首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of the Rho kinase (ROCK) pathway has been associated with inhibition of neurite regeneration and outgrowth in spinal cord injury. Growth-inhibitory substances present in the glial scar such as chondroitin sulfate proteoglycans (CSPGs) have been shown to create a nonpermissive environment for axon regeneration that results in growth cone collapse. In this study, an in vitro model was developed in nerve growth factor-differentiated PC12 cells where the Rho/ROCK pathway was modulated by CSPG. CSPG elicited concentration-dependent inhibition of neurite outgrowth in PC12 cells, which was reversed by ROCK inhibitors such as fasudil, dimethylfasudil, and Y27632. Further studies on the interactions of CSPG with ROCK inhibitors revealed that the modulation of ROCK by CSPG is noncompetitive in nature. It was also observed that ROCK inhibitors increased neurite outgrowth in undifferentiated PC12 cells, indicating constitutive ROCK activity in the cells. Analysis of signaling pathways demonstrated that the effect of CSPG increases the phosphorylation of myosin phosphatase, a substrate immediately downstream of ROCK activation. Fasudil, dimethylfasudil, and Y27632 inhibited the phosphorylation of myosin phosphatase induced by CSPG with rank order potencies comparable to those observed in the neurite outgrowth assay. In addition, ROCK inhibitors reversed cofilin phosphorylation induced by CSPG with similar rank order potencies. Taken together, our data demonstrate that the interaction of CSPG with the ROCK pathway involves downstream effectors of ROCK such as myosin phosphatase and cofilin.  相似文献   

2.
Administration of epidermal growth factor receptor (EGFR) inhibitors (e.g. AG1478/PD168393) promotes central nervous system (CNS) axon regeneration in vivo by an unknown mechanism. Here, we show that EGFR activation is not required for AG1478-/PD168393-induced neurite outgrowth in cultures of dorsal root ganglion neurons (DRGN) with added inhibitory CNS myelin extract (CME), but is mediated by the paracrine and autocrine actions of the glia-/neuron-derived neurotrophins (NT) NGF, BDNF and NT-3 through Trk signalling in DRGN potentiated by elevated cAMP levels. The DRGN neurite growth seen in CME-inhibited cultures treated with AG1478 is eradicated by blocking Trk signalling but undiminished after siRNA knockdown of > 90% EGFR. Moreover, addition of the combined triplet of NT restores neurite outgrowth in CME-inhibited cultures, when cAMP levels are raised. Accordingly, we suggest that chemical EGFR inhibitors act independently of EGFR, inducing glia and neurons to secrete NT and raising cAMP levels in DRG cultures, leading to Trk-dependent disinhibited DRGN neurite outgrowth.  相似文献   

3.
Axons fail to regenerate in the central nervous system after injury. Chondroitin sulfate proteoglycans (CSPG) expressed in the scar significantly contribute to the nonpermissive properties of the central nervous system environment. To examine the inhibitory activity of a CSPG mixture on retina ganglion cell (RGC) axon growth, we employed both a stripe assay and a nerve fiber outgrowth assay. We show that the inhibition exerted by CSPGs in vitro can be blocked by application of either C3 transferase, a specific inhibitor of the Rho GTPase, or Y27632, a specific inhibitor of the Rho kinase. These results demonstrate that CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK signaling pathway. Consistent with these results, we found that retina ganglion cell axon growth on glial scar tissue was enhanced in the presence of C3 transferase and Y27632, respectively. In addition, we show that the recently identified inhibitory CSPG Te38 is upregulated in the lesioned spinal cord.  相似文献   

4.
We tested whether combined therapy involving Rho inactivation, elevation of cAMP and supply of ciliary neurotrophic factor (CNTF) (i) increased axotomized adult retinal ganglion cell (RGC) survival and (ii) promoted axonal regeneration into peripheral nerve (PN) autografted onto the cut optic nerve. PN-grafted eyes were injected with combinations of a Rho-inactivating enzyme C3 transferase (C3-11), CNTF and a cell-permeant analogue of cAMP (CPT-cAMP). Four weeks after PN transplantation, RGC survival was quantified using beta-III tubulin immunohistochemistry. Regeneration was assessed using retrograde fluorogold tracing and pan-neurofilament immunostaining of grafts. Treatment with C3-11 increased RGC survival but co-injection with CPT-cAMP, CNTF or combined CNTF/CPT-cAMP did not further enhance RGC viability. There were greater numbers of regenerating RGCs after multiple C3-11 injections and regeneration was further and significantly increased after intravitreal injections of all three factors. In the combined C3-11/CNTF/CPT-cAMP treatment group about 15% of RGCs remained viable of which more than half regenerated an axon. These data emphasize the power of combinatorial pharmacotherapeutic and transplant strategies in the treatment of neurotrauma.  相似文献   

5.
We have investigated the differential mediators of the neurotrophic effects of intravitreal peripheral nerve grafting and lens injury on adult rat retinal ganglion cells (RGC). Lens injury and intravitreal peripheral nerve grafting both stimulated RGC neurite growth in vitro and axon regeneration past the optic nerve lesion site in vivo concomitant with activation of retinal glia and invasion of macrophages into the eye. These observations, together with the results of coculture studies using a macrophage-free intact peripheral nerve segment, a macrophage-free intact lens, a macrophage-rich peripheral nerve segment, or a macrophage-rich injured lens in retinal cultures suggest that the stimulation of RGC axon regeneration by lens injury and intravitreal peripheral nerve grafting share a common macrophage-derived component overlain by distinct lens-derived and peripheral nerve-derived neurotrophic factors, respectively. RGC axon regeneration following lens injury and intravitreal peripheral nerve grafting was similar in vivo, correlating with similar retinal glia activation whereas, in vitro, the level of RGC neurite outgrowth was significantly higher following intravitreal peripheral nerve grafting compared with lens injury, concomitant with the presence of increased numbers of activated retinal glia. This suggests that in vivo RGC axon regeneration induced by lens injury and peripheral nerve grafting may be limited, in part, by factors derived from activated retinal glia.  相似文献   

6.
Axon regeneration in the adult central nervous system (CNS) is prevented by inhibitory molecules present in myelin, which bind to a receptor complex that leads to downstream RhoGTP activation and axon growth cone collapse. Here, we compared expression of Citron kinase (Citron-K), a target molecule of RhoGTP in non-regenerating dorsal root ganglion neurons (DRGN) after dorsal column (DC) injury, and in regenerating DRGN after either sciatic nerve (SN) injury or preconditioning SN+DC lesion models. We show by microarray that Citron-K mRNA levels in DRGN of a non-regenerating DC injury model were elevated 2-fold compared to those of intact control DRGN. Conversely, Citron-K levels were reduced by 2 and 2.4-fold at 10 days post lesion in the regenerating SN and preconditioning SN+DC lesion models, respectively, compared to levels in control intact DRGN. Western blotting and immunohistochemistry confirmed these observations and localised Citron-K immunostaining to both DRGN and satellite glia. In dissociated, adult rat DRG cell cultures, 80% knockdown of Citron-K, in the presence of inhibitory concentrations of CNS myelin extract (CME), promoted significant disinhibited DRGN neurite outgrowth, only when cells were stimulated with neurotrophic factors. The levels of RhoGTP remained unchanged after Citron-K knockdown in the presence of CME while enhanced cofilin levels correlated with disinhibited DRGN neurite outgrowth. This observation suggests that Citron-K plays a role in axon growth downstream of Rho activation. We conclude that Citron-K regulates actin polymerisation downstream of RhoA and may offer a potentially novel therapeutic approach for promoting CNS axon regeneration.  相似文献   

7.
Spontaneous axonal regeneration of neurons does not occur after spinal cord injury because of inhibition by myelin and other inhibitory factors. Studies have demonstrated that blocking the Rho/Rho-kinase (ROCK) pathway can promote neurite outgrowth in spinal cord injury models. In the present study, we investigated neurite outgrowth and neuronal differentiation in neural stem cells from the mouse subventricular zone after inhibition of ROCK in vitro. Inhibition of ROCK with Y-27632 increased neurite length, enhanced neuronal differentiation, and upregulated the expression of two major signaling pathway effectors, phospho-Akt and phospho-mitogen-activated protein kinase, and the Hippo pathway effector YAP. These results suggest that inhibition of ROCK mediates neurite outgrowth in neural stem cells by activating the Hippo signaling pathway.  相似文献   

8.
Aggrecan is one of the major chondroitin sulfate proteoglycans (CSPGs) expressed in the central nervous system. The signaling pathways activated downstream of cell interaction with aggrecan and with CSPGs in general and the importance of chondroitin sulfate-glycosaminoglycan side chains in their inhibition are unclear. Therefore, to analyze the effect of different components of aggrecan in inhibiting neurite growth, neurite outgrowth was quantified in an in vitro model in which chick dorsal root ganglion (DRG) explants were grown on substrates containing aggrecan bound to hyaluronan and link protein as a macromolecular aggregate, aggrecan monomers, hyaluronan, or ChABC-treated aggrecan. Aggrecan aggregate, aggrecan monomer, and hyaluronan inhibited neurite outgrowth from nerve growth factor (NGF)- and neurotrophin-3 (NT3)-responsive DRG neurons. Aggrecan inhibition was dependent on its chondroitin sulfate-glycosaminoglycans, as ChABC digestion alleviated neurite inhibition because of aggrecan. Growth cones displayed full or partial collapse on aggrecan aggregate, hyaluronan, and ChABC-treated aggrecan. Inhibition of Rho kinase (ROCK) with Y27632 increased neurite growth on some but not all of the aggrecan components tested. With NGF in the culture medium, Y27632 increased neurite outgrowth on aggrecan aggregate, monomers, and ChABC-treated aggrecan, but not on hyaluronan. The ROCK inhibitor also increased NT3-responsive outgrowth on aggrecan aggregate and hyaluronan, but not on ChABC-treated aggrecan. This study showed that the matrix proteoglycan aggrecan and its components have multiple effects on neurite outgrowth and that some of these effects involve the Rho/ROCK pathway.  相似文献   

9.
The optic nerve is a CNS pathway containing molecules capable of inhibiting axon elongation. The growth program in embryonic retinal ganglion cell (RGC) neurons enables axons to regenerate in the optic nerve through at least two mechanisms. Namely, high cyclic AMP (cAMP) levels abrogate the ability of CNS molecules to inhibit elongation, and the pattern of gene expression enables axons to undergo rapid, sustained, and lengthy elongation. In adult mammals, recovery of visual function after optic nerve injury is limited by both the death of most RGC neurons and the inability of surviving axons to regenerate. We now report that a single intraocular injection of the membrane-permeable cAMP analogue dibutyryl cAMP (db cAMP) promotes the regeneration of RGC axons in the optic nerves of adult rats, but does not prevent the death of RGC neurons. This regeneration in optic nerves crushed within the orbit (2 mm from the eye) was equally effective either 1 day before or 1 day after db cAMP injection. The number of regenerating axons, which was maximal 14 days after crush, declined with increasing time after injury (i.e., 28, 56, and 112 days) and distance beyond the crush site (i.e., 0.25, 0.5, and 1.0 mm). Thus, db cAMP promotes optic nerve regeneration without increasing the survival of axotomized RGC neurons. Furthermore, since db cAMP does not enable axons to undergo rapid, sustained, and lengthy elongation, strategies that increase survival and promote these changes in elongation may critically complement the ability of db cAMP to promote regeneration.  相似文献   

10.
The reasons for the failure of central nervous system (CNS) axons to regenerate include the presence of myelin- and non-myelin derived inhibitory molecules, neuronal apoptosis and the absence of a potent neurotrophic stimulus. Transactivation of the epidermal growth factor receptor (EGFR) has been implicated in signalling inhibition of axon growth in the CNS. Small molecule EGFR inhibitors such as AG1478 and PD168393 promote CNS axon growth after optic nerve transection despite the presence of inhibitory molecules in the environment of the regenerating axon. However, our results demonstrate that phosphorylated EGFR (pEGFR) is not present on regenerating axons and that the majority of pEGFR is present in glia, suggesting that EGFR cannot play a direct intra-axonal role in signalling inhibition and thus disinhibited CNS axon growth must be indirectly mediated by glia. We argue that EGFR may not have a role in signalling axon growth inhibition since AG1478 and PD168393 promotes neuronal neurite outgrowth in CNS myelin-inhibited cultures after EGFR knockdown. This review discusses the current evidences for and against the involvement of EGFR in signalling myelin inhibition.  相似文献   

11.
A decline in developing neuronal cAMP levels appears to render mammalian axons susceptible to growth inhibitory factors in the damaged CNS. cAMP elevation enhances axon regeneration, but the cellular mechanisms involved have yet to be fully elucidated. Epac has been identified as a signaling protein that can be activated by cAMP independently of PKA, but little is known of its expression or role in the nervous system. We report that Epac expression is developmentally regulated in the rat nervous system, and that activation of Epac promotes DRG neurite outgrowth and is as effective as cAMP elevation in promoting neurite regeneration on spinal cord tissue. Additionally, siRNA mediated knockdown of Epac reduces DRG neurite outgrowth, prevents the increased growth promoted by cAMP elevation and also diminishes the ability of embryonic neurons to grow processes on spinal cord tissue. Furthermore, we show that asymmetric activation of Epac promotes attractive growth cone turning in a similar manner to cAMP activation. We propose that Epac plays a role in mediating cAMP-dependent axon growth and guidance, and may provide an important target for inducing axon regeneration in vivo.  相似文献   

12.
cAMP is a critical second messenger mediating activity-dependent neuronal survival and neurite growth. We investigated the expression and function of the soluble adenylyl cyclase (sAC, ADCY10) in CNS retinal ganglion cells (RGCs). We found sAC protein expressed in multiple RGC compartments including the nucleus, cytoplasm and axons. sAC activation increased cAMP above the level seen with transmembrane adenylate cyclase (tmAC) activation. Electrical activity and bicarbonate, both physiologic sAC activators, significantly increased survival and axon growth, whereas pharmacologic or siRNA-mediated sAC inhibition dramatically decreased RGC survival and axon growth in vitro, and survival in vivo. Conversely, RGC survival and axon growth were unaltered in RGCs from AC1/AC8 double knock-out mice or after specifically inhibiting tmACs. These data identify a novel sAC-mediated cAMP signaling pathway regulating RGC survival and axon growth, and suggest new neuroprotective or regenerative strategies based on sAC modulation.  相似文献   

13.
14.
Unraveling the causes of regeneration failure in the adult injured CNS has remained a challenge in neurobiology. The notion that CNS neurons lose their regenerative potential during development has been challenged by the identification of several promoters of axon growth. Novel methods are required that allow to study and quantify interactions of molecular determinants, and to envisage future treatment applications. Here we report a novel, highly reproducible method for monitoring axonal regeneration of mature retinal ganglion cells (RGCs) in vitro. In contrast to earlier explantation methods, primary cultures derived from adult rodent retina are kept viable without growth factor supplements. Further, since intraretinal RGC axons remain unmyelinated, regeneration can be followed independently of non-permissive white matter compounds. Applying tracing techniques prior to retinal explantation, cell survival can be correlated to outgrowth activity on the single cell level. Following intervention with pharmacological, growth factor, or gene transfer treatments, retinal explants, and partially RGC neurites, can be processed for protein and gene expression analysis. This novel procedure will prove useful to get insight into complex cell survival and regeneration promoting cascades, and will complement in vivo strategies such as transgenic and knock out mouse models.  相似文献   

15.
Overcoming inhibitors in myelin to promote axonal regeneration   总被引:18,自引:0,他引:18  
The lack of axonal growth after injury in the adult central nervous system (CNS) is due to several factors including the formation of a glial scar, the absence of neurotrophic factors, the presence of growth-inhibitory molecules associated with myelin and the intrinsic growth-state of the neurons. To date, three inhibitors have been identified in myelin: Myelin-Associated Glycoprotein (MAG), Nogo-A, and Oligodendrocyte-Myelin glycoprotein (OMgp). In previous studies we reported that MAG inhibits axonal regeneration by high affinity interaction (K(D) 8 nM) with the Nogo66 receptor (NgR) and activation of a p75 neurotrophin receptor (p75NTR)-mediated signaling pathway. Similar to other axon guidance molecules, MAG is bifunctional. When cultured on MAG-expressing cells, dorsal root ganglia neurons (DRG) older than post-natal day 4 (PND4) extend neurites 50% shorter on average than when cultured on control cells. In contrast, MAG promotes neurite outgrowth from DRG neurons from animals younger than PND4. The response switch, which is also seen in retinal ganglia (RGC) and Raphe nucleus neurons, is concomitant with a developmental decrease in the endogenous neuronal cAMP levels. We report that artificially increasing cAMP levels in older neurons can alter their growth-state and induce axonal growth in the presence of myelin-associated inhibitors.  相似文献   

16.
The myelin‐associated protein Nogo‐A contributes to the failure of axon regeneration in the mammalian central nervous system (CNS). Inhibition of axon growth by Nogo‐A is mediated by the Nogo‐66 receptor (NgR). Nonmammalian vertebrates, however, are capable of spontaneous CNS axon regeneration, and we have shown that retinal ganglion cell (RGC) axons regenerate in the lizard Gallotia galloti. Using immunohistochemistry, we observed spatiotemporal regulation of Nogo‐A and NgR in cell bodies and axons of RGCs during ontogeny. In the adult lizard, expression of Nogo‐A was associated with myelinated axon tracts and upregulated in oligodendrocytes during RGC axon regeneration. NgR became upregulated in RGCs following optic nerve injury. In in vitro studies, Nogo‐A‐Fc failed to inhibit growth of lizard RGC axons. The inhibitor of protein kinase A (pkA) activity KT5720 blocked growth of lizard RGC axons on substrates of Nogo‐A‐Fc, but not laminin. On patterned substrates of Nogo‐A‐Fc, KT5720 caused restriction of axon growth to areas devoid of Nogo‐A‐Fc. Levels of cyclic adenosine monophosphate (cAMP) were elevated over sustained periods in lizard RGCs following optic nerve lesion. We conclude that Nogo‐A and NgR are expressed in a mammalian‐like pattern and are upregulated following optic nerve injury, but the presence of Nogo‐A does not inhibit RGC axon regeneration in the lizard visual pathway. The results of outgrowth assays suggest that outgrowth‐promoting substrates and activation of the cAMP/pkA signaling pathway play a key role in spontaneous lizard retinal axon regeneration in the presence of Nogo‐A. Restriction of axon growth by patterned Nogo‐A‐Fc substrates suggests that Nogo‐A may contribute to axon guidance in the lizard visual system. J. Comp. Neurol. 525:936–954, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Ciliary neurotrophic factor (CNTF) has been shown to promote the survival of motoneurons, but its effects on axonal outgrowth have not been examined in detail. Since nerve growth factor (NGF) promotes the outgrowth of neurites within the same populations of neurons that depend on NGF for survival, we investigated whether CNTF would stimulate neurite outgrowth from motoneurons in addition to enhancing their survival. We found that CNTF is a powerful promoter of neurite outgrowth from cultured chick embryo ventral spinal cord neurons. An effect of CNTF on neurite outgrowth was detectable within 7 hours, and at a concentration of 10 ng/ml, CNTF enhanced neurite length by about 3- to 4-fold within 48 hours. The neurite growth-promoting effect of CNTF does not appear to be a consequence of its survival-promoting effect. To determine whether the effect of CNTF on spinal cord neurons was specific for motoneurons, we analyzed cell survival and neurite outgrowth for motoneurons labeled with diI, as well as for neurons taken from the dorsal half of the spinal cord, which lacks motoneurons. We found that the effect of CNTF was about the same for motoneurons as it was for neurons from the dorsal spinal cord. The responsiveness of a variety of spinal cord neurons to CNTF may broaden the appeal of CNTF as a candidate for the treatment of spinal cord injury or disease. © 1996 Wiley-Liss, Inc.  相似文献   

18.
M. Bhr  J. M. Hopkins  R. P. Bunge 《Glia》1991,4(5):529-533
Schwann cell cultures provide a highly favorable substrate for retinal ganglion cell (RGC) survival and axon growth in vitro (B?hr and Bunge, Exp Neurol 106:27, 1989; Hopkins and Bunge, Glia 4:46, 1991). In this report we have extended former studies to obtain axon regeneration, long-term survival, and myelination of adult rat RGC axons in co-cultures of retinal explants with purified Schwann cells. By using modified co-culture conditions, we observed myelination of regenerating adult RGC axons by Schwann cells after 3-4 weeks in vitro. Myelination was associated with a one-to-one Schwann cell-axon relationship, characteristic of the formation of peripheral myelin. Under culture conditions that supported myelination, long-term survival (more than 12 weeks) of a small population of RGCs was observed. These findings highlight the remarkable ability of Schwann cells to support long-term survival of adult rat RGCs in the absence of either central nervous system (CNS) target tissue or other peripheral nervous system (PNS) components. This tissue culture system may serve as a model for the systematic study of the molecular mechanisms which are involved in axon regeneration and myelination of adult CNS neurons.  相似文献   

19.
Injured axons in the adult central nervous system (CNS) exhibit almost no regeneration. Several myelin-associated proteins such as myelin-associated glycoprotein (MAG), Nogo, and oligodendrocyte-myelin glycoprotein (OMgp) have been identified as inhibitors of CNS axonal regeneration in the CNS. Recently, repulsive guidance molecule (RGM) was identified as a potential myelin-derived neurite outgrowth inhibitor in vitro and in vivo. These axonal growth inhibitors transmit inhibitory signals through common intracellular molecules such as RhoA and its effector Rho kinases (ROCK). The effects of these axonal growth inhibitors are blocked by inhibition of the Rho-ROCK pathway in vitro. Injuries to the adult CNS induce the activation of the Rho-ROCK pathway, and the inhibition of this pathway promotes axonal regeneration and functional recovery in the injured CNS. Therefore, the Rho-ROCK pathway is a promising target for drug development for the treatment of human CNS injuries such as spinal cord injuries. This review also discusses recent patents and future developments which are useful in the treatment of human CNS injuries.  相似文献   

20.
Background: Abnormal sprouting of neurites is one of the neuropathological features of Alzheimer's disease. The mechanism of neurite sprouting of cultured neurons remains unknown. Among small guanosine triphosphate binding proteins, participation of the Rho family has been speculated. Methods: The involvement of Rho‐associated kinase in neurite sprouting and in amyloid beta (Αβ) production was investigated in primary cultured rat cortical neurons using morphometric analysis, immunohistochemistry and ELISA assay. Results: In a serum‐free medium, Y‐27632, a Rho‐associated kinase specific inhibitor, was found on the neurite outgrowth; however, there was no effect of Y‐27632 on Neurobasal/B27. A custom medium without insulin was prepared because insulin potentially influences neurite formation. In the insulin‐free medium, 10 µmol/L Y‐27632 appeared to promote neurite outgrowth, showing significant increases in neurite length and in the number of neurite terminals. Y‐27632 generated abnormal neurites, which were positively stained by both MAP2 and neurofilament‐L. Furthermore, the effect of Y‐27632 on Αβ production in primary cultured rat cortical neurons was investigated. Inhibition of Rho‐associated kinase increased the ratio of Αβ 42 /40+42. Conclusion: Our findings indicated that Rho‐associated kinase might be involved not only in neurite sprouting, but also in Αβ production in primary cultured neurons. Considering these two effects, inhibition of Rho‐associated kinase activity might be involved in the pathology of Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号