesicles was stimulated by increasing the concentration of cholesterol oxidase. ATP-dependent Ca2+ uptake was also inhibited after cholesterol oxidase treatment, but it was not as sensitive as the Na(+)-Ca2+ exchange. Conversely, passive Ca2+ binding to sarcolemmal vesicles was strikingly stimulated by cholesterol oxidase treatment. The results demonstrate that oxidative modification of sarcolemmal membrane cholesterol can directly affect ionic interactions with the sarcolemmal vesicle and provide potentially important mechanistic information for the molecular basis of the effects of free radicals on ion flux and function in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号