首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
3.
4.
5.
6.
Circadian variation in placental and hepatic clock genes in rat pregnancy   总被引:1,自引:0,他引:1  
Wharfe MD  Mark PJ  Waddell BJ 《Endocrinology》2011,152(9):3552-3560
Clock genes drive circadian rhythms in a range of physiological processes both centrally and in peripheral tissues such as the liver. The aims of this study were to determine whether the two functionally-distinct zones of the rat placenta (junctional and labyrinth) differentially express clock genes and, if so, whether these exhibit circadian patterns. Rats were sampled from d 21 of pregnancy (term = d 23) and from diestrus I of the estrous cycle. Adult liver (all animals), fetal liver, and placental zones (pregnant animals) were collected at 0800, 1400, 2000, and 0200 h. Both zones of the rat placenta expressed all seven canonical clock genes (Clock, Bmal1, Per1, Per2, Per3, Cry1, and Cry2), but there were marked zonal differences and, unlike in maternal liver, circadian variation in placenta was limited. Similarly, placental expression of Vegf varied with zone but not time of day. Pregnancy also led to marked changes in hepatic clock gene expression, with peak levels of Per1, Cry1, and Cry2 all reduced, Per3 increased, and circadian variation in Clock expression lost. All clock genes were expressed in fetal liver, but there was less circadian variation than in maternal liver. Similarly, fetal corticosterone levels remained stable across the day, whereas maternal corticosterone showed clear circadian variation. In conclusion, our data show that the rat placenta expresses all canonical clock genes in a highly zone-specific manner but with relatively little circadian variation. Moreover, pregnancy alters the expression and circadian variation of clock genes in maternal liver, possibly contributing to maternal physiological adaptations.  相似文献   

7.
8.
9.
There is considerable evidence that circadian rhythms in mammals can be modulated by emotional state, but how emotional state modulates specific circadian outputs is poorly understood. We analyzed the expression of the circadian clock protein Period2 (PER2) in three regions of the limbic forebrain known to play key roles in emotional regulation, the central nucleus of the amygdala (CEA), the basolateral amygdala (BLA), and the dentate gyrus (DG). We report here that cells in all three regions exhibit daily rhythms in expression of PER2 that are under the control of the master clock, the suprachiasmatic nucleus (SCN). The rhythm in the CEA and the rhythms in the BLA and DG are diametrically opposite in phase and are differentially affected by adrenalectomy. Adrenalectomy completely abolished the PER2 rhythm in the CEA but had no effect on the PER2 rhythms in the BLA and DG. We previously reported a rhythm in PER2 expression in the oval nucleus of the bed nucleus of the stria terminalis that is identical in phase and sensitivity to adrenalectomy to that found in the CEA. Together, these findings show that key structures of the limbic forebrain exhibit daily oscillations in clock gene expression that are controlled not only by input from the SCN but, importantly, by hormonal and neurochemical changes that normally accompany motivational and emotional states. Thus, cells within these areas are strategically positioned to integrate the inputs from the SCN and emotional states to modulate circadian rhythms downstream from the SCN clock.  相似文献   

10.
Many basic physiological functions exhibit circadian rhythmicity. These functional rhythms are driven, in part, by the circadian clock, an ubiquitous molecular mechanism allowing cells and tissues to anticipate regular environmental events and to prepare for them. This mechanism has been shown to play a particularly important role in maintaining stability (homeostasis) of internal conditions. Because the homeostatic equilibrium is continuously challenged by environmental changes, the role of the circadian clock is thought to consist in the anticipative adjustment of homeostatic pathways in relation with the 24 h environmental cycle. The kidney is the principal organ responsible for the regulation of the composition and volume of extracellular fluids (ECF). Several major parameters of kidney function, including renal plasma flow (RPF), glomerular filtration rate (GFR) and tubular reabsorption and secretion have been shown to exhibit strong circadian oscillations. Recent evidence suggest that the circadian clock can be involved in generation of these rhythms through external circadian time cues (e.g. humoral factors, activity and body temperature rhythms) or, trough the intrinsic renal circadian clock. Here, we discuss the role of renal circadian mechanisms in maintaining homeostasis of water and three major ions, namely, Na+, K+ and Cl.  相似文献   

11.
12.
13.
14.
Although dependent on the integrity of a central pacemaker in the suprachiasmatic nucleus of the hypothalamus (SCN), endogenous daily (circadian) rhythms are expressed in a wide variety of peripheral organs. The pathways by which the pacemaker controls the periphery are unclear. Here, we used parabiosis between intact and SCN-lesioned mice to show that nonneural (behavioral or bloodborne) signals are adequate to maintain circadian rhythms of clock gene expression in liver and kidney, but not in heart, spleen, or skeletal muscle. These results indicate that the SCN regulates expression of circadian oscillations in different peripheral organs by diverse pathways.  相似文献   

15.
16.
The master clock located in the brain regulates circadian rhythms in mammals. Similar clocks are found in peripheral tissues. Life span has been independently increased by reset circadian rhythms and caloric restriction (CR). The mechanisms by which CR extends life span are not well understood. We found that alphaMUPA transgenic mice that exhibit reduced eating and live longer show high amplitude, appropriately reset circadian rhythms in clock gene expression, and clock-controlled output systems, such as feeding time and body temperature. As CR resets circadian rhythms, and the circadian clock controls many physiological and biochemical systems, we suggest that the biological clock could be an important mediator of longevity in calorically restricted animals.  相似文献   

17.
18.
19.
20.
In mammals suprachiasmatic nucleus (SCN), acts as a light entrainable master clock and by generation of temporal oscillations regulates the peripheral organs acting as autonomous clocks resulting in overt behavioral and physiological rhythms. SCN also controls synthesis and release of melatonin (hormonal message for darkness) from pineal. Nitric Oxide (NO) acts as an important neurotransmitter in generating the phase shifts of circadian rhythms and participates in sleep–wake processes, maintenance of vascular tone as well as signalling and regulating inflammatory processes. Aging is associated with disruption of circadian timing system and decline in endogenous melatonin leading to several physiological disorders. Here we report the effect of aging on NO daily rhythms in various peripheral clocks such as kidney, intestine, liver, heart, lungs and testis. NO levels were measured at zeitgeber time (ZT) 0, 6, 12 and 18 in these tissues using Griess assay in male Wistar rats. Aging resulted in alteration of NO levels as well as phase of NO in both 12 and 24 months groups. Correlation analysis demonstrated loss of stoichiometric interaction between the various peripheral clocks with aging. Age induced alterations in NO daily rhythms were found to be most significant in liver and, interestingly least in lungs. Neurohormone melatonin, an endogenous synchroniser and an antiaging agent decreases with aging. We report further differential restoration with exogenous melatonin administration of age induced alterations in NO daily rhythms and mean levels in kidney, intestine and liver and the stoichiometric interactions between the various peripheral clocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号