首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
精制冠心方水提液的大孔树脂纯化工艺优选   总被引:3,自引:2,他引:1  
目的:研究大孔吸附树脂富集冠心膏水提液中有效成分的工艺条件及参数。方法:以丹酚酸B和芍药苷为指标,采用高效液相法进行含量测定,优选大孔树脂纯化的最佳工艺。结果:D101大孔吸附树脂纯化效果较好,其最佳工艺的条件为径高比1:7,上样液生药质量浓度0.2 g·mL-1,药液最大上样体积为树脂量的8倍,洗脱剂40%乙醇,解析速率3 BV·h-1,洗脱剂用量4 BV。结论:D101型大孔吸附树脂纯化冠心膏水提液的最佳工艺稳定、可行。  相似文献   

2.
目的:研究桫椤叶总黄酮的提取工艺和大孔树脂吸附纯化的工艺参数。方法:采用单因素和正交实验法,以总黄酮的提取率为考察指标和采用树脂静态、动态吸附脱附实验法,以总黄酮吸附率、解吸率等为考察指标。结果:桫椤叶总黄酮最佳提取工艺为:提取温度为80°C,提取时间为1 h,料液比为1∶12,乙醇浓度为60%,提取2次;树脂D104对桫椤叶总黄酮吸附分离的最佳工艺:上柱液质量浓度1.36 mg/mL,上柱流速2 BV/h,溶液处理量为5 BV/次,洗脱溶剂为70%的乙醇,脱附流速为3 BV/h,脱附剂用量为2 BV/次。结论:该提取精制路线达到富集有效成分的目的。  相似文献   

3.
目的采用大孔吸附树脂对辣蓼总黄酮进行分离纯化,探讨静态及动态吸附过程中多种因素对吸附及解吸效果的影响,以确定其最佳分离提纯工艺。方法提取辣蓼总黄酮,测定辣蓼黄酮乙酸乙酯部位(FEA)与辣蓼黄酮正丁醇部位(FNB)黄酮含量,进行大孔吸附树脂对FEA与FNB的吸附试验,采用D101、AB-8、DM130和XDA-8大孔树脂优选最佳分离纯化工艺。结果选择XDA-8进行辣蓼总黄酮的富集,其最佳工艺为:调节FEA黄酮pH值为6,上样浓度为750μg/m L,用75%乙醇洗脱,以1 BV/h流速洗脱5 BV;调节FNB黄酮pH值为6.0,上样浓度为1 mg/m L,用60%乙醇洗脱,以1 BV/h流速洗脱5 BV。结论采用XDA-8大孔吸附树脂通过最佳工艺有利于分离纯化辣蓼总黄酮。  相似文献   

4.
目的对浙江七叶树种子娑罗子中七叶皂苷的纯化工艺进行研究,以获得最佳纯化工艺和高纯度的七叶皂苷。方法采用超声波法提取七叶皂苷,以D101大孔吸附树脂分离纯化七叶皂苷,并以吸附率和洗脱率为指标优化纯化工艺,D101大孔吸附树脂最佳工艺再配合硅胶柱层析精制七叶皂苷。应用紫外分光光度法跟踪检测七叶皂苷含量,评价纯化效果。结果 D101大孔吸附树脂纯化七叶皂苷的最佳工艺为:静置吸附24h,上样液浓度为30mg/mL,上样速度为2BV/h(树脂床体积),洗脱剂为70%乙醇,洗脱体积为2.5BV,洗脱速度为1.5BV/h。D101大孔吸附树脂最佳工艺联合硅胶柱层析,七叶皂苷纯度可达90%以上。结论此纯化工艺稳定可行,可有效用于浙江七叶树种子娑罗子中七叶皂苷的分离纯化和制备。  相似文献   

5.
泥胡菜总黄酮大孔树脂纯化工艺优化   总被引:1,自引:1,他引:0  
目的:优选大孔树脂纯化泥胡菜总黄酮的工艺条件.方法:采用静态吸附-洗脱试验筛选大孔树脂型号,动态吸附法优化大孔树脂纯化泥胡菜总黄酮工艺参数.结果:优选的纯化工艺为选用D101型树脂,上样液质量浓度1.5 g·L-1,上样速率3 BV·h-1,上样体积4 BV,上样液pH 5,加50%乙醇5 BV以2 BV·h-1流速洗脱,泥胡菜总黄酮纯度达47.8%.结论:D101型大孔树脂对泥胡菜总黄酮具有良好的纯化效果.  相似文献   

6.
苜蓿黄酮提取富集工艺的研究   总被引:1,自引:0,他引:1  
目的:优化苜蓿黄酮的提取富集工艺.方法:采用均匀设计法对苜蓿黄酮提取工艺进行优化,采用大孔树脂对总黄酮进行富集工艺研究.结果:最佳提取工艺为固液比为1:19,提取2次,提取时间128min,乙醇浓度71%,提取率预测值为34.2mg/g.大孔树脂富集纯化工艺采用D101树脂,以3BV用量的70%的乙醇作为洗脱剂进行洗脱,洗脱流速为2ml/min.结论:优化的苜蓿总黄酮提取、富集工艺经济、稳定、合理可行.  相似文献   

7.
丹参中总丹参酮的提取与纯化   总被引:1,自引:1,他引:0  
目的:优选丹参中总丹参酮的提取纯化工艺条件。方法:采用正交设计法,以总丹参酮为含量测定指标,优选总丹参酮提取纯化工艺条件。以静态吸附及解析试验筛选最佳纯化树脂;通过动态吸附相关指标考察最佳洗脱条件。结果:最佳提取工艺为加8倍量90%乙醇,80℃水浴回流提取2次,每次1 h。最佳纯化工艺为采用D101型大孔吸附树脂,浓度40%样品以3 BV·h-1的流速吸附,用水5 BV去糖,以流速5 BV·h-1,90%乙醇洗脱6 BV。结论:优选工艺得到的总丹参酮含量较高,工艺简单,适宜工业化生产。  相似文献   

8.
目的研究大孔吸附树脂富集川芪眼用凝胶水提液中有效成分的工艺条件及参数。方法以黄芪甲苷和阿魏酸为指标成分,采用高效液相色谱法进行含量测定,优选大孔树脂纯化的最佳工艺。结果 D101大孔吸附树脂对待测成分的纯化效果较好,最佳精制工艺条件为:上样浓度为0.3 g原药材/m L,上样量为6倍上样液,洗脱液为6倍树脂量的70%乙醇溶液,动态洗脱流速为6 BV/h。结论 D101大孔吸附树脂纯化川芪眼用凝胶水提液的最佳工艺稳定、可行。  相似文献   

9.
《中成药》2017,(2)
目的优化大孔吸附树脂富集纯化雪松Cedrus deodara(Roxb.)Loud.松针总黄酮工艺。方法 40%乙醇回流提取总黄酮,紫外分光光度法测定其含有量。考察12种大孔吸附树脂(D-101、NKA-9、HPD100、AB-8、D4020、ADS-17、HPD826、HPD450、DM130、XAD-16、HPD722、HP-20)对总黄酮的吸附解吸能力;以上样液质量浓度、上样液p H值、上样量为影响因素考察最佳树脂吸附能力;以乙醇体积分数、除杂溶剂、乙醇洗脱用量为影响因素,考察最佳树脂解吸能力,优化富集纯化工艺。结果 HPD722大孔吸附树脂纯化效果最好,最佳条件为上样液质量浓度3.85 mg/m L,上样液p H值4.0,上样量4 BV,乙醇体积分数70%,除杂溶剂4 BV水,乙醇洗脱用量2 BV,总黄酮纯度达到54.28%。结论该方法合理可行,可用于富集纯化雪松松针总黄酮。  相似文献   

10.
目的:建立小春花总黄酮的提取、纯化工艺,为总黄酮化学成分、药理研究和制剂开发提供基础。方法:以小春花总黄酮为指标,考察提取工艺;采用大孔吸附树脂、聚酰胺树脂纯化小春花总黄酮,对树脂型号、上样浓度、上样液pH值、洗脱溶剂的用量等进行了考察,确定最佳工艺。结果:小春花总黄酮的最佳提取工艺为:6倍量70%乙醇提取3次,每次2 h;得到总黄酮的平均含量4.14 mg/g,转移率均达到90%以上;大孔吸附树脂纯化小春花总黄酮的最佳工艺为:以D101型大孔吸附树脂为吸附剂,上样液浓度p H为5、浓度为1.22 mg/mL,以流速2 mL/min过柱,用水6BV进行洗脱,再用70%乙醇4BV洗脱,得到的小春花总黄酮含量达7.25%,得率均在75%以上;聚酰胺树脂纯化最佳工艺为:以100-200型聚酰胺树脂为吸附剂,上样浓度为1.18 mg/mL,流速2mL/min过柱,再用70%乙醇4BV洗脱,得到小春花总黄酮的含量符合制剂学要求。结论:本部分建立了小春花总黄酮的提取工艺,并采用大孔吸附树脂、聚酰胺树脂进行纯化,提取的总黄酮含量≥50%,满足制剂开发的需求。  相似文献   

11.
目的:研究大孔树脂纯化葛根丹参药对水溶性有效成分的工艺条件及参数。方法:以有效成分葛根素和丹酚酸B的洗脱率和吸附量为评价指标,筛选大孔树脂纯化葛根丹参有效成分的最佳工艺。结果:选用D-101-A型大孔树脂,除杂洗脱用水量为3 BV,洗脱剂乙醇浓度为60%,乙醇用量为3 BV。结论:通过大孔吸附树脂纯化后,葛根丹参药对水溶性成分得到有效纯化。  相似文献   

12.
D 101型大孔吸附树脂对柚皮中柚皮苷的富集研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:建立D 101型大孔吸附树脂富集纯化柚皮中柚皮苷的工艺.方法:以柚皮苷作为考察指标,对溶液的pH值、盐离子浓度、吸附时间、动态吸附因素进行研究.结果:D 101型大孔吸附树脂对柚皮苷最佳纯化工艺为溶液pH4,吸附时间1h,流速2BV·h-1,90%乙醇7BV洗脱.结论:该方法简单、可行,能够用来富集纯化柚皮中柚皮苷.  相似文献   

13.
大孔树脂对零陵香总黄酮的富集与纯化工艺研究   总被引:1,自引:0,他引:1  
《辽宁中医杂志》2013,(7):1424-1426
目的:研究用大孔树脂富集与纯化零陵香总黄酮工艺条件,为建立质量评价指标和中药药效组分新药研究奠定基础。方法:通过静态吸附和解吸附方法筛选大孔树脂,通过动态单因素考察确定零陵香总黄酮富集与纯化工艺。结果:D101大孔树脂对零陵香总黄酮有良好的富集纯化效果。其动态富集纯化工艺条件为:零陵香总黄酮上样浓度为1 g/mL,树脂和药液的体积比为1∶1,吸附流速为1 mL/min,用3 BV50%的乙醇以1 mL/min的流速洗脱,零陵香总黄酮的纯度由1.2%提高到18.4%。结论:D101大孔树脂用于零陵香总黄酮的富集与纯化,可提高纯度15倍。  相似文献   

14.
大孔吸附树脂分离纯化丹皮总苷工艺研究   总被引:3,自引:0,他引:3  
目的:优选大孔吸附树脂富集纯化牡丹皮中丹皮总苷的最佳工艺参数。方法:采用HPLC法测定丹皮总苷含量,考察D101、D201、D301、D401、AB-8、NKA-96种大孔树脂对芍药苷的吸附和解吸附性能,并进一步考察分离纯化条件。结果:D101大孔树脂对丹皮总苷提取液纯化最优,上样液芍药苷浓度为0.83mg·mL-1、pH6.5、洗脱流速1BV·h-1,分离纯化条件为:先用10BV蒸馏水洗脱,然后用4BV70%乙醇洗脱,收集70%乙醇洗脱液,浓缩、干燥,即得到丹皮总苷。结论:D101大孔树脂可用于牡丹皮水提取液中丹皮总苷的富集纯化。  相似文献   

15.
目的:优选牛蒡根总多酚大孔树脂纯化工艺。方法:以总多酚吸附率,解析率为考察指标,对4种大孔树脂吸附解析性能进行考察,比较其纯化效果。结果:确定4种大孔树脂中D101型最适合牛蒡根总多酚的纯化,最佳工艺条件为:树脂径长比为1∶8,上样药液浓度为3mg/mL,上样液流速为1BV/h,洗脱剂的流速为1.5BV/h,洗脱剂乙醇浓度为40%。在优化工艺条件下,分离纯化得到总多酚含量为69%。结论:D101型树脂对牛蒡根总多酚纯化效果较好,该纯化工艺稳定。  相似文献   

16.
目的:探究大孔吸附树脂富集纯化艾纳香废渣总黄酮的最佳工艺。方法:采用UV法测定总黄酮含量,以吸附率和解吸率为指标,采用静态吸附试验对8种大孔树脂进行筛选,优选出吸附解吸性能最佳的大孔树脂,并优化纯化条件,确定最佳工艺参数。结果:LX-17型树脂对艾纳香废渣中总黄酮有较好的吸附和解吸附效果。最佳纯化工艺为:50%乙醇提取2次,上柱液总黄酮浓度为3.03 mg·m L-1,洗脱溶剂为50%乙醇,洗脱速度为2 BV·h-1,纯化后总黄酮量高达20.03%。结论:LX-17型树脂适合富集纯化艾纳香废渣中的总黄酮。  相似文献   

17.
目的:优选山茱萸的提取工艺及大孔树脂纯化工艺。方法:以莫诺苷含量为指标,选择乙醇体积分数、料液比、提取时间、提取次数为考察因素,采用单因素试验和正交试验优选提取工艺。选取上样量、洗脱速度、洗脱剂浓度及用量为考察因素,采用单因素试验考察HPD-300型大孔吸附树脂纯化工艺。结果:山茱萸最佳提取工艺为加8倍量50%乙醇提取3次,每次3 h。纯化工艺为3 BV 30%乙醇以1.5 BV·h-1洗脱,洗脱率达94.9%。结论:优选的提取工艺稳定可行;HPD-300型大孔吸附树脂可较好地纯化山茱萸总苷。  相似文献   

18.
目的通过静态吸附解吸法优选适宜的大孔树脂,并对筛选出的树脂进行工艺优化,确定大孔吸附树脂纯化桑叶总黄酮的最佳工艺。方法采用比较AB-8、D-101、HPD-400三种大孔吸附树脂对桑叶总黄酮的静态吸附率与解吸率,筛选出最佳吸附剂,进一步考察大孔吸附树脂动态吸附量、洗脱剂乙醇的体积分数与洗脱曲线,优化桑叶总黄酮的纯化工艺。结果 D-101树脂具有较好的吸附及解吸附性能,其最佳工艺为:上样液质量浓度为0.1 g生药/ml,上样最大量10BV,洗脱剂为70%乙醇,洗脱剂用量5BV。结论 D101树脂综合性能好,适合于桑叶总黄酮的分离纯化。  相似文献   

19.
目的通过大孔吸附树脂富集纯化玳玳花总黄酮。方法静态吸附实验考察NKA-9、HPD100、HPD400、HPD600、AB-8、D101、X-5、DM301大孔吸附树脂对总黄酮的吸附、解吸能力,通过吸附动力学、热力学探讨吸附机理,在采用动态吸附、解吸实验优化富集纯化工艺。结果AB-8大孔吸附树脂吸附、解吸能力最佳,吸附过程符合拟二级动力学、Langmuir模型,ΔH<0,ΔG<0,ΔS>0。最佳纯化工艺为上样液质量浓度4.90 mg/mL,上样体积流量2 BV/h,上样量7 BV,洗脱剂70%乙醇,洗脱体积流量3 BV/h,洗脱剂用量6 BV,总黄酮纯度从9.87%提高至36.75%,回收率为83.17%。结论AB-8大孔吸附树脂可有效富集纯化玳玳花总黄酮。  相似文献   

20.
大孔吸附树脂纯化小丛红景天总黄酮的初步研究   总被引:1,自引:0,他引:1  
谭林  郭增军  徐颖 《中药材》2008,31(11):1740-1743
目的:筛选纯化小丛红景天总黄酮的最佳树脂,并对影响纯化的各种主要因素进行初步研究,使纯化工艺达到最优化。方法:采用静态吸附/解吸与动态吸附/解吸相结合的方法,用紫外-可见分光光度法测定小丛红景天总黄酮的含量来对工艺进行评价。结果:D101大孔吸附树脂纯化效果最好,其最佳工艺为:上样药液总黄酮浓度为3.625 mg/ml,相当于原生药0.241 g/ml,吸附速率为2BV/h,解吸液乙醇浓度为95%,解吸速率为2BV/h,洗脱剂用量为5倍柱体积,纯度可以达到48.5%。结论:D101大孔吸附树脂吸附性能最好,适于小丛红景天总黄酮的初步纯化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号