首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge of the type of biological reaction to chemotherapy is a prerequisite for its rational enhancement. We previously showed that irinotecan-induced DNA damage triggers in the HCT116p53(wt) colon carcinoma cell line a long-term cell cycle arrest and in HCT116p53(-/-) cells apoptosis (Magrini et al., 2002). To compare the contribution of long-term cell cycle arrest and that of apoptosis to inhibition of cell proliferation after irinotecan-induced DNA damage, we used this isogenic system as well as the cell lines LS174T (p53(wt)) and HT-29 (p53(mut)). Both p53(wt) cell lines responded to damage by undergoing a long-term tetraploid G1 arrest, whereas the p53(mut) cell lines underwent apoptosis. Cell cycle arrest as well as apoptosis caused a similar delay in cell proliferation. Irinotecan treatment also induced in mouse tumours derived from the p53(wt) cell lines a tetraploid G1 arrest and in those derived from the p53-deficient cell lines a transient G2/M arrest and apoptosis. The delay of tumour growth was in the same range in both groups, that is, arrest- and apoptosis-mediated tumour growth inhibition was comparable. In conclusion, cell cycle arrest as well as apoptosis may be equipotent mechanisms mediating the chemotherapeutic effects of irinotecan.  相似文献   

2.
In this study the effects of SN-38 on colon adenocarcinoma cell lines expressing wild-type p53 (LS174T) or mutant non-functional p53 (HT29) have been investigated. On exposure to SN-38, HT29 cells rapidly progressed through G1 and S and arrested in G2/M. Release and concomitant increase in apoptosis after 48 h was concentration- and time-dependent (P < 0.001), being more rapid at higher concentrations, but reaching plateau at 10 ng ml(-1) with prolonged exposure. LS174T cells showed only a small increase in apoptosis, and only at high concentrations (50-100 ng ml(-1)). The main effect of SN-38 in LS174T cells was prolonged cell cycle arrest, which was independent of concentration. Arrest occurred in all phases of the cell cycle, with the distribution depending on concentration (P < 0.001) and not duration (P > 0.05). With increasing concentration, LS174T cells arrested in G2/M, S and G1. Cell cycle arrest was coincident with increased p53 expression in each phase of the cell cycle. Expression in G1 increased with time and concentration (P < 0.001, P = 0.01 respectively)whereas in S and G2/M p53 expression increased only with time (P< 0.001). Dose-dependent p53-associated G1 arrest, in the absence of DNA synthesis indicates an additional cytotoxic mechanism for SN-38, which requires higher concentrations than the S phase mechanism, and detection of which seems to involve p53. For incubations with the same ED (exposure x duration), apoptosis in HT29 cells was significantly higher for prolonged exposure to lower concentrations, whereas in LS174T cells there was a trend towards increased apoptosis with shorter exposures to higher concentrations, indicating a schedule effect of SN-38. Although expression of wild-type p53 leads to a more rapid induction of apoptosis, SN-38 cytotoxicity was generally greater in cells with mutant p53, as wild-type cells escaped apoptosis by p53 associated prolonged cell cycle arrest. Thus, pulsed schedules with higher doses may be more effective in cells expressing wild-type p53, whereas continued exposure with protracted schedules may be more active in cells expressing mutant p53.  相似文献   

3.
大肠癌培养细胞p53存在状态与化疗敏感性   总被引:6,自引:0,他引:6  
目的 探讨人大肠癌培养细胞p5 3存在状态与化疗敏感性的相关性。方法 应用p5 3机能诊断法 ,确认 6株人大肠癌培养细胞p5 3的存在状态 ,以MTT方法比较了p5 3野生型和突变型两组肠癌细胞对化疗敏感性的差异 ,用流式细胞仪做细胞周期的进一步分析。结果 p5 3野生型肠癌细胞较p5 3突变型细胞的化疗敏感性高 5~ 10倍 ,并且在化疗药阿霉素诱导下可选择地发生细胞凋亡和G1阻滞。结论 人体大肠癌培养细胞p5 3存在状态直接与其化疗敏感性有关。  相似文献   

4.
The combination of 5-fluorouracil (5-FU) plus Cisplatin (CDDP) (FP treatment) possesses synergistic cytotoxicity against colon cancer. The molecular mechanisms by which chemotherapeutic agents induce apoptosis have been clarified by identifying apoptosis-related genes such p53 and bcl-2. We previously established a new experimental technique in which cancer cells are distributed in thin collagen gel as 1 or 2 cell layers. additionally, we evaluated the efficacy and toxicity of FP treatment in the gastric and colon cancer cell lines, and examined the relationship between the response to FP treatment and apoptosis. In these results we reported transfection of normal p53 gene into p53 mutant and analyzed the impact of the p53 gene in a sensitivity test. In this study, we examined induced apoptosis in colon cancer cell lines and the status of p53 expression in response to treatment of HCT116, COLO320, SW480 and DLD1 with 5-FU alone, CDDP alone and FP treatment under flow cytometric analysis. Transfection of SW480 and DLD1 cells was performed to compare the chemosensitivity of naturally occurring mutant-type p53 SW480 and DLD1 cells with neo-transfected SW480 and DLD1 cells and transfected SW480 and DLD1 cells. Appreciable apoptosis was induced in HCT116 and COLO320 (p53 wild-type) but not in SW480 and DLD1 cells (p53 mutant-type). Transfected SW480 and DLD1 cells underwent significantly more apoptosis (p相似文献   

5.
A new non peptidic farnesyltransferase inhibitor, RPR-115135, in combination with 5-FU was studied in 10 human colon cancer cell lines (HCT-116, RKO, DLD-1, Colo-320, LoVo, SW-620, HT-29, HCT-15, Colo-205 and KM-12) carrying several mutations but well characterized for p53 and Ras status. We found that there was a slight tendency (not statistically significant) for the p53 inactivated cells to be less sensitive to 5-FU after 6 days continuous treatment. Simultaneous administration of RPR-115135 and 5-FU, at subtoxic concentrations, resulted in a synergistic enhancement of 5-FU cytotoxicity in the p53 wildtype cells (HCT-116, RKO, DLD-1, Colo-320, LoVo). In the p53 mutated cells (SW-620, HT-29, HCT-15, Colo-205, KM-12) the effect was very complicated. In HCT-15 the combination resulted in antagonism, in KM-12 in antagonism or in synergy (at different concentrations) and in SW-620, HT-29 and Colo-205 cells in synergy but only when 5-FU was administered at high concentrations. Growth inhibition could be accounted for on the basis of a specific cell cycle arrest phenotype (G2-M arrest), as assayed by flow cytometry, only in the p53 functioning cell lines. The combination RPR-115135 + 5-FU increases apoptotic events only in these cell lines. In the mutated cell lines no major alterations on cell cycle arrest phenotype and no induction of apoptosis was observed. Although RPR-115135 can potentiate the effect of 5-FU in cells in which p53 function is disrupted, these data suggest strongly that RPR-115135 significantly enhances the efficacy of 5-FU only when p53 is functioning.  相似文献   

6.
5-Fluorouracil (5-FU) is one of the most widely used anticancer agents for advanced colorectal carcinoma, but its response rate is only 15%. The "pharmacokinetic modulating chemotherapy" (PMC) regimen that we have advocated has proved to be highly effective in treating colorectal carcinoma. PMC consists of a continuous i.v. infusion of 5-FU over 24 h for 1day a week at 600 mg/m2/day, and an oral dose of uracil-tegafur (UFT), a 5-FU derivative, at 400 mg/day for 5-7 days per week, repeated every week for more than 6 months. Assays of 5-FU in 23 patients receiving this treatment showed serum concentrations ranging from 88 to 1,323 ng/ml. We then analyzed the effects of clinically relevant concentrations of 5-FU found in colorectal cancer patients treated with the PMC regimen on the growth of three human colorectal adenocarcinoma cell lines, SW480 and COLO320DM (mutant p53) and HCT116 (wild-type p53). Exposure of these three cell lines to 5-FU resulted in growth inhibition in a dose-dependent manner. Exposure to 100 ng/ml of 5-FU in SW480 and COLO320DM caused G1 arrest after 24 h and G2 arrest after 72-144 h, and only a minority of the cell population showed apoptotic features, which indicated that most of the cells were killed through mitotic catastrophe, nonapoptotic cell death. On the contrary, exposure to 1000 ng/ml of 5-FU in SW480 and COLO320DM resulted in G1-S-phase arrest and the induction of apoptosis throughout the experimental period. Nuclear cyclin B1 expression was markedly induced with exposure to 100 ng/ml of 5-FU in SW480 and COLO320DM; and expression of 14-3-3sigma protein, a cell cycle inhibitor in the GG phase, was induced in SW480. ICT116 responded to lower concentrations of 5-FU more rapidly: G2 arrest was seen after 24-72 h of exposure to 10 ng/ml of 5-FU, and G,1rrest was seen after 12-24 h of exposure to 100 ng/ml. These results show that 5-FU acts via two different pathways, depending on dose: (a) G,1S-phase cell cycle arrest and apoptosis at 1,000 ng/ml in SW480 and COLO320DM, and 100 ng/ml in HCT116; and (b) G2-M-phase cell cycle arrest and mitotic catastrophe at 100 ng/ll in SW480 and COLO320DM, and 10 ng/ml in HCT116. These results suggest that the efficacy of our PMC regimen is based on targeting at least two different phases of the cell cycle. In our clinical trial, we showed efficacy independent of p53 status, ascertained by cell kinetic analysis in vitro, which may lead to a novel concept of schedule-oriented biochemical modulation of this drug.  相似文献   

7.
A bispecific monoclonal antibody (BsMAb) recognising carcinoembryonic antigen (CEA) and doxorubicin (Dox) was used in colorimetric microcytotoxicity assays with 3 human colon cancer cell lines (COLO320DM, SKCO1 and LS174T) showing no, high or medium CEA expression, respectively. The IC50 values for Dox with COLO320DM, SKCO1 and LS174T were 1,163, 28.5 and 324 ng/ml, respectively. BsMAb caused statistically significant reductions in Dox IC50 values at 1, 0.1 and 0.01 microg/ml with the CEA-expressing cell lines SKCO1 and LS174T but not with COLO320DM. BsMAb or control antibody alone had no significant effect on the cell viability of any of the cell lines and did not reduce Dox IC50 values. In vivo, there was a statistically significant inhibition of the growth of CEA-expressing LS174T cells growing as xenografts in nude mice treated with BsMAb and Dox compared to control mice. This effect was not seen with COLO320DM xenografts. Our results demonstrate that a BsMAb that recognises CEA and Dox can reduce the IC50 for Dox in vitro and inhibit growth in vivo in a CEA-specific manner.  相似文献   

8.
Defects in apoptosis have been implicated in chemoresistance of colon cancer cells. We report here the ability to resist to 5-fluorouracil-induced apoptosis of 8 colon cancer cell lines differing in p53 and bax status: p53(-/0)bax(+/+) for TC7, SW480, HT-29; p53(+/+)bax(-/-) for LS174T, LoVo; p53(+/+) bax(+/-) for HCT116; p53(+/+) or p53(+/0)bax(+/+) for LS513 or HCT-EB, respectively. To approximate to the in vivo therapy, the cell lines were exposed to a long-term treatment of 5-FU. The analysis of proteins implicated in the apoptotic pathway has shown that the independent analysis of p53 or bax status was not sufficient to predict the extent of drug-resistance of all cell lines. In p53(+/+) cell lines but not in p53(-/0) cell lines, a low level of the pro-apoptotic Bax protein was correlated with a greater resistance of cells to 5-FU. In addition, we found that high levels of anti-apoptotic Bcl-2 and Bcl-x(L) proteins combined with a low level of Bax were correlated to high 5-FU resistance of wild-type p53 cell lines. The same correlation was obtained for 2 out of 3 mutated p53 cell lines. In conclusion, the relative levels of Bcl-2, Bcl-x(L) and Bax may altogether contribute to determine the resistance of a majority of colon tumor cells to long-term 5-FU treatment, whatever their p53 status.  相似文献   

9.
The present study was undertaken to determine if (a) genistein induces topo II-mediated DNA damage in HT-29 colon cancer cells; and (b) if this damage is required to induce apoptosis. DNA damage was evaluated using the comet assay. Apoptosis was determined by the ethidium bromide/acridine orange staining technique. DNA breakage was noted within 1 h of treatment. Apoptosis was only induced with high concentrations (>/=60 microM) of genistein. Marked inhibition of HT-29 cell growth was evident at concentrations ranging from 60 to 150 microM. This was associated with a cell cycle arrest at G(2)/M. Similar findings were obtained in SW-620 and SW-1116 colon cancer cell lines. Aclarubicin, a topo II antagonist, reduced genistein-induced DNA breaks but did not reduce apoptosis. These data suggest that, in colon cancer cells, topo II serves as the enzymatic target of genistein. Furthermore, topo II-mediated DNA cleavage is not required for the induction of apoptosis.  相似文献   

10.
Although the pharmacological role of beta-carotene in the prevention and treatment of colon cancer has received increasing attention, little is known about the molecular mechanisms of action of this carotenoid. The present study demonstrates that beta-carotene, a natural pigment widely present in fruit and vegetables, inhibits the growth of several human colon adenocarcinoma cell lines (COLO 320 HSR, LS-174, HT-29 and WiDr) by inducing cell cycle arrest in G(2)/M phase and apoptosis. These effects were dose and time dependent and strictly related to cell ability to accumulate the carotenoid. COLO 320 HSR cells incorporated beta-carotene to a greater extent than LS-174, HT-29 and WiDr cells and, concomitantly, they exhibited a higher sensitivity to the growth inhibitory effects of the carotenoid. At inhibitory concentrations beta-carotene reduced the expression of cyclin A, a key regulator of G(2)/M progression. Neither p21 nor p27, two cyclin kinase inhibitors, were significantly modified by carotenoid treatment. With respect to apoptosis induction, decreased levels of the apoptosis blocking proteins Bcl-2 and Bcl-xL were also observed. On the other hand, no changes in expression of the apoptosis promoter protein Bax were detected. This study represents a novel aspect of the biological profile of beta-carotene and a new step in elucidating the underlying molecular mechanisms of its antitumor action. In addition, since cell growth inhibitory effects were reached at beta-carotene concentrations achievable in vivo following its supplementation, this study provides a rational approach for the use of beta-carotene in colon cancer.  相似文献   

11.
12.
Terbinafine (TB) (Lamisil), a promising oral antifungal agent used worldwide, has been used in the treatment of superficial mycosis. In our study, we demonstrated that TB dose-dependently decreased cell number in various cultured human malignant cells. Flow cytometry analysis revealed that TB interrupts the cell cycle at the G0/G1 transition. The TB-induced cell cycle arrest in colon cancer cell line (COLO 205) occurred when the cyclin-dependent kinase (cdk) system was inhibited just as the levels of p53, p21/Cip1 and p27/Kip1 proteins were augmented. In the TB-treated COLO 205, the binding between p53 protein and p53 consensus binding site in p21/Cip1 promoter DNA probe was increased. Pretreatment of COLO 205 with p53-specific antisense oligodeoxynucleotide decreased the TB-induced elevations of p53 and p21/Cip1 proteins, which in turn led to arrest in the cell cycle at the G0/G1 phase. Moreover, in the p53 null cells, HL60, TB treatment did not induce cell cycle arrest. Taken together, these results suggest an involvement of the p53-associated signaling pathway in the TB-induced antiproliferation in COLO 205. We further examined whether administration of TB could affect the growth of tumors derived from human colon cancer cells in an in vivo setting. COLO 205 cells implanted subcutaneously in nude mice formed solid tumor; subsequent intraperitoneal injections of TB (50 mg/kg) led to obvious decline in tumor size, up to 50-60%. In these tumors, increases in the p21/Cip1, p27/Kip1 and p53 proteins and the occurrence of apoptosis were observed. Combined treatment with TB and nocodazole (ND), a clinically used anticancer agent, potentiated the apoptotic effect in COLO 205. These findings demonstrate for the first time that TB can inhibit the proliferation of tumor cells in vitro and in vivo.  相似文献   

13.
The p53 tumor suppressor protein performs a number of cellular functions, ranging from the induction of cell cycle arrest and apoptosis to effects on DNA repair. Modulating p53 activity with Mdm2 inhibitors is a promising approach for treating cancer; however, it is presently unclear how the in vivo application of Mdm2 inhibitors impact the myriad processes orchestrated by p53. Since approximately half of all colon cancers (predominately cancers with microsatellite instability) are p53-normal, we assessed the anticancer activity of the Mdm2 inhibitor Nutlin-3 in the mouse azoxymethane (AOM) colon cancer model, in which p53 remains wild type. Using a cell line derived from an AOM-induced tumor, we found that four daily exposures to Nutlin-3 induced persistent p53 stabilization and cell cycle arrest without significant apoptosis. A 4-day dosing schedule in vivo generated a similar response in colon tumors; growth arrest without significantly increased apoptosis. In adjacent normal colon tissue, Nutlin-3 treatment reduced both cell proliferation and apoptosis. Surprisingly, Nutlin-3 induced a transient DNA damage response in tumors but not in adjacent normal tissue. Nutlin-3 likewise induced a transient DNA damage response in human colon cancer cells in a p53-dependent manner, and enhanced DNA strand breakage and cell death induced by doxorubicin. Our findings indicate that Mdm2 inhibitors not only trigger growth arrest, but may also stimulate p53's reported ability to slow homologous recombination repair. The potential impact of Nutlin-3 on DNA repair in tumors suggests that Mdm2 inhibitors may significantly accentuate the tumoricidal actions of certain therapeutic modalities.  相似文献   

14.
Oxaliplatin has emerged as a major chemotherapeutic drug in the treatment of advanced colorectal cancer, yet like most conventional cancer therapeutics, its efficacy is often compromised due to p53 mutations. Unlike oxaliplatin, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in a p53-independent manner, and chemotherapy is known to overcome tumour resistance to TRAIL-induced cell death in most cancer cells. Using a panel of colon cancer cell lines, we assessed the ability of oxaliplatin to sensitize to TRAIL-induced apoptosis. We demonstrate that while both drugs additively or synergistically induced apoptosis in almost all cell lines tested, p53 wild-type colon cancer cells such as HCT116, LS513 or LS174T remained resistant. Impaired TRAIL-induced cell death resulted from a strong p53 dependent, oxaliplatin-mediated, DcR1 receptor expression increase. According to our finding, downregulation of DcR1 using siRNA, in p53 wild-type colon cancer cells, restored oxaliplatin/TRAIL synergistic apoptotic activity. On the contrary, exogenous DcR1 overexpression in SW480, a p53-mutated cell line, abolished the synergy between the two drugs. Altogether we demonstrate for the first time that p53 negatively regulates oxaliplatin-mediated TRAIL-induced apoptotic activity through DcR1 upregulation. Our findings could have important implications for future therapeutic strategies, and suggest that the association oxaliplatin/TRAIL should be restricted to patients harbouring a non-functional p53 protein.  相似文献   

15.
16.
DNA methyltransferase (DNMT)-inhibiting nucleoside analogs reactivate the expression of tumor suppressor genes and apoptosis-related genes silenced by methylation, thus favoring the induction of apoptosis in tumor cells. Moreover, induction of DNA damage seems to contribute to their antitumor effect. However, the apoptotic signaling pathway induced by these demethylating drugs is not well understood. Here, we have investigated the induction of apoptosis by two nucleoside DNMT inhibitors, decitabine and zebularine, in leukemic T cells. Both inhibitors induced caspase-dependent apoptosis in Jurkat, CEM-6 and MOLT-4 leukemia T cell lines, all with mutant p53, whereas resting and activated normal T lymphocytes were highly resistant to these demethylating agents. Although decitabine and zebularine showed different ability to induce apoptosis and cell cycle arrest among the three cell lines, they similarly activated the intrinsic apoptotic pathway by inducing mitochondrial alterations such as Bak activation, loss of transmembrane potential and generation of reactive oxygen species (ROS). Accordingly, Bcl-2- and Bcl-x(L) -overexpressing Jurkat cells, as well as caspase-9-deficient Jurkat cells, were resistant to apoptosis induced by decitabine and zebularine. Interestingly, ROS production seemed to be necessary for the induction of apoptosis. Apoptotic events, such as Bak and caspase activation, started as soon as 20 hr after treatment with either decitabine or zebularine. In addition, progression of apoptosis triggered by both DNMT inhibitors was paralleled by the induction of DNA damage. Our results suggest that the mitochondrial apoptotic pathway activated by decitabine and zebularine in p53 mutant leukemic T cells depends mainly on the induction of DNA damage.  相似文献   

17.
Treatment of colon cancer cells with MNNG causes DNA damage with reduced telomeric signals in a p53-dependent manner, but increased cell cycle arrest in S-G(2)/M by both p53-dependent and independent mechanisms. Results also indicate that cellular levels of TRF2 may play a critical role in MNNG-induced cell cycle arrest and apoptosis of colon cancer cells.  相似文献   

18.
19.
We investigated the cell cycle and apoptotic response to irradiation in 4 human ovarian carcinoma cell lines, i.e., PA-1, Caov-3, SK-OV-3, and ES-2. Cell lines were also analysed for their p53 and Bax expression to address the relationship with cell cycle and apoptotic response. Apoptosis was examined by flow cytometric measurement of annexin V binding and by determination of cytoplasmic histone-associated DNA fragments with a photometric enzyme immunoassay. Cell cycle analyses were performed on the basis of flow cytometry. p53 and Bax protein expression was examined by immunocytochemistry in untreated cells and after irradiation. p53 cDNA sequencing and a functional yeast-based assay (FASAY) were performed to determine the p53 mutational status. All cell lines exhibited a dose-dependent G2/M arrest. No arrest in G1 was seen. A strong correlation was found between the G2/M arrest and the induction of apoptosis. PA-1, the only cell line found to express wild-type p53, showed the highest susceptibility to accumulate in G2/M and the strongest apoptotic response after irradiation. In this cell line irradiation resulted in an unequivocal accumulation of p53 protein and in an increased expression of Bax protein. Caov-3, lacking wild-type p53, showed upregulation of Bax expression after irradiation. Caov-3 proved to be relative sensitive to apoptosis compared to SK-OV-3 and ES-2. These two cell lines were found to be p53 mutated in sequence analysis and irradiation had no effect on the expression of p53. No change in Bax expression was seen in ES-2, while SK-OV-3 exhibited decreased Bax protein levels after irradiation. Our data suggest that the G2/M arrest is an important component of the pathway leading from irradiation-induced DNA damage to apoptosis in the examined cell lines. The G2/M arrest and associated apoptosis found in the examined cell lines does not necessarily require wild-type p53, although wild-type p53 and possibly Bax may contribute to a maximum response to irradiation. Two independent mechanisms, p53-dependent and p53-independent, are suggested in the examined cell lines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号