首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Neural networks》2007,20(6):653-667
Recent studies have shown that place cells in the hippocampal CA1 region fire in a sequence sensitive manner. In this study we tested if hippocampal CA3 and CA1 regions can give rise to the sequence sensitivity. We used a two-layer CA3–CA1 hippocampal model that consisted of Hodgkin–Huxley style neuron models. Sequential input signals that mimicked signals projected from the entorhinal cortex gradually modified the synaptic conductances between CA3 pyramidal cells through spike-timing-dependent plasticity (STDP) and produced propagations of neuronal activity in the radial direction from stimulated pyramidal cells. This sequence dependent spatio-temporal activity was picked up by specific CA1 pyramidal cells through modification of Schaffer collateral synapses with STDP. After learning, these CA1 pyramidal cells responded with the highest probability to the learned sequence, while responding with a lower probability to different sequences. These results demonstrate that sequence sensitivity of CA1 place cells would emerge through computation in the CA3 and CA1 regions.  相似文献   

2.
In mouse hippocampal slices, long-term potentiation (LTP) at Schaffer collateral fiber synapses onto CA1 pyramidal cells could be induced by brief trains of 5-Hz synaptic stimulation (30 s) or by longer trains of 5-Hz stimulation (3 min) delivered during β-adrenergic receptor activation. In contrast, 5-Hz stimulation, either alone or in the presence of the β-adrenergic receptor agonist isoproterenol, failed to induce LTP at associational–commissural (assoc–com) fiber synapses onto CA3 pyramidal cells. Our results suggest that although CA3 pyramidal cells give rise to both the Schaffer collateral fiber synapses in CA1 and the assoc–com fiber synapses in CA3, the induction of LTP at these synapses may be regulated by different activity- and modulatory neurotransmitter-dependent processes.  相似文献   

3.
The CA2 region is unique in the hippocampus; it receives direct synaptic innervations from several hypothalamic nuclei and expresses various receptors of neuromodulators, including adenosine, vasopressin, and oxytocin. Furthermore, the CA2 region may have distinct brain functions, such as the control of instinctive and social behaviors; however, little is known about the dynamics of the subthreshold membrane potentials of CA2 neurons in vivo. We conducted whole‐cell current‐clamp recordings from CA2 pyramidal cells in urethane‐anesthetized mice and monitored the intrinsic fluctuations in their membrane potentials. The CA2 pyramidal cells emitted spontaneous action potentials at mean firing rates of ~0.8 Hz. In approximately half of the neurons, the subthreshold membrane potential oscillated at ~3 Hz. In two neurons, we obtained simultaneous recordings of local field potentials from the CA1 stratum radiatum and demonstrated that the 3‐Hz oscillations of CA2 neurons were not correlated with CA1 field potentials. In tetrodotoxin‐perfused acute hippocampal slices, the membrane potentials of CA2 pyramidal cells were not preferentially entrained to 3‐Hz sinusoidal current inputs, which suggest that intracellular 3‐Hz oscillations reflect the neuronal dynamics of the surrounding networks. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
Booth V  Poe GR 《Hippocampus》2006,16(2):161-173
In simulation studies using a realistic model CA1 pyramidal cell, we accounted for the shift in mean firing phase from theta cycle peaks to theta cycle troughs during rapid-eye movement (REM) sleep reactivation of hippocampal CA1 place cells over several days of growing familiarization with an environment (Brain Res 855:176-180). Changes in the theta drive phase and amplitude between proximal and distal dendritic regions of the cell modulated the theta phase of firing when stimuli were presented at proximal and distal dendritic locations. Stimuli at proximal dendritic sites (proximal to 100 microm from the soma) invoked firing with a significant phase preference at the depolarizing theta peaks, while distal stimuli (>290 microm from the soma) invoked firing at hyperpolarizing theta troughs. The input location-related phase preference depended on active dendritic conductances, a sufficient electrotonic separation between input sites and theta-induced subthreshold membrane potential oscillations in the cell. The simulation results predict that the shift in mean theta phase during REM sleep cellular reactivation could occur through potentiation of distal dendritic (temporo-ammonic) synapses and depotentiation of proximal dendritic (Schaffer collateral) synapses over the course of familiarization.  相似文献   

5.
Glial cells respond to neuronal activity by transient increases in their intracellular calcium concentration. At hippocampal Schaffer collateral to CA1 pyramidal cell synapses, such activity-induced astrocyte calcium transients modulate neuronal excitability, synaptic activity, and LTP induction threshold by calcium-dependent release of gliotransmitters. Despite a significant role of astrocyte calcium signaling in plasticity of these synapses, little is known about activity-dependent changes of astrocyte calcium signaling itself. In this study, we analyzed calcium transients in identified astrocytes and NG2-cells located in the stratum radiatum in response to different intensities and patterns of Schaffer collateral stimulation. To this end, we employed multiphoton calcium imaging with the low-affinity indicator dye Fluo-5F in glial cells, combined with extracellular field potential recordings to monitor postsynaptic responses to the afferent stimulation. Our results confirm that somata and processes of astrocytes, but not of NG2-cells, exhibit intrinsic calcium signaling independent of evoked neuronal activity. Moderate stimulation of Schaffer collaterals (three pulses at 50 Hz) induced calcium transients in astrocytes and NG2-cells. Astrocyte calcium transients upon this three-pulse stimulation could be evoked repetitively, increased in amplitude with increasing stimulation intensity and were dependent on activation of metabotropic glutamate receptors. Activity-induced transients in NG2-cells, in contrast, showed a rapid run-down upon repeated three-pulse stimulation. Theta burst stimulation and stimulation for 5 min at 1 Hz induced synaptic potentiation and depression, respectively, as revealed by a lasting increase or decrease in population spike amplitudes upon three-pulse stimulation. Synaptic plasticity was, however, not accompanied by corresponding alterations in the amplitude of astrocyte calcium signals. Taken together, our results suggest that the amplitude of astrocyte calcium signals reflects the number of activated synapses but does not correlate with the degree of synaptic potentiation or depression at Schaffer collateral to CA1 pyramidal cell synapses.  相似文献   

6.
Many neurodevelopmental and neuropsychiatric disorders involve an imbalance between excitation and inhibition caused by synaptic alterations. The proper excitation/inhibition (E/I) balance is especially critical in CA1 pyramidal cells, because they control hippocampal output. Activation of Schaffer collateral axons causes direct excitation of CA1 pyramidal cells, quickly followed by disynaptic feedforward inhibition, stemming from synaptically induced firing of GABAergic interneurons. Both excitatory and inhibitory synapses are modulated by short‐term plasticity, potentially causing dynamic tuning of the E/I ratio. However, the effects of short‐term plasticity on the E/I ratio in CA1 pyramidal cells are not yet known. To determine this, we recorded disynaptic inhibitory postsynaptic currents and the E/I ratio in CA1 pyramidal cells in acute hippocampal slices from juvenile mice. We found that, whereas inhibitory synapses had paired‐pulse depression, disynaptic inhibition instead had paired‐pulse facilitation (≤ 200‐ms intervals), caused by increased recruitment of feedforward interneurons. Although enhanced disynaptic inhibition helped to constrain paired‐pulse facilitation of excitation, the E/I ratio was still larger on the second pulse, increasing pyramidal cell spiking. Surprisingly, this occurred without compromising the precision of spike timing. The E/I balance regulates the temporal spike integration window from multiple inputs; here, we showed that paired‐pulse stimulation can broaden the spike integration window. Together, our findings show that the combined effects of short‐term plasticity of disynaptic inhibition and monosynaptic excitation alter the E/I balance in CA1 pyramidal cells, leading to dynamic modulation of spike probability and the spike integration window. Short‐term plasticity is therefore an important mechanism for modulating signal processing of hippocampal output.  相似文献   

7.
The effects of aging on the responsiveness of hippocampal neurons to iontophoretic application of L-glutamate and AMPA were studied in vitro. There were no effects of age on neuronal responses to L-glutamate; however, CA1 pyramidal cells of old rats, but not granule cells in the fascia dentata, showed both a smaller reduction in extracellularly-recorded synaptic responses following application of AMPA (presumably mediated by depolarization), and smaller extracellular "DC" fields (measured by subtracting the DC potentials at the dendrite and soma following AMPA application in the dendrites). To examine the cellular bases of this age-related alteration in AMPA sensitivity, two additional electrophysiological approaches were used: (1) measurement of the amplitude ratios of extracellular EPSP and fiber potential components of the Schaffer collateral-CA1 response; (2) measurement of intracellularly recorded unitary EPSPs and quantal analysis of their fluctuations. The interpretations that would be placed on four hypothetical possible outcomes of such experiments are outlined and assessed in relation to the experimental data. The pattern of results obtained in the present experiments supports the following conclusions: In old rats, individual Schaffer collateral synapses do not appear to have altered AMPA receptor properties, as neither the mean size of the unitary synaptic response nor the apparent quantal size differs between age groups; however, the data do support the conclusion that there are fewer synapses per Schaffer collateral branch in old versus young CA1 pyramidal cells.  相似文献   

8.
The role of zinc in excitation of Schaffer collateral-CA1 pyramidal cell synapses is poorly understood. Schaffer collaterals stained with ZnAF-2 or ZnAF-2DA, a membrane-impermeable or a membrane-permeable zinc indicator, respectively, were treated by tetanic stimulation (200 Hz, 1 sec). Extracellular and intracellular ZnAF-2 signals were increased in the stratum radiatum of the CA1, in which Schaffer collateral synapses exist. Both the increases were completely blocked in the presence of 1 mM CaEDAT, a membrane-impermeable zinc chelator, suggesting that 1 mM CaEDTA is effective for chelating zinc released from Schaffer collaterals. The role of Schaffer collateral zinc in presynaptic activity was examined by using FM4-64, a fluorescent indicator for vesicular exocytosis. The decrease in FM4-64 signal during tetanic stimulation (10 Hz, 180 sec) was enhanced in Schaffer collaterals in the presence of 1 mM CaEDTA but suppressed in the presence of 5 microM ZnC1(2), suggesting that zinc released from Schaffer collaterals suppresses presynaptic activity during tetanic stimulation. When Schaffer collateral synapses stained with calcium orange AM, a membrane-permeable calcium indicator, were regionally stimulated with 1 mM glutamate, calcium orange signal was increased in the CA1 pyramidal cell layer. This increase was enhanced in the presence of CaEDTA and attenuated in the presence of zinc. These results suggest that zinc attenuates excitation of Schaffer collateral synapses elicited with glutamate via suppression of presynaptic activity.  相似文献   

9.
Feedforward and feedback inhibition are two fundamental modes of operation widespread in the nervous system. We have functionally identified synaptic connections between rat CA1 hippocampal interneurons of the stratum oriens (SO) and interneurons of the stratum lacunosum moleculare (SLM), which can act as feedback and feedforward interneurons, respectively. The unitary inhibitory postsynaptic currents (uIPSCs) detected with K-gluconate-based patch solution at −50 mV had an amplitude of 20.0 ± 2.0 pA, rise time 2.2 ± 0.2 ms, decay time 25 ± 2.2 ms, jitter 1.4 ± 0.2 ms (average ± SEM, n  = 39), and were abolished by the γ-aminobutyric acid (GABA)A receptor antagonist 2-(3-carboxypropyl)-3-amino-6-methoxyphenyl-pyridazinium bromide (SR 95531). Post hoc anatomical characterization revealed that all but one of the identified presynaptic neurons were oriens-lacunosum moleculare (O-LM) cells, whereas the postsynaptic neurons were highly heterogeneous, including neurogliaform ( n  = 4), basket ( n  = 4), Schaffer collateral-associated ( n  = 10) and perforant path-associated ( n  = 9) cells. We investigated the short-term plasticity expressed at these synapses, and found that stimulation at 10–40 Hz resulted in short-term depression of uIPSCs. This short-term plasticity was determined by presynaptic factors and was not target-cell specific. We found that the feedforward inhibition elicited by the direct cortical input including the perforant path onto CA1 pyramidal cells was modulated through the inhibitory synapses we have characterized. Our data show that the inhibitory synapses between interneurons of the SO and SLM shift the balance between feedback and feedforward inhibition onto CA1 pyramidal neurons.  相似文献   

10.
Zinc release from Schaffer collaterals and its significance   总被引:1,自引:0,他引:1  
On the basis of the evidence that approximately 45% of Schaffer collateral boutons are zinc-positive, zinc release from Schaffer collaterals and its action were examined in hippocampal slices. When zinc release from Schaffer collaterals was examined using ZnAF-2, a membrane-impermeable zinc indicator, ZnAF-2 signal in the stratum radiatum of the CA1 was increased by tetanic stimuli at 100 Hz for 1 s, suggesting that zinc is released from Schaffer collaterals in a calcium- and impulse-dependent manner. An in vivo microdialysis experiment indicated that the perfusion with 10 μM zinc significantly decreases extracellular glutamate concentration in the CA1. When tetanic stimuli at 100 Hz for 5 s were delivered to the dentate granule cells, the increase in calcium signal in the stratum radiatum of the CA1, as well as in the stratum lucidum of the CA3, was attenuated by addition of 10 μM zinc, while enhanced by addition of 1 mM CaEDTA, a membrane-impermeable zinc chelator. The increase in calcium signal in the CA1, in which Schaffer collateral synapses exist, during delivery of tetanic stimuli at 100 Hz for 1 s to the Schaffer collateral-commissural pathway was also significantly enhanced by addition of 1 mM CaEDTA. These results suggest that zinc released from Schaffer collaterals suppressively modulates presynaptic and postsynaptic calcium signaling in the CA1, followed by the suppression of glutamate release.  相似文献   

11.
Adenosine inhibits excitatory neurons widely in the brain through adenosine A1 receptor, but activation of adenosine A2A receptor (A2AR) has an opposite effect promoting discharge in neuronal networks. In the hippocampus A2AR expression level is low, and the receptor's effect on identified neuronal circuits is unknown. Using optogenetic afferent stimulation and whole‐cell recording from identified postsynaptic neurons we show that A2AR facilitates excitatory glutamatergic Schaffer collateral synapses to CA1 pyramidal cells, but not to GABAergic inhibitory interneurons. In addition, A2AR enhances GABAergic inhibitory transmission between CA1 area interneurons leading to disinhibition of pyramidal cells. Adenosine A2AR has no direct modulatory effect on GABAergic synapses to pyramidal cells. As a result adenosine A2AR activation alters the synaptic excitation ‐ inhibition balance in the CA1 area resulting in increased pyramidal cell discharge to glutamatergic Schaffer collateral stimulation. In line with this, we show that A2AR promotes synchronous pyramidal cell firing in hyperexcitable conditions where extracellular potassium is elevated or following high‐frequency electrical stimulation. Our results revealed selective synapse‐ and cell type specific adenosine A2AR effects in hippocampal CA1 area. The uncovered mechanisms help our understanding of A2AR's facilitatory effect on cortical network activity. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

12.
Excitatory synaptic inputs from specific brain regions are often targeted to distinct dendritic arbors on hippocampal pyramidal neurons. Recent work has suggested that CA2 pyramidal neurons respond robustly and preferentially to excitatory input into the stratum lacunosum moleculare (SLM), with a relatively modest response to Schaffer collateral excitatory input into stratum radiatum (SR) in acute mouse hippocampal slices, but the extent to which this difference may be explained by morphology is unknown. In an effort to replicate these findings and to better understand the role of dendritic morphology in shaping responses from proximal and distal synaptic sites, we measured excitatory postsynaptic currents and action potentials in CA2 pyramidal cells in response to SR and SLM stimulation and subsequently analyzed confocal images of the filled cells. We found that, in contrast to previous reports, SR stimulation evoked substantial responses in all recorded CA2 pyramidal cells. Strikingly, however, we found that not all neurons responded to SLM stimulation, and in those neurons that did, responses evoked by SLM and SR were comparable in size and effectiveness in inducing action potentials. In a comprehensive morphometric analysis of CA2 pyramidal cell apical dendrites, we found that the neurons that were unresponsive to SLM stimulation were the same ones that lacked substantial apical dendritic arborization in the SLM. Neurons responsive to both SR and SLM stimulation had roughly equal amounts of dendritic branching in each layer. Remarkably, our study in mouse CA2 generally replicates the work characterizing the diversity of CA2 pyramidal cells in the guinea pig hippocampus. We conclude, then, that like in guinea pig, mouse CA2 pyramidal cells have a diverse apical dendrite morphology that is likely to be reflective of both the amount and source of excitatory input into CA2 from the entorhinal cortex and CA3.  相似文献   

13.
It has been known for decades that muscarinic agonists presynaptically inhibit Schaffer collateral synapses contacting hippocampal CA1 pyramidal neurons. However, a demonstration of the inhibition of Schaffer collateral synapses induced by acetylcholine released by cholinergic hippocampal afferents is lacking. We present original results showing that electrical stimulation at the stratum oriens/alveus with brief stimulus trains inhibited excitatory postsynaptic currents evoked by stimulation of Schaffer collaterals in CA1 pyramidal neurons of rat hippocampal slices. The increased paired-pulse facilitation and the changes in the variance of excitatory postsynaptic current amplitude that paralleled the inhibition suggest that it was mediated presynaptically. The effects of oriens/alveus stimulation were inhibited by atropine, and blocking nicotinic receptors with methyllycaconitine was ineffective, suggesting that the inhibition was mediated via the activation of presynaptic muscarinic receptors. The results provide a novel demonstration of the presynaptic inhibition of glutamatergic neurotransmission by cholinergic fibres in the hippocampus, implying that afferent cholinergic fibres regulate the strength of excitatory synaptic transmission.  相似文献   

14.
The entorhinal cortex (EC) conveys information to hippocampal field CA1 either directly by way of projections from principal neurons in layer III, or indirectly by axons from layer II via the dentate gyrus, CA3, and Schaffer collaterals. These two pathways differentially influence activity in CA1, yet conclusive evidence is lacking whether and to what extent they converge onto single CA1 neurons. Presently we studied such convergence. Different neuroanatomical tracers injected into layer III of EC and into CA3, respectively, tagged simultaneously the direct entorhino-hippocampal fibers and the indirect innervation of CA1 neurons by Schaffer collaterals. In slices of fixed brains we intracellularly filled CA1 pyramidal cells and interneurons in stratum lacunosum-moleculare (LM) and stratum radiatum (SR). Sections of these slices were scanned in a confocal laser scanning microscope. 3D-reconstruction was used to determine whether boutons of the labeled input fibers were in contact with the intracellularly filled neurons. We analyzed 12 pyramidal neurons and 21 interneurons. Perforant path innervation to pyramidal neurons in our material was observed to be denser than that from CA3. All pyramidal neurons and 17 of the interneurons received contacts of both perforant pathway and Schaffer input on their dendrites and cell bodies. Four interneurons, which were completely embedded in LM, received only labeled perforant pathway input. Thus, we found convergence of both projection systems on single CA1 pyramidal and interneurons with dendrites that access the layers where perforant pathway fibers and Schaffer collaterals end.  相似文献   

15.
Carbachol (> 20 microM) and kainate (100 nM) induce, in the in vitro CA3 region, synchronized neuronal population oscillations at approximately 40 Hz having distinctive features: (i) the oscillations persist for hours; (ii) interneurons in kainate fire at 5-20 Hz and their firing is tightly locked to field potential maxima (recorded in s. radiatum); (iii) in contrast, pyramidal cells, in both carbachol and kainate, fire at frequencies as low as 2 Hz, and their firing is less tightly locked to field potentials; (iv) the oscillations require GABAA receptors, AMPA receptors and gap junctions. Using a network of 3072 pyramidal cells and 384 interneurons (each multicompartmental and containing a segment of unmyelinated axon), we employed computer simulations to examine conditions under which network oscillations might occur with the experimentally determined properties. We found that such network oscillations could be generated, robustly, when gap junctions were located between pyramidal cell axons, as suggested to occur based on studies of spontaneous high-frequency (> 100 Hz) network oscillations in the in vitro hippocampus. In the model, pyramidal cell somatic firing was not essential for the oscillations. Critical components of the model are (i) the plexus of pyramidal cell axons, randomly and sparsely interconnected by gap junctions; (ii) glutamate synapses onto interneurons; (iii) synaptic inhibition between interneurons and onto pyramidal cell axons and somata; (iv) a sufficiently high rate of spontaneous action potentials generated in pyramidal cell axons. This model explains the dependence of network oscillations on GABA(A) and AMPA receptors, as well as on gap junctions. Besides the existence of axon-axon gap junctions, the model predicts that many of the pyramidal cell action potentials, during sustained gamma oscillations, are initiated in axons.  相似文献   

16.
Cellular activity in the CA1 area of the hippocampus waxes and wanes at theta frequency (4–8 Hz) during exploratory behavior of rats. Perisomatic inhibition onto pyramidal cells tends to be strongest out of phase with pyramidal cell activity, whereas dendritic inhibition is strongest in phase with pyramidal cell activity. Synaptic plasticity also varies across the theta cycle, from strong long‐term potentiation (LTP) to long‐term depression (LTD), putatively corresponding to encoding and retrieval phases for information patterns encoded by pyramidal cell activity (Hasselmo et al. (2002a) Neural Comput 14:793–817). The mechanisms underpinning the phasic changes in plasticity are not clear, but it is likely that inhibition plays a role by affecting levels of electrical activity and calcium concentration at synapses. We explore the properties of synaptic plasticity during theta at Schaffer collateral synapses on CA1 pyramidal neurons and the influence of spatially and temporally targeted inhibition using a detailed multicompartmental model of the CA1 pyramidal neuron microcircuit and a phenomenological model of synaptic plasticity. The results suggest CA3‐CA1 synapses are potentiated on one phase of theta due to high calcium levels provided by paired weak CA3 and layer III entorhinal cortex (EC) inputs even when somatic spiking is inhibited by perisomatic interneuron activity. Weak CA3 inputs alone induce lower calcium transients and result in depression of the CA3‐CA1 synapses. These synapses are depressed if activated in phase with dendritic inhibition as strong CA3 inputs alone are not able to cause high calcium in this theta phase even though the CA1 pyramidal neuron shows somatic spiking. Dendritic inhibition acts as a switch that prevents LTP and promotes LTD during the retrieval phases of the theta rhythm in CA1 pyramidal cell. This may be important for not overly reinforcing recalled memories and in forgetting no longer relevant memories. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Taxidis J  Coombes S  Mason R  Owen MR 《Hippocampus》2012,22(5):995-1017
The hippocampus, and particularly the CA3 and CA1 areas, exhibit a variety of oscillatory rhythms that span frequencies from the slow theta range (4-10 Hz) up to fast ripples (200 Hz). Various computational models of different complexities have been developed in an effort to simulate such population oscillations. Nevertheless the mechanism that underlies the so called Sharp Wave-Ripple complex (SPWR), observed in extracellular recordings in CA1, still remains elusive. We present here, the combination of two simple but realistic models of the rat CA3 and CA1 areas, connected together in a feedforward scheme mimicking Schaffer collaterals. Both network models are computationally simple one-dimensional arrays of excitatory and inhibitory populations interacting only via fast chemical synapses. Connectivity schemes and postsynaptic potentials are based on physiological data, yielding a realistic network topology. The CA3 model exhibits quasi-synchronous population bursts, which give rise to sharp wave-like deep depolarizations in the CA1 dendritic layer accompanied by transient field oscillations at ≈ 150-200 Hz in the somatic layer. The frequency and synchrony of these oscillations is based on interneuronal activity and fast-decaying recurrent inhibition in CA1. Pyramidal cell spikes are sparse and come from a subset of cells receiving stronger than average excitatory input from CA3. The model is shown to accurately reproduce a large number of basic characteristics of SPWRs and yields a new mechanism for the generation of ripples, offering an interpretation to a range of neurophysiological observations, such as the ripple disruption by halothane and the selective firing of pyramidal cells during ripples, which may have implications for memory consolidation during SPWRs.  相似文献   

18.
We studied the contribution of GABAergic (gamma-aminobutyric acid) neurotransmission to epileptiform activity using the horizontal hippocampal rat brain slice. Seizure-like (ictal) activity was evoked in the CA1 area by applying high-frequency trains (80 Hz for 2 s) to the Schaffer collaterals. Whole-cell recordings from stratum oriens-alveus interneurons revealed burst firing with superimposed high-frequency spiking which was synchronous with field events and pyramidal cell firing during ictal activity. On the other hand, interictal interneuronal bursts were synchronous with large-amplitude inhibitory postsynaptic potentials (IPSPs) in pyramidal cells. Excitatory and inhibitory postsynaptic potentials were simultaneously received by pyramidal neurons during the ictal afterdischarge, and were synchronous with interneuronal bursting and field potential ictal events. The GABAA receptor antagonist bicuculline greatly reduced the duration of the ictal activity in the CA1 layer, and evoked rhythmic interictal synchronous bursting of interneurons and pyramidal cells. With intact GABAergic transmission, interictal field potential events were synchronous with large amplitude IPSPs (9.8 +/- 2.4 mV) in CA1 pyramidal cells, and with interneuronal bursting. Simultaneous dual recordings revealed synchronous IPSPs received by widely separated pyramidal neurons during ictal and interictal periods, indicative of widespread interneuronal firing synchrony throughout the hippocampus. CA3 pyramidal neurons fired in synchrony with interictal field potential events recorded in the CA1 layer, and glutamate receptor antagonists abolished interictal interneuronal firing and synchronous large amplitude IPSPs received by CA1 pyramidal cells. These observations provide evidence that the interneuronal network may be entrained in hyperexcitable states by GABAergic and glutamatergic mechanisms.  相似文献   

19.
Afferent neurotransmission to hippocampal pyramidal cells can lead to long‐term changes to their intrinsic membrane properties and affect many ion currents. One of the most plastic neuronal currents is the hyperpolarization‐activated cationic current (Ih), which changes in CA1 pyramidal cells in response to many types of physiological and pathological processes, including auditory stimulation. Recently, we demonstrated that long‐term potentiation (LTP) in rat hippocampal Schaffer‐CA1 synapses is depressed by high‐intensity sound stimulation. Here, we investigated whether a long‐term high‐intensity sound stimulation could affect intrinsic membrane properties of rat CA1 pyramidal neurons. Our results showed that Ih is depressed by long‐term high‐intensity sound exposure (1 min of 110 dB sound, applied two times per day for 10 days). This resulted in a decreased resting membrane potential, increased membrane input resistance and time constant, and decreased action potential threshold. In addition, CA1 pyramidal neurons from sound‐exposed animals fired more action potentials than neurons from control animals; however, this effect was not caused by a decreased Ih. On the other hand, a single episode (1 min) of 110 dB sound stimulation which also inhibits hippocampal LTP did not affect Ih and firing in pyramidal neurons, suggesting that effects on Ih are long‐term responses to high‐intensity sound exposure. Our results show that prolonged exposure to high‐intensity sound affects intrinsic membrane properties of hippocampal pyramidal neurons, mainly by decreasing the amplitude of Ih.  相似文献   

20.
The CA1‐projecting axons of CA3 pyramidal cells, called Schaffer collaterals, constitute one of the major information flow routes in the hippocampal formation. Recent anatomical studies have revealed the non‐random structural connectivity between CA3 and CA1, but little is known regarding the functional connectivity (i.e. how CA3 network activity is functionally transmitted downstream to the CA1 network). Using functional multi‐neuron calcium imaging of rat hippocampal slices, we monitored the spatiotemporal patterns of spontaneous CA3 and CA1 burst activity under pharmacological GABAergic blockade. We found that spatially clustered CA3 activity patterns were transformed into layered CA1 activity sequences. Specifically, synchronized bursts initiated from multiple hot spots in CA3 ensembles, and CA1 neurons located deeper in the pyramidal cell layer were recruited during earlier phases of the burst events. The order of these sequential activations was maintained across the bursts, but the sequence velocity varied depending on the inter‐burst intervals. Thus, CA3 axons innervate CA1 neurons in a highly topographical fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号