首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Latent inhibition (LI), that is, retarded conditioning to a stimulus following its nonreinforced pre-exposure, is impaired in some subsets of schizophrenia patients and in amphetamine-treated rats. Potentiation of LI by antipsychotic drugs (APDs) given in conditioning, under conditions that do not lead to LI in controls, is a well-established index of antipsychotic activity. Recently, we have shown that the atypical APD, clozapine, in addition disrupts LI if administered in pre-exposure, under conditions that lead to LI in controls. This study demonstrates the same behavioral profile for the atypical APD risperidone. LI was measured in a thirst-motivated conditioned emotional response procedure by comparing suppression of drinking in response to a tone previously paired with a foot shock in rats that received nonreinforced exposure to the tone prior to conditioning (pre-exposed (PE)) and rats for whom the tone was novel (non-pre-exposed (NPE)). We show that under conditions that did not yield LI in vehicle controls (40 pre-exposures and five conditioning trials), risperidone (0.25, 0.5, and 1.2 mg/kg) led to LI when administered in conditioning. Under conditions that led to LI in vehicle controls (40 pre-exposures and two conditioning trials), risperidone (0.25, 0.5, and 2.5 mg/kg) abolished LI when administered in pre-exposure; the latter effect was not evident with haloperidol. In addition, the effects of risperidone administered in both the pre-exposure and conditioning stages were dose-dependent so that the pre-exposure-based action was manifested at lower but not at higher doses. It is concluded that atypical APDs exert in the LI model a dual pattern of effects, which enables detection of their 'typical' action (conditioning-based LI potentiation) as well as a dissociation from typical APDs by their 'atypical' action (pre-exposure-based LI disruption). It is suggested that the former and latter effects are subserved by D2 and 5HT2A antagonism, respectively.  相似文献   

2.
The animal amphetamine model of schizophrenia has been based primarily on stereotyped behavior. The present study sought to demonstrate an amphetamine-induced deficit in attentional processes. To this end, the effects of acute and chronic (14 days) 1.5 mg/kg dl-amphetamine administration on the ability of rats to ignore irrelevant stimuli were examined using the paradigm of latent inhibition (LI) in a conditioned emotional response (CER) procedure. The procedure consisted of three stages: pre-exposure, in which the to-be-conditoned stimulus, tone, was presented without being followed by reinforcement; acquisition, in which the pre-exposed tone was paired with shock; and test, in which LI was indexed by animals' suppression of licking during tone presentation. Experiment 1 showed that chronic but not acute treatment abolished LI. Experiment 2 showed that animals receiving chronic amphetamine pretreatment but pre-exposed and conditioned without the drug, exhibited normal LI. In Experiment 3, animals which received chronic amphetamine pretreatment and were pre-exposed under the drug but conditioned without it, also showed normal LI. The implications of these results for the animal amphetamine model of schizophrenia are discussed.  相似文献   

3.
Suppression of conditioned avoidance response is a preclinical behavioral index of antipsychotic activity. Previous work shows that olanzapine and risperidone disrupt avoidance response elicited by a less salient conditioned stimulus (CS2) to a greater extent than avoidance elicited by a more salient stimulus (CS1), suggesting that antipsychotic drugs may have a weakening action on motivational salience of stimuli. In the present study, we further examined this mechanism of antipsychotic action, focusing on the possible impact of baseline difference of CS1 and CS2 response rates on the avoidance-disruptive effect of olanzapine and risperidone. Rats were first trained to acquire avoidance responding in a procedure in which the number of CS2 trials (i.e. 20) was twice the number of CS1 trials (i.e. 10), but the percentage of CS2-shock pairing was set at 25% lower (15 trials out of 20) than the percentage of CS1-shock pairing (20 trials out of 20). They were then tested daily under olanzapine (0.5 and 1.0 mg/kg, sc) or risperidone (0.33 and 1.0 mg/kg, sc) for 5 consecutive days. Repeated olanzapine and risperidone treatment dose-dependently disrupted avoidance responding to both CS1 and CS2. Both drugs at the high dose disrupted the CS2 avoidance to a greater extent than the CS1 avoidance. In the final challenge test, rats previously treated with olanzapine were tested under risperidone (0.33 mg/kg), whereas rats previously treated with risperidone were tested under olanzapine (0.5 mg/kg). Results show that rats previously treated with risperidone 1.0 mg/kg group made significantly fewer avoidance responses than the vehicles under olanzapine at 0.5 mg/kg. These findings confirm that olanzapine and risperidone disrupt avoidance response primarily by selectively attenuating the motivational salience of the CS. The present study also suggests that there is a generality of antipsychotic drug experience that is mediated by a shared interoceptive drug state mechanism.  相似文献   

4.
Psychostimulant-induced locomotor sensitization and disrupted latent inhibition (LI) of a classically conditioned association are two paradigms that have been widely studied as animal behavioural models of psychosis. In this study we assessed the effects of withdrawal from the repeated intermittent administration of cocaine on LI of a conditioned fear response. Animals which were either preexposed (PE) to a tone conditioned stimulus (CS) or naive to the tone (i.e. non-preexposed: NPE) subsequently experienced 10 pairings of the tone CS with footshock. Afterwards, both groups received five daily injections of cocaine (20 mg/kg, i.p.) or saline. After 3 days of withdrawal from drug treatment, animals were tested for conditioned freezing to the context of the footshock chamber, and 1 day later, for conditioned freezing to the tone CS. Cocaine-sensitized animals exhibited markedly enhanced LI compared to saline-treated animals, due to the fact that NPE-cocaine animals spent more time freezing during the tone CS than NPE-saline animals, whereas PE-cocaine animals showed a tendency toward reduced freezing compared to the saline groups. While these results suggest the presence of increased anxiety in cocaine-withdrawn NPE animals, the absence of this effect in cocaine-withdrawn PE rats indicates that cocaine withdrawal also influences the retrieval of previously learned information.  相似文献   

5.
The delayed effects of phencyclidine (PCP) have been shown to disrupt latent inhibition (LI) in a conditioned taste-aversion paradigm. In an attempt to understand the mechanism of this disruption, the delayed effects of the selective sigma receptor agonist 1,3-Di(2-tolyl)guanidine (DTG) and the selective NMDA receptor antagonist MK-801 on latent inhibition were assessed in the same paradigm. Water-deprived male rats were allowed access to either water (nonpreexposed; NPE) or 5% sucrose (preexposed; PE) for 30 min on 2 consecutive days. On the third day, animals were allowed access to sucrose and subsequently injected with lithium chloride. On the forth day, animals were allowed access to both sucrose and water. LI was assessed by comparing the percent sucrose consumed in PE and NPE groups on the fourth day. DTG (1.0, 5.0, or 10.0 mg/kg), MK-801 (0.5, 1.0, or 2.0 mg/kg), or vehicle was administered IP 20 h before preexposure (days 1 and 2) and conditioning (day 3). In vehicle-treated groups, PE animals consumed a significantly higher percent sucrose on the test day than NPE animals, indicating the presence of LI. DTG (10.0 mg/kg) and MK-801 (2.0 mg/kg) decreased the percent sucrose consumed by animals in the PE group to the level observed in the NPE group, indicating disrupted LI. However, this dose of MK-801 was found to produce a decrease in percent sucrose consumed in PE animals not treated with lithium chloride, indicating that the decrease observed in the LI paradigm could be due to MK-801-induced decrease in taste preference for sucrose rather than a disruption of LI. Lower doses of MK-801 that did not produce a decrease in taste preference for sucrose did not significantly disrupt LI. None of the doses of DTG tested altered taste preference for sucrose. These data suggest a role for sigma receptors in the previously observed PCP-induced disruption of LI. Published by Elsevier Science Inc., 2000  相似文献   

6.
Latent inhibition (LI) is a behavioral paradigm in which prior exposure to a stimulus not followed by reinforcement retards subsequent conditioning to that stimulus when it is paired with reinforcement. Two experiments investigated the effects of 0.1 mg/kg haloperidol administration on LI as a function of number of CS pre-exposures. The investigation was carried out using a conditioned emotional response (CER) procedure consisting of three stages: pre-exposure, in which the to-be-conditioned stimulus, tone, was repeatedly presented without reinforcement; conditioning, in which the pre-exposed stimulus was paired with shock; and test, where LI was indexed by animals' suppression of licking during tone presentation. The three stages were conducted 24 h apart. In Experiment 1, 40 CS pre-exposures were given. LI was obtained in both the placebo and haloperidol conditions, but the effect was much more pronounced under the drug. Experiment 2 used ten CS pre-exposures. LI was not obtained in the placebo animals but was clearly evident in animals injected with haloperidol. The implications of these findings for the effects of neuroleptics on learning are discussed.  相似文献   

7.
Six rats lever-pressed under a variable-interval 80-sec food reinforcement schedule. After responding had stabilized, an 8-sec tone terminating with food delivery was superimposed on the variable-interval schedule on the average once every five minutes without regard to the animal's behavior. This positive conditioned suppression procedure consistently reduced responding during the pre-food stimulus (tone). Neither d-amphetamine (0.5, 1.0, 2.0 mg/kg) nor chlordiazepoxide (7.5, 15, 30 mg/kg) significantly affected the relative suppression produced by the tone. Instead, both drugs produced generally non-selective effects, similarly affecting response rate in the presence and absence of the tone.  相似文献   

8.
Abstract Rationale. Latent inhibition (LI) refers to retarded conditioning to a stimulus as a consequence of its inconsequential pre-exposure, and disrupted LI in the rat is considered to model an attentional deficit in schizophrenia. Blockade of NMDA receptor transmission, which produces behavioral effects potentially relevant to schizophrenic symptomatology in several animal models, has been reported to spare LI. Objectives. To show that systemic administration of the non-competitive NMDA antagonist MK-801 will lead to an abnormally persistent LI which will emerge under conditions that disrupt LI in controls, and that this will be reversed by the atypical neuroleptic clozapine but not by the typical neuroleptic haloperidol, as found for other NMDA antagonist-induced models. Methods. LI was measured in a thirst-motivated conditioned emotional response (CER) procedure by comparing suppression of drinking in response to a tone in rats which previously received 0 (non-pre-exposed) or 40 tone exposures (pre-exposed) followed by two (experiment 1) or five (experiments 2–5) tone – foot shock pairings. Results. MK-801 at doses of 0.1 and 0.2 mg/kg reduced conditioned suppression while no effect on suppression was seen at the 0.05 mg/kg dose. At the latter dose, intact LI was seen with parameters that produced LI in controls (40 pre-exposures and two conditioning trials). Raising the number of conditioning trials to five disrupted LI in control rats, but MK-801-treated rats continued to show LI, and this abnormally persistent LI was due to the action of MK-801 in the conditioning stage. MK-801-induced LI perseveration was unaffected by both haloperidol (0.1 mg/kg) and clozapine (5 mg/kg) administered in conditioning, and was reversed by clozapine but not by haloperidol administered in pre-exposure. Conclusion. MK-801-induced perseveration of LI is consistent with other reports of perseverative behaviors, suggested to be particularly relevant to negative symptoms of schizophrenia, following NMDA receptor blockade. We suggest that LI perseveration may model impaired attentional set shifting associated with negative symptoms of schizophrenia. Moreover, the finding that the action of MK-801 on LI and the action of clozapine are exerted in different stages of the LI procedure suggests that the MK-801-based LI model may provide a unique screening tool for the identification of novel antipsychotic compounds, whereby the schizophrenia-mimicking LI abnormality is drug-induced, but the detection of the antipsychotic action is not dependent on the mechanism of action of the pro-psychotic drug. Electronic Publication  相似文献   

9.
Latent inhibition (LI) is a behavioral paradigm in which prior exposure to a stimulus not followed by reinforcement retards subsequent conditioning to that stimulus when it is paired with reinforcement. The development of LI reflects a process of learning to ignore, or tune out, irrelevant stimuli. Three experiments investigated the effects of phencyclidine (PCP) on LI. The investigation was carried out using a conditioned emotional response (CER) procedure consisting of three stages: preexposure, in which the to-be-conditioned stimulus, tone, was repeatedly presented without reinforcement; conditioning, in which the preexposed stimulus was paired with shock; and test, where LI was indexed by animals' suppression of licking during tone presentation. The three stages were conducted 24 h apart. In Experiment 1, 1 mg/kg PCP was administered either in the preexposure or in the conditioning stage or in both. Experiment 2 used 5 mg/kg PCP in the same procedure. In Experiment 3, 5 mg/kg PCP was administered throughout the LI procedure, including the test stage. In all three experiments, PCP did not affect LI. The implications of these findings for the development of animal models of schizophrenia are discussed.  相似文献   

10.
The antipsychotic potential of cholecystokinin (CCK)-related compounds stems from CCK's colocalization with dopamine (DA). CCK demonstrates excitatory and inhibitory effects on DA in the mesolimbic pathway. Such diverse actions might be mediated by different receptor subtypes (CCK(A) or CCK(B)). Multiple hypotheses have emerged regarding the clinical application of CCK-based drugs. Administering selective nonpeptide antagonists within animal models relevant to schizophrenia would help delineate CCK receptor involvement. One animal model simulating a cognitive dysfunction of schizophrenia is latent inhibition (LI). An animal repeatedly exposed to a stimulus that is devoid of consequence is subsequently inhibited in making new associations with that stimulus. This reflects a process of learning to ignore irrelevant stimuli. The present study examined the effects of the selective CCK(B) antagonist PD-135,158 (0.001, 0. 01, and 0.1 mg/kg) using a conditioned suppression of drinking procedure in rats. For purposes of comparison the effects of haloperidol (0.1 mg/kg) were also investigated. PD-135,158 (0.1 mg/kg), similar to haloperidol (0.1 mg/kg), elicited a clear LI effect under conditions that did not lead to LI in control rats (low number of preexposures). These findings highlight the antipsychotic potential of CCK(B) antagonists, and further illustrate the LI paradigm's capacity to detect novel, antipsychotic-like, drug activity.  相似文献   

11.
Latent inhibition (LI) is a behavioral phenomenon whereby repeated exposure to a non-reinforced stimulus retards subsequent conditioning to that stimulus. Deficits in LI may reflect an inability to ignore irrelevant stimuli and are studied as a model of the cognitive/attentional abnormalities found in schizophrenia. We recently determined that pretreatment with escalating doses of the indirect dopamine agonist amphetamine (AMPH; 3 daily injections ip, 1-5 mg/kg, over 6 days) disrupts LI in rats tested in a 2-way active avoidance paradigm during withdrawal. In the present study, we evaluated the effects of the atypical neuroleptic clozapine and the typical neuroleptic haloperidol on the expression of LI on day 4 of AMPH withdrawal. Neuroleptic injections were given either 45 min prior to each of two tone preexposure sessions and a subsequent tone-shock avoidance test session, or only prior to the test session. As expected, saline-injected control groups showed LI during the test session, as reflected by significantly reduced avoidance in tone preexposed vs. non-preexposed rats. In contrast, animals pretreated with escalating doses of AMPH did not show LI, due to the improved avoidance of the preexposed animals. Both haloperidol (0.03 mg/kg) and clozapine (5 mg/kg) largely reversed the disruptive influence of AMPH on LI regardless of whether these drugs were administered prior to both preexposure and test sessions or only prior to the test session. These results provide pharmacological validation for an AMPH withdrawal model of schizophrenic symptoms.  相似文献   

12.
RATIONALE: Latent inhibition (LI) refers to the decrease in conditioned response induced by the repeated non-reinforced pre-exposure to the conditioned stimulus before its pairing with the unconditioned stimulus during the conditioning stage. LI has been considered as a relevant animal model for the study of the biological bases of schizophrenia. LI has recently been demonstrated to depend on the integrity of the entorhinal cortex, as lesioning of this area disrupted LI. OBJECTIVES: The present study aimed to verify whether the classical neuroleptic haloperidol and/or the atypical antipsychotic olanzapine would prevent the effect of entorhinal cortex lesioning. METHODS: LI was studied in an off-baseline conditioned emotional response (CER) paradigm in which a tone is paired with a footshock. Entorhinal cortex lesions were produced by the electrolytic method. After a recovery period, both lesioned and control rats received either haloperidol (0.3 mg/kg), olanzapine (0.3 mg/kg) or vehicle before both the pre-exposure and conditioning stages of the experiment. RESULTS: In control rats, pre-exposure to the tone induced LI, which was affected by neither haloperidol nor olanzapine. Lesioning of the entorhinal cortex produced a deficit of LI, which was restored by olanzapine but not by haloperidol. CONCLUSIONS: This result suggests a dissociation of the anatomical and pharmacological targets of the two drugs. The possible involvement of dopamine D3 receptors in the effects of olanzapine is discussed.  相似文献   

13.
Latent inhibition (LI) is a measure of retarded conditioning to a previously presented non-reinforced stimulus, that is impaired in schizophrenic patients and in rats treated with amphetamine. Neuroleptic drugs are known to produce two effects in this paradigm: to antagonize amphetamine-induced disruption of LI, and to facilitate the development of LI when administered on their own. The present experiments tested the effects on LI of the new neuroleptic, sertindole. The experiments used a conditioned emotional response procedure in rats licking for water, consisting of three stages: pre-exposure, in which the to-be-conditioned stimulus (a tone) was repeatedly presented without being followed by reinforcement; conditioning, in which the pre-exposed stimulus was paired with reinforcement (a foot shock); and test, in which LI was indexed by degree of suppression of licking during tone presentation. In Experiment 1 the effects of 0.31, 1.3 and 5.0mg/kg sertindole were assessed following pre-exposure to 40 non-reinforced tones. Experiment 2 tested the effects of 5mg/kg on LI following pre-exposure to 10 non-reinforced tones. Experiment 3 investigated antagonism of amphetamine-induced disruption of LI by 5.0mg/kg sertindole. The results demonstrated that sertindole (5.0mg/kg) possesses a neuroleptic-like profile in the LI model: it facilitates the development of LI and antagonizes amphetamine-induced disruption of LI.  相似文献   

14.
Acute bolus doses of morphine induce a state of acute opioid dependence as measured by naloxone-precipitated withdrawal. Repeated morphine and precipitated withdrawal experience further enhances naloxone-induced withdrawal severity, partly because of direct neuroadaptation to repeated morphine, and partly because of conditioned associations of context and withdrawal experience. To determine whether a discrete tone/light conditioned stimulus could elicit conditioned withdrawal responses in acute dependence, rats trained on a fixed-ratio-15 operant schedule for food reward received morphine (5.6 mg/kg) 4x at daily or weekly intervals, with each morphine injection followed at 4 h by naloxone (1.0 mg/kg) and an operant session. The conditioned stimulus was presented to a Paired group after each naloxone injection. Separate control groups experienced the conditioned stimulus either at a different time of the day or on a different day of the week than naloxone (Unpaired), received naloxone without any conditioned stimulus exposure [Paired-no conditioned stimulus (Paired-NO CS)] or received vehicle instead of naloxone before conditioned stimulus presentation (NaI-Naive). On the test day, all rats received vehicle before conditioned stimulus exposure. The conditioned stimulus alone reliably suppressed responding in Paired groups relative to control conditions with either daily or weekly intervals between conditioning sessions. The administration of morphine 4 h before conditioned stimulus exposure on the test day was not necessary to observe conditioned withdrawal. Thus, conditioned withdrawal is reliably established to discrete cues associated with naloxone-precipitated withdrawal from acute, infrequent (weekly) opioid exposure.  相似文献   

15.
Latent inhibition (LI) of a conditioned emotional response (CER) has been proposed as a quantitative measure of selective attention. We have assessed the parallels of the pharmacology of LI in rats with the clinical pharmacology of schizophrenia. Drug and vehicle treated rats were divided into groups and preexposed 20 times to cage illumination as a CS, or not preexposed. All groups were conditioned with 2 CS-footshock pairings. The following day CER, as measured by interruption of drinking in response to CS presentation, was recorded. LI was observed as a decreased CER in preexposed relative to non-preexposed animals. LI was enhanced by haloperidol 0.3 mg/kg after 7 or 14 daily treatments, but not after a single acute dose. Haloperidol doses of 0.3 and 0.03 mg/kg enhanced LI, while doses of 0.003 and 3.0 mg/kg had no effect. Haloperidol enhancement of LI was unaffected by the coadministration of the anticholinergic agent trihexyphenidyl. Enhancement of LI is exhibited by the antipsychotic drugs fluphenazine, chlorpromazine, thiothixene, thioridazine, mesoridazine, and metoclopramide but not clozapine. The non-antipsychotic drugs pentobarbital, imipramine, chlordiazepoxide, trihexyphenidyl, and promethazine failed to enhance LI. LI exhibits striking parallels to the clinical pharmacology of schizophrenia.Preliminary data were presented in part at the Society for Neuroscience Annual Meeting, Phoenix, AZ, 1989  相似文献   

16.
Latent inhibition (LI) is a measure of retarded conditioning to a previously-presented nonreinforced stimulus, that is impaired in schizophrenic patients and in rats treated with amphetamine. Neuroleptic drugs are known to produce two effects in this test paradigm: to antagonise amphetamine-induced disruption of LI, and to enhance LI when administered on their own. The present experiments tested the effects on LI of a potential antipsychotic, sigma ligand BMY-14802. The experiments used a conditioned emotional response (CER) procedure in rats licking for water, consisting of three stages: preexposure, in which the to-be-conditioned stimulus (a tone) was repeatedly presented without being followed by reinforcement; conditioning, in which the preexposed stimulus was paired with reinforcement (a foot shock); and test, in which LI was indexed by animals' degree of suppression of licking during tone presentation. In Experiment 1, 20 tone preexposures and two conditioning trials were given and the effects of 5, 15, and 30mg/kg BMY-14802 were assessed. Experiment 2 tested the effects of 15 and 30mg/kg on LI using ten preexposures and two conditioning trials. Experiment 3 investigated the effects of 15 and 30mg/kg on LI using 40 preexposures and extended conditioning consisting of five tone-shock pairings. Experiments 4 and 5 investigated antagonism of amphetamine-induced disruption of LI by 15 and 30mg/kg BMY-14802, respectively. BMY-14802 was found to antagonise amphetamine-induced disruption of LI and enhance LI when low numbers of preexposures and two conditioning trials were given, but not following extended conditioning. These results provide partial support for the suggestion that BMY-14802 may possess antipsychotic properties.  相似文献   

17.
In the latent inhibition (LI) paradigm, prior nonreinforced exposure to a stimulus retards subsequent conditioning to that stimulus when it is paired with reinforcement. The development of LI reflects learning not to attend to, or ignore, stimuli which predict no significant consequences. The present experiment tested the effects of chlordiazepoxide (CDP) on LI using a conditioned emotional response (CER) procedure consisting of three stages given 24 hr apart: preexposure, in which the to-be-conditioned stimulus, tone, was presented without reinforcement; conditioning, in which the preexposed stimulus was paired with shock; and test, where LI was indexed by animals' suppression of licking during tone presentation. Preexposure and conditioning were given off-baseline. CDP (5 mg/kg) was administered only in preexposure, only in conditioning, in both stages or in neither. The administration of the drug during tone-shock conditioning conducted off-baseline markedly reduced animals' suppression to the tone in a subsequent licking test which was conducted without the drug. The administration of CDP during nonreinforced preexposure to the tone abolished the development of LI, i.e., drug-treated preexposed animals did not show reduced suppression as compared to drug-treated nonpreexposed animals. These results demonstrate that CDP: a) blocks the acquisition of classically conditioned fear and b) disrupts animals' ability to learn that stimuli predict no significant outcomes.  相似文献   

18.
Latent inhibition (LI) is a behavioral paradigm in which animals learn to ignore a repeatedly presented stimulus not followed by meaningful consequences. We previously reported that LI was disrupted following the administration of 1.5 mg/kg dl-amphetamine. The present experiments investigated the effects of 6 mg/kg dl-amphetamine administration on LI in a conditioned emotional response (CER) procedure consisting of three stages: pre-exposure, in which the to-be-conditioned stimulus, tone, was repeatedly presented without reinforcement; conditioning, in which the pre-exposed stimulus was paired with shock; and test, where LI was indexed by animals' suppression of licking during tone presentation. The three stages were conducted 24 h apart. In Experiment 1, the drug was administered in a 2×2 design, i.e. drug-no drug in pre-exposure and drug-no drug in conditioning. LI was obtained in all conditions. In Experiment 2, animals were given either 5 days of 6 mg/kg amphetamine pretreatment and amphetamine in pre-exposure and conditioning or 7 days of saline. LI was not obtained under amphetamine, but this outcome reflected a state-dependency effect. In Experiment 3, animals received either 5 days of amphetamine pretreatment and amphetamine in pre-exposure, conditioning and test or 8 days of saline. LI was obtained in both the placebo and amphetamine conditions. Experiments 4a and 4b compared the effects of two drug doses, 1.5 (4a) and 6 mg/kg (4b), administered in pre-exposure and conditioning. LI was abolished with the 1.5 mg/kg dose but not with the 6 mg/kg dose.  相似文献   

19.
There has been considerable interest in the role of dopamine D(3) receptors in appetitive conditioning but few studies have examined their role in aversive conditioning. The present study examined the effect of the dopamine D(3) receptor-preferring partial agonist BP 897 (1-(4-(2-naphthoyl-amino)butyl)-4-(2-methoxyhenyl)-1A-piperazine hydrochloride) and the selective dopamine D(3) receptor antagonist SB-277011A (trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]syclohexyl]4-quinolininecarboxamide]) on the expression and acquisition of fear conditioning. Rats (N=143) received 3 conditioned stimulus-shock pairings and then received 15 conditioned stimulus-alone presentations (3 per day) while lever pressing for food. Response suppression was taken as the behavioral measure of fear. Rats showed strong suppression to the conditioned stimulus after it had been paired with shock and suppression progressively weakened over conditioned stimulus-alone presentations. In experiment 1, rats that received BP 897 (1.0, 2.0 mg/kg i.p.) or SB-277011A (10.0 mg/kg i.p.) prior to conditioned stimulus-alone presentation sessions showed reduced suppression to the conditioned stimulus as compared to rats that received vehicle or lower doses of drug (0, 0.1 mg/kg BP 897; 0, 0.5, 5.0 mg/kg SB-277011A). Injections of BP 897 (1.0, 2.0 mg/kg) or SB-277011A (10.0 mg/kg) prior to conditioned stimulus-shock pairings did not significantly affect subsequent response suppression. Thus, BP 897 and SB-277011A dose-dependently attenuated the expression but not the acquisition of conditioned fear. These findings suggest that BP 897 and SB-277011A reduce the control of responding by aversively conditioned stimuli.  相似文献   

20.
1. Rats pressed a bar for milk reward at a steady rate, but this baseline responding was suppressed in the presence of an auditory stimulus associated with electric shock (conditioned suppression). The effects of (+)-amphetamine sulphate on this conditioned suppression were studied in two experiments.2. (+)-Amphetamine sulphate (0.5, 1.0 or 2.0 mg/kg) reduced the baseline rate of responding and also reduced the conditioned suppression, i.e. responding in the presence of the auditory stimulus was partially restored. Both these effects were dose related.3. In a further experiment the effects of 1.0 mg/kg on two levels of conditioned suppression were studied. Regardless of its degree, (+)-amphetamine attenuated suppression.4. The results were compared to previous research which found that amphetamine increased baseline responding and exaggerated conditioned suppression. It was concluded that the conditioned suppression procedure should be used with caution as an animal model of anxiety in psychopharmacological investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号