首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
tRNAs, like other RNAs, are subject to quality control steps during and after biosynthesis. We previously described a rapid tRNA degradation (RTD) pathway in which the 5'-3' exonucleases Rat1 and Xrn1 degrade mature tRNA(Val(AAC)) in yeast mutants lacking m(7)G and m(5)C, and mature tRNA(Ser(CGA)) in mutants lacking Um and ac(4)C. To understand how the RTD pathway selects substrate tRNAs among different tRNAs lacking the same modifications, we used a genetic screen to examine tRNA(Ser(CGA)) variants. Our results suggest that RTD substrate recognition in vivo depends primarily on the stability of the acceptor and T-stems, and not the anti-codon stem, and does not necessarily depend on modifications, since fully modified tRNAs are subject to RTD if appropriately destabilized. We found that weaker predicted stability of the acceptor and T-stems of tRNAs is strongly correlated with RTD sensitivity, increased RNase T2 sensitivity of this region of the tRNA in vitro, and increased exposure of the 5' end to phosphatase. We also found that purified Xrn1 selectively degrades RTD substrate tRNAs in vitro under conditions in which nonsubstrates are immune. These results suggest that tRNAs have evolved not only for accurate translation, but for resistance to attack by RTD.  相似文献   

2.
The perinuclear localization of Saccharomyces cerevisiae telomeres provides a useful model for studying mechanisms that control chromosome positioning. Telomeres tend to be localized at the nuclear periphery during early interphase, but following S phase they delocalize and remain randomly positioned within the nucleus. We investigated whether DNA replication causes telomere delocalization from the nuclear periphery. Using live-cell fluorescence microscopy, we show that delaying DNA replication causes a corresponding delay in the dislodgment of telomeres from the nuclear envelope, demonstrating that replication of individual telomeres causes their delocalization. Telomere delocalization is not simply the result of recruitment to a replication factory in the nuclear interior, since we found that telomeric DNA replication can occur either at the nuclear periphery or in the nuclear interior. The telomere-binding complex Ku is one of the factors that localizes telomeres to the nuclear envelope. Using a gene locus tethering assay, we show that Ku-mediated peripheral positioning is switched off after DNA replication. Based on these findings, we propose that DNA replication causes telomere delocalization by triggering stable repression of the Ku-mediated anchoring pathway. In addition to maintaining genetic information, DNA replication may therefore regulate subnuclear organization of chromatin.  相似文献   

3.
Analysis of gene expression profile in yeast aging chronologically   总被引:1,自引:0,他引:1  
The use of simple model systems such as Saccharomyces cerevisiae and Caenorhabditis elegans has played a primary role in the identification of proteins and pathways that regulate the aging process in eukaryotes. Recent findings have shown that analogous pathways regulate aging in higher eukaryotes and suggest a conserved origin for the molecular mechanisms that regulate stress-resistance and longevity. Genomics approaches that allow the simultaneous monitoring of the expression of thousands of genes are beginning to reveal the complexity of the molecular changes required to extend life span. Here we describe how analysis of the gene expression profiles of wild-type and long-lived yeast aging chronologically can be used to identify proteins that increase stress-resistance and longevity. We also discuss a novel genomics method for the identification of chronologically long-lived yeast mutants.  相似文献   

4.
Palindrome content of the yeast Saccharomyces cerevisiae genome   总被引:6,自引:0,他引:6  
Palindromic sequences are important DNA motifs involved in the regulation of different cellular processes, but are also a potential source of genetic instability. In order to initiate a systematic study of palindromes at the whole genome level, we developed a computer program that can identify, locate and count palindromes in a given sequence in a strictly defined way. All palindromes, defined as identical inverted repeats without spacer DNA, can be analyzed and sorted according to their size, frequency, GC content or alphabetically. This program was then used to prepare a catalog of all palindromes present in the chromosomal DNA of the yeast Saccharomyces cerevisiae. For each palindrome size, the observed palindrome counts were significantly different from those in the randomly generated equivalents of the yeast genome. However, while the short palindromes (2–12 bp) were under-represented, the palindromes longer than 12 bp were over-represented, AT-rich and preferentially located in the intergenic regions. The 44-bp palindrome found between the genes CDC53 and LYS21 on chromosome IV was the longest palindrome identified and contained only two C-G base pairs. Avoidance of coding regions was also observed for palindromes of 4–12 bp, but was less pronounced. Dinucleotide analysis indicated a strong bias against palindromic dinucleotides that could explain the observed short palindrome avoidance. We discuss some possible mechanisms that may influence the evolutionary dynamics of palindromic sequences in the yeast genome.  相似文献   

5.
Summary We have isolated and characterized a Ty element from a yeast cosmid library which exhibits several unsual features: it is flanked by non-homologous delta elements and directly associated with a singular delta element. A tRNA(Glu3) gene and tRNA(Cys) gene are found in conjunction with this element, located in opposite orientation on either end of it. The sequence information now available for several Ty elements has been used in a detailed comparative analysis to determine conserved features among the Ty elements, preferably between class I elements and a class II element. Highly conserved sequence motifs appear to be located at the borders of particular segments that correspond to the putative protein domains of the Tys. Furthermore, we include a comparison of the best-conserved amino acid homologies for these putative proteins of Ty elements, transposable elements from other organisms and several retroviral proviruses to confirm their close structural resemblance.Abbreviations Ty yeast transposable element - CaMV cauliflower mosaic virus - DIRS Dictyostelium retroposon - DHBV duck hepatitis B virus - HBV (human) hepatitis B virus - HTL V2 human T-Cell lymphotropic virus type II - MMULV Moloney murine leukemia virus - MMTV mouse mammary tumour virus - RSV Rous sarcoma virus - WHV woodchuck hepatitis virus - ORF open reading frame Dedicated to Prof. Dr. Fritz Kaudewitz on the occasion of his 65th birthday  相似文献   

6.
7.
In the budding yeast Saccharomyces cerevisiae, microtubule-organizing centers called spindle pole bodies (SPBs) are embedded in the nuclear envelope, which remains intact throughout the cell cycle (closed mitosis). Kinetochores are tethered to SPBs by microtubules during most of the cell cycle, including G1 and M phases; however, it has been a topic of debate whether microtubule interaction is constantly maintained or transiently disrupted during chromosome duplication. Here, we show that centromeres are detached from microtubules for 1-2 min and displaced away from a spindle pole in early S phase. These detachment and displacement events are caused by centromere DNA replication, which results in disassembly of kinetochores. Soon afterward, kinetochores are reassembled, leading to their recapture by microtubules. We also show how kinetochores are subsequently transported poleward by microtubules. Our study gives new insights into kinetochore-microtubule interaction and kinetochore duplication during S phase in a closed mitosis.  相似文献   

8.
Summary Some strains of the yeast Yarrowia lipolytica possess virus-like particles (VLPs) which encapsidate a double-stranded RNA (dsRNA) genome designated Ly. We report here that these VLPs have two associated polypeptides of molecular weights 83 kd (VLy-P1) and 77 kd (VLy-P2). Denatured Ly-dsRNA was used to program a cell-free rabbit reticulocyte translation system, resulting in the appearance of four major products, viz. Ly-P1 (83 kd); Ly-P2 (77 kd); Ly-P3 (74 kd) and Ly-P4 (68 kd). The in vivo viral-associated protein VLy-P1 co-migrated on SDS-polyacrylamide gels with the in vitro product Ly-P1 and, similarly, VLy-P2 co-migrated with Ly-P2. Peptide mapping data confirm the identity of the in vivo products (VLy-P1 and VLy-P2) and their in vitro counterparts. The conclusion made is that VLy-P1 and VLyP2 are almost identical primary translation products of the Ly genome, derived from a single or multiple species of Ly-dsRNA. RNA blot hybridizations using L1A M1 and separately, L2A M2 probes prepared from appropriate K1 and K2 Saccharomyces cerevisiae killer strains, failed to show any detectable homology to Ly-dsRNA, substantiating the uniqueness of the Ly genome with respect to the K1 and K2 S. cerevisiae dsRNA killer systems.  相似文献   

9.
DNA double-strand breaks (DSBs) are a threat to cell survival and genome integrity. In addition to canonical DNA repair systems, DSBs can be converted to telomeres by telomerase. This process, herein termed telomere healing, endangers genome stability, since it usually results in chromosome arm loss. Therefore, cells possess mechanisms that prevent the untimely action of telomerase on DSBs. Here we report that Mec1, the ATR ortholog, couples the detection of DNA ends with the inhibition of telomerase. Mec1 inhibits telomere healing by phosphorylating Cdc13 on its S306 residue, a phosphorylation event that suppresses Cdc13 accumulation at DSBs. Conversely, telomere addition at accidental breaks is promoted by Pph3, the yeast protein phosphatase 4 (PP4). Pph3 is itself modulated by Rrd1, an activator of PP2A family phosphatases. Rrd1 and Pph3 oppose Cdc13 S306 phosphorylation and are necessary for the efficient accumulation of Cdc13 at DNA breaks. These studies therefore identify a mechanism by which the ATR family of kinases enforces genome integrity, and a process that underscores the contribution of Cdc13 to the fate of DNA ends.  相似文献   

10.
The isolation and characterization of MGM1, and yeast gene with homology to members of the dynamin gene family, is described. The MGM1 gene is located on the right arm of chromosome XV between STE4 and PTP2. Sequence analysis revealed a single open reading frame of 902 residues capable of encoding a protein with an approximate molecular mass of 101 kDa. Loss of MGM1 resulted in slow growth on rich medium, failure to grow on non-fermentable carbon sources, and loss of mitochondrial DNA. The mitochondria also appeared abnormal when visualized with an antibody to a mitochondrial-matrix marker. MGM1 encodes a dynamin-like protein involved in the propagation of functional mitochondria in yeast.  相似文献   

11.
The intestinal mucosa is an important port of entry for many pathogens. Information of antigen uptake mechanisms is essential to understand and to possibly prevent infections. In teleosts, several studies have aimed at investigating particulate uptake in the gastrointestinal system that seems to vary dependent on fish species and antigen. In the present study, particulate uptake in the Atlantic salmon intestine by anal intubation of yeast cells has been investigated. In the anal intubated fish, yeast were found in the epithelium close to nuclei of macrophage-like cells and inside large mononuclear cells in the intestinal lumen, indicating uptake and possible transport of large antigen particles over the epithelium by macrophage-like cells.  相似文献   

12.
Summary Tetrad analysis indicates that -isopropylmalate synthase activity of yeast is determined by two separate genes, designated LEU4 and LEU5. LEU4 is identified as a structural gene. LEU5 either encodes another -isopropylmalate synthase activity by itself or provides some function needed for the expression of a second structural gene. The properties of mutants affecting the biosynthesis of leucine and its regulation suggest that the expression of LEU1 and LEU2 (structural genes encoding isopropylmalate isomerase and -isopropylmalate dehydrogenase, respectively) is controlled by a complex of a-isopropylmalate and a regulatory element (the LEU3 gene product). Similarities and differences between yeast and Neurospora crassa with respect to leucine biosynthesis are discussed.This is Journal Paper No. 9347 of the Agricultural Experiment Station, Purdue University  相似文献   

13.
Intraspecies polymorphism of the yeast Saccharomyces bayanus var. uvarum was studied using the polymerase chain reaction with a microsatellite primer (GTG)5. Sixty-nine strains of different origins were analyzed. There existed a correlation between PCR patterns of the strains and the source of their isolation: the type of wine and the particular winemaking region. Southern hybridization analysis revealed for the first time introgression between Saccharomyces cerevisiae and S. bayanus var. uvarum. Two strains isolated from alcoholic beverages in Hungary and identified by genetic analysis as S. bayanus var. uvarum were found to harbor a number of S. cerevisiae subtelomeric sequences: Y’, SUC, RTM and MAL.  相似文献   

14.
5-Bromodeoxyuridine (BrdU) is known to modulate expression of particular genes, and eventually arrest cell division in mammalian and yeast cells. To study a molecular basis for these phenomena, we adopted a genetic approach with a yeast cell system. We screened multicopy suppressor genes that confer resistance to BrdU with a thymidine-auxotrophic strain of the yeast Saccharomyces cerevisiae. One of such genes was found to encode Ham1 protein, which was originally identified as a possible triphosphatase for N-6-hydroxylaminopurine triphosphate. Consistent with this, overexpression of the HAM1 gene reversed growth arrest caused by BrdU, and blocked incorporation of BrdU into genomic DNA. On the contrary, disruption of the gene sensitized cells to BrdU. A crude extract from Ham1-overproducing cells showed a high activity to hydrolyze BrdUTP to BrdUMP and pyrophosphate in addition to abnormal purine nucleotides. Purified recombinant Ham1 protein showed the same activity. These results demonstrate that Ham1 protein detoxifies abnormal pyrimidine as well as purine nucleotides.  相似文献   

15.
Bidirectional tRNA movement between the nucleus and the cytoplasm serves multiple biological functions. To gain a biochemical understanding of the mechanisms for tRNA subcellular dynamics, we developed in vivo β-importin complex coimmunoprecipitation (co-IP) assays using budding yeast. Our studies provide the first in vivo biochemical evidence that two β-importin family members, Los1 (exportin-t) and Msn5 (exportin-5), serve overlapping but distinct roles in tRNA nuclear export. Los1 assembles complexes with RanGTP and tRNA. Both intron-containing pre-tRNAs and spliced tRNAs, regardless of whether they are aminoacylated, assemble into Los1–RanGTP complexes, documenting that Los1 participates in both primary nuclear export and re-export of tRNAs to the cytoplasm. In contrast, β-importin Msn5 preferentially assembles with RanGTP and spliced, aminoacylated tRNAs, documenting its role in tRNA nuclear re-export. Tef1/2 (the yeast form of translation elongation factor 1α [eEF1A]) aids the specificity of Msn5 for aminoacylated tRNAs to form a quaternary complex consisting of Msn5, RanGTP, aminoacylated tRNA, and Tef1/2. Assembly and/or stability of this quaternary complex requires Tef1/2, thereby facilitating efficient re-export of aminoacylated tRNAs to the cytoplasm.  相似文献   

16.
17.
Summary Use of a selective system for cytoduction in Saccharomyces cerevisiae allowed us to monitor hybrid formation and to clone the haploid nuclei of cells which have participated in illegitimate matings: a × a, × . Our approach has made it possible to select nuclei with mating-type switches and mutations within the MAT locus. It was shown that matings in × crosses often proceed through nonheritable genetic changes located within chromosome III. We suggest that these non-heritable genetic changes are due to premutational lesions, expressed phenotypically as transient -matingtype. After a mating event these lesions are either repaired or converted to true mutations within the MAT locus.  相似文献   

18.
Several well-characterized fungal proteins act as prions, proteins capable of multiple conformations, each with different activities, at least one of which is self-propagating. Through such self-propagating changes in function, yeast prions act as protein-based elements of phenotypic inheritance. We report a prion that makes cells resistant to the glucose-associated repression of alternative carbon sources, [GAR+] (for “resistant to glucose-associated repression,” with capital letters indicating dominance and brackets indicating its non-Mendelian character). [GAR+] appears spontaneously at a high rate and is transmissible by non-Mendelian, cytoplasmic inheritance. Several lines of evidence suggest that the prion state involves a complex between a small fraction of the cellular complement of Pma1, the major plasma membrane proton pump, and Std1, a much lower-abundance protein that participates in glucose signaling. The Pma1 proteins from closely related Saccharomyces species are also associated with the appearance of [GAR+]. This allowed us to confirm the relationship between Pma1, Std1, and [GAR+] by establishing that these proteins can create a transmission barrier for prion propagation and induction in Saccharomyces cerevisiae. The fact that yeast cells employ a prion-based mechanism for heritably switching between distinct carbon source utilization strategies, and employ the plasma membrane proton pump to do so, expands the biological framework in which self-propagating protein-based elements of inheritance operate.  相似文献   

19.
Summary The method of analysis of DNA in mammalian cells by alkaline elution from filters (Kohn et al. 1974) was adapted for studies on yeast DNA. By this technique spheroplasts obtained from yeast cells are lysed on filters and single-stranded DNA fragments selectively eluted by alkaline solutions. The procedure was applied to monitor the occurrence of replication intermediates and production of DNA single-strand breakage by MMS, and its repair in growth medium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号