共查询到20条相似文献,搜索用时 15 毫秒
1.
The ENIGMA‐DTI (diffusion tensor imaging) workgroup supports analyses that examine the effects of psychiatric, neurological, and developmental disorders on the white matter pathways of the human brain, as well as the effects of normal variation and its genetic associations. The seven ENIGMA disorder‐oriented working groups used the ENIGMA‐DTI workflow to derive patterns of deficits using coherent and coordinated analyses that model the disease effects across cohorts worldwide. This yielded the largest studies detailing patterns of white matter deficits in schizophrenia spectrum disorder (SSD), bipolar disorder (BD), major depressive disorder (MDD), obsessive–compulsive disorder (OCD), posttraumatic stress disorder (PTSD), traumatic brain injury (TBI), and 22q11 deletion syndrome. These deficit patterns are informative of the underlying neurobiology and reproducible in independent cohorts. We reviewed these findings, demonstrated their reproducibility in independent cohorts, and compared the deficit patterns across illnesses. We discussed translating ENIGMA‐defined deficit patterns on the level of individual subjects using a metric called the regional vulnerability index (RVI), a correlation of an individual''s brain metrics with the expected pattern for a disorder. We discussed the similarity in white matter deficit patterns among SSD, BD, MDD, and OCD and provided a rationale for using this index in cross‐diagnostic neuropsychiatric research. We also discussed the difference in deficit patterns between idiopathic schizophrenia and 22q11 deletion syndrome, which is used as a developmental and genetic model of schizophrenia. Together, these findings highlight the importance of collaborative large‐scale research to provide robust and reproducible effects that offer insights into individual vulnerability and cross‐diagnosis features. 相似文献
2.
Severe mental illnesses (SMI), including major depressive (MDD), bipolar (BD), and schizophrenia spectrum (SSD) disorders have multifactorial risk factors and capturing their complex etiopathophysiology in an individual remains challenging. Regional vulnerability index (RVI) was used to measure individual''s brain‐wide similarity to the expected SMI patterns derived from meta‐analytical studies. It is analogous to polygenic risk scores (PRS) that measure individual''s similarity to genome‐wide patterns in SMI. We hypothesized that RVI is an intermediary phenotype between genome and symptoms and is sensitive to both genetic and environmental risks for SMI. UK Biobank sample of N = 17,053/19,265 M/F (age = 64.8 ± 7.4 years) and an independent sample of SSD patients and controls ( N = 115/111 M/F, age = 35.2 ± 13.4) were used to test this hypothesis. UKBB participants with MDD had significantly higher RVI‐MDD (Cohen''s d = 0.20, p = 1 × 10 −23) and PRS‐MDD ( d = 0.17, p = 1 × 10 −15) than nonpsychiatric controls. UKBB participants with BD and SSD showed significant elevation in the respective RVIs ( d = 0.65 and 0.60; p = 3 × 10 −5 and .009, respectively) and PRS ( d = 0.57 and 1.34; p = .002 and .002, respectively). Elevated RVI‐SSD were replicated in an independent sample ( d = 0.53, p = 5 × 10 −5). RVI‐MDD and RVI‐SSD but not RVI‐BD were associated with childhood adversity ( p < .01). In nonpsychiatric controls, elevation in RVI and PRS were associated with lower cognitive performance ( p < 10 −5) in six out of seven domains and showed specificity with disorder‐associated deficits. In summary, the RVI is a novel brain index for SMI and shows similar or better specificity for SMI than PRS, and together they may complement each other in the efforts to characterize the genomic to brain level risks for SMI. 相似文献
3.
Patients with schizophrenia have patterns of brain deficits including reduced cortical thickness, subcortical gray matter volumes, and cerebral white matter integrity. We proposed the regional vulnerability index (RVI) to translate the results of Enhancing Neuro Imaging Genetics Meta-Analysis studies to the individual level. We calculated RVIs for cortical, subcortical, and white matter measurements and a multimodality RVI. We evaluated RVI as a measure sensitive to schizophrenia-specific neuroanatomical deficits and symptoms and studied the timeline of deficit formations in: early (≤5 years since diagnosis, N = 45, age = 28.8 ± 8.5); intermediate (6–20 years, N = 30, age 43.3 ± 8.6); and chronic (21+ years, N = 44, age = 52.5 ± 5.2) patients and healthy controls ( N = 76, age = 38.6 ± 12.4). All RVIs were significantly elevated in patients compared to controls, with the multimodal RVI showing the largest effect size, followed by cortical, white matter and subcortical RVIs ( d = 1.57, 1.23, 1.09, and 0.61, all p < 10 ?6). Multimodal RVI was significantly correlated with multiple cognitive variables including measures of visual learning, working memory and the total score of the MATRICS consensus cognitive battery, and with negative symptoms. The multimodality and white matter RVIs were significantly elevated in the intermediate and chronic versus early diagnosis group, consistent with ongoing progression. Cortical RVI was stable in the three disease-duration groups, suggesting neurodevelopmental origins of cortical deficits. In summary, neuroanatomical deficits in schizophrenia affect the entire brain; the heterochronicity of their appearance indicates both the neurodevelopmental and progressive nature of this illness. These deficit patterns may be useful for early diagnosis and as quantitative targets for more effective treatment strategies aiming to alter these neuroanatomical deficit patterns. 相似文献
4.
Reduced speed of cerebral information processing is a cognitive deficit associated with schizophrenia. Normal information processing speed (PS) requires intact white matter (WM) physiology to support information transfer. In a cohort of 107 subjects (47/60 patients/controls), we demonstrate that PS deficits in schizophrenia patients are explained by reduced WM integrity, which is measured using diffusion tensor imaging, mediated by the mismatch in WM/gray matter blood perfusion, and measured using arterial spin labeling. Our findings are specific to PS, and testing this hypothesis for patient‐control differences in working memory produces no explanation. We demonstrate that PS deficits in schizophrenia can be explained by neurophysiological alterations in cerebral WM. Whether the disproportionately low WM integrity in schizophrenia is due to illness or secondary due to this disorder deserves further examination. Hum Brain Mapp 36:3793–3804, 2015. © 2015 Wiley Periodicals, Inc. 相似文献
5.
Despite considerable interest in improving clinical and neurobiological characterisation of frontotemporal dementia and in defining the role of brain network disintegration in its pathogenesis, information about white matter pathway alterations in frontotemporal dementia remains limited. Here we investigated white matter tract damage using an unbiased, template‐based diffusion tensor imaging (DTI) protocol in a cohort of 27 patients with the behavioral variant of frontotemporal dementia (bvFTD) representing both major genetic and sporadic forms, in relation both to healthy individuals and to patients with Alzheimer's disease. Widespread white matter tract pathology was identified in the bvFTD group compared with both healthy controls and Alzheimer's disease group, with prominent involvement of uncinate fasciculus, cingulum bundle and corpus callosum. Relatively discrete and distinctive white matter profiles were associated with genetic subgroups of bvFTD associated with MAPT and C9ORF72 mutations. Comparing diffusivity metrics, optimal overall separation of the bvFTD group from the healthy control group was signalled using radial diffusivity, whereas optimal overall separation of the bvFTD group from the Alzheimer's disease group was signalled using fractional anisotropy. Comparing white matter changes with regional grey matter atrophy (delineated using voxel based morphometry) in the bvFTD cohort revealed co‐localisation between modalities particularly in the anterior temporal lobe, however white matter changes extended widely beyond the zones of grey matter atrophy. Our findings demonstrate a distributed signature of white matter alterations that is likely to be core to the pathophysiology of bvFTD and further suggest that this signature is modulated by underlying molecular pathologies. Hum Brain Mapp 35:4163–4179, 2014. © 2014 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc. 相似文献
6.
Neural anomalies have been demonstrated in dyslexia. Recent studies in pre-readers at risk for dyslexia and in pre-readers developing poor reading suggest that these anomalies might be a cause of their reading impairment. Our study goes one step further by exploring the neurodevelopmental trajectory of white matter anomalies in pre-readers with and without a familial risk for dyslexia (n = 61) of whom a strictly selected sample develops dyslexia later on (n = 15). We collected longitudinal diffusion MRI and behavioural data until grade 3. The results provide evidence that children with dyslexia exhibit pre-reading white matter anomalies in left and right long segment of the arcuate fasciculus (AF), with predictive power of the left segment above traditional cognitive measures and familial risk. Whereas white matter differences in the left AF seem most strongly related to the development of dyslexia, differences in the left IFOF and in the right AF seem driven by both familial risk and later reading ability. Moreover, differences in the left AF appeared to be dynamic. This study supports and expands recent insights into the neural basis of dyslexia, pointing towards pre-reading anomalies related to dyslexia, as well as underpinning the dynamic character of white matter. 相似文献
7.
Information regarding anatomical connectivity in the human brain can be gathered using diffusion tensor imaging (DTI). Fractional anisotropy (FA) is the most commonly derived value, and reflects how strongly directional are the underlying tracts. Differences in FA are thus associated with differences in the underlying microstructure of the brain. The relationships between these differences in microstructure and functional differences in corresponding regions have also been examined. Previous studies have found an effect of handedness on functional lateralization in the brain and corresponding microstructural differences. Here, using tract-based spatial statistics to analyse DTI-derived FA values, we further investigated the structural white matter architecture in the brains of right- and left-handed males. We found significantly higher FA values for left-handed, relatively to right-handed, individuals, in all major lobes, and in the corpus callosum. In support of previous suggestions, we find that there is a difference in the microstructure of white matter in left- and right-handed males that could underpin reduced lateralization of function in left-handed individuals. 相似文献
8.
It has been suggested that developmental dyslexia may have two dissociable causes—a phonological deficit and a visual attention span (VAS) deficit. Yet, neural evidence for such a dissociation is still lacking. This study adopted a data‐driven approach to white matter network analysis to explore hubs and hub‐related networks corresponding to VAS and phonological accuracy in a group of French dyslexic children aged from 9 to 14 years. A double dissociation in brain‐behavior relations was observed. Structural connectivity of the occipital‐parietal network surrounding the left superior occipital gyrus hub accounted for individual differences in dyslexic children''s VAS, but not in phonological processing accuracy. In contrast, structural connectivity of two networks: the temporal–parietal‐occipital network surrounding the left middle temporal gyrus hub and the frontal network surrounding the left medial orbital superior frontal gyrus hub, accounted for individual differences in dyslexic children''s phonological processing accuracy, but not in VAS. Our findings provide evidence in favor of distinct neural circuits corresponding to VAS and phonological deficits in developmental dyslexia. The study points to connectivity‐constrained white matter subnetwork dysfunction as a key principle for understanding individual differences of cognitive deficits in developmental dyslexia. 相似文献
9.
ABSTRACT Objects Post-stroke aphasia (PSA) often have non-linguistic cognitive impairment. We aimed to ascertain its characteristics of non-linguistic cognitive impairment and the corresponding changes in white matter microstructures. 相似文献
10.
BACKGROUND: Aggression and impulsivity may involve altered frontal white matter. METHODS: Axial diffusion tensor images were acquired in 14 men with schizophrenia using a pulsed gradient, double spin echo, echo planar imaging method. White matter microstructural measures (fractional anisotropy and trace) were calculated from these data. Regions of interest were placed in frontal white matter on four slices. Impulsivity was measured using the Motor Impulsiveness factor of the Barratt Impulsiveness Scale. Aggressiveness was measured using the Assaultiveness scale of the Buss Durkee Hostility Inventory and the Aggression scale of the Life History of Aggression. RESULTS: Lower fractional anisotropy in right inferior frontal white matter was associated with higher motor impulsiveness. Higher trace in these regions was associated with aggressiveness. CONCLUSIONS: Inferior frontal white matter microstructure was associated with impulsivity and aggression in men with schizophrenia. These results implicate frontal lobe dysfunction in aggression and certain aspects of impulsivity. 相似文献
11.
Healthy human brain undergoes significant changes during development. The developmental trajectory of superficial white matter (SWM) is less understood relative to cortical gray matter (GM) and deep white matter. In this study, a multimodal imaging strategy was applied to vertexwise map SWM microstructure and cortical thickness to characterize their developmental pattern and elucidate SWM‐GM associations in children and adolescents. Microscopic changes in SWM were evaluated with water diffusion parameters including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in 133 healthy subjects aged 10–18 years. Results demonstrated distinct maturational patterns in SWM and GM. SWM showed increasing FA and decreasing MD and RD underneath bilateral motor sensory cortices and superior temporal auditory cortex, suggesting increasing myelination. A second developmental pattern in SWM was increasing FA and AD in bilateral orbitofrontal regions and insula, suggesting improved axonal coherence. These SWM patterns diverge from the more widespread GM maturation, suggesting that cortical thickness changes in adolescence are not explained by the encroachment of SWM myelin into the GM‐WM boundary. Interestingly, age‐independent intrinsic association between SWM and cortical GM seems to follow functional organization of polymodal and unimodal brain regions. Unimodal sensory areas showed positive correlation between GM thickness and FA whereas polymodal regions showed negative correlation. Axonal coherence and differences in interstitial neuron composition between unimodal and polymodal regions may account for these SWM‐GM association patterns. Intrinsic SWM‐GM relationships unveiled by neuroimaging in vivo can be useful for examining psychiatric disorders with known WM/GM disturbances. Hum Brain Mapp 35:2806–2816, 2014. © 2013 Wiley Periodicals, Inc . 相似文献
12.
Diffuse white matter (WM) disease is highly prevalent in elderly with cerebral small vessel disease (cSVD). In humans, cSVD such as cerebral amyloid angiopathy (CAA) often coexists with Alzheimer’s disease imposing a significant impediment for characterizing their distinct effects on WM. Here we studied the burden of age-related CAA pathology on WM disease in a novel transgenic rat model of CAA type 1 (rTg-DI). A cohort of rTg-DI and wild-type rats was scanned longitudinally using MRI for characterization of morphometry, cerebral microbleeds (CMB) and WM integrity. In rTg-DI rats, a distinct pattern of WM loss was observed at 9 M and 11 M. MRI also revealed manifestation of small CMB in thalamus at 6 M, which preceded WM loss and progressively enlarged until the moribund disease stage. Histology revealed myelin loss in the corpus callosum and thalamic CMB in all rTg-DI rats, the latter of which manifested in close proximity to occluded and calcified microvessels. The quantitation of CAA load in rTg-DI rats revealed that the most extensive microvascular Aβ deposition occurred in the thalamus. For the first time using in vivo MRI, we show that CAA type 1 pathology alone is associated with a distinct pattern of WM loss. 相似文献
13.
Background: Apathy is a common non-motor symptom in Parkinson's disease (PD), but little is known about apathy and white matter (WM) change. In this study, we investigated whether fractional anisotropy (FA) of the WM can distinguish apathetic patients from non-apathetic PD patients, and whether the FA value correlates with the severity of apathy in PD. Methods: Thirty-nine PD patients participated in our study, of which 18 participants were with apathy symptom, and 21 without apathy symptom. Diffusion tensor imaging was performed on all the subjects. Results: Compared to non-apathetic PD patients, the apathetic group had reduced FA values in the genu and body of corpus callosum, bilateral anterior corona radiata, left superior corona radiata and left cingulum. Furthermore, in these WM regions, the FA values were negatively correlated with the Lille Apathy Rating Scale scores in apathetic subjects. Conclusion: The WM change is associated with apathy in PD patients. In addition, the FA values of specific regions of WM could be a promising marker to predict the severity of apathy. 相似文献
14.
There are at least two fundamental unanswered questions in the literature on autism spectrum disorders (ASD): Are abnormalities in white (WM) and gray matter (GM) consistent with one another? Are WM morphometric alterations consistent with alterations in the GM of regions connected by these abnormal WM bundles and vice versa? The aim of this work is to bridge this gap. After selecting voxel‐based morphometry and diffusion tensor imaging studies comparing autistic and normally developing groups of subjects, we conducted an activation likelihood estimation (ALE) meta‐analysis to estimate consistent brain alterations in ASD. Multidimensional scaling was used to test the similarity of the results. The ALE results were then analyzed to identify the regions of concordance between GM and WM areas. We found statistically significant topological relationships between GM and WM abnormalities in ASD. The most numerous were negative concordances, found bilaterally but with a higher prevalence in the right hemisphere. Positive concordances were found in the left hemisphere. Discordances reflected the spatial distribution of negative concordances. Thus, a different hemispheric contribution emerged, possibly related to pathogenetic factors affecting the right hemisphere during early developmental stages. Besides, WM fiber tracts linking the brain structures involved in social cognition showed abnormalities, and most of them had a negative concordance with the connected GM regions. We interpreted the results in terms of altered brain networks and their role in the pervasive symptoms dramatically impairing communication and social skills in ASD patients. Hum Brain Mapp 35:2073–2098, 2014. © 2013 Wiley Periodicals, Inc. 相似文献
15.
A growing body of research indicates benefits of cognitive training in older adults, but the neuronal mechanisms underlying the effect of cognitive intervention remains largely unexplored. Neuroimaging methods are sensitive to subtle changes in brain structure and show potential for enhancing our understanding of both aging- and training-related neuronal plasticity. Specifically, studies using diffusion tensor imaging (DTI) suggest substantial changes in white matter (WM) in aging, but it is not known whether cognitive training might modulate these structural alterations. We used tract-based spatial statistics (TBSS) optimized for longitudinal analysis to delineate the effects of 8 weeks intensive memory training on WM microstructure. 41 participants (mean age 61 years) matched for age, sex and education were randomly assigned to an intervention or control group. All participants underwent MRI-scanning and neuropsychological assessments at the beginning and end of the study. Longitudinal analysis across groups revealed significant increase in frontal mean diffusivity (MD), indicating that DTI is sensitive to WM structural alterations over a 10-week interval. Further, group analysis demonstrated positive effects of training on the short-term changes. Participants in the training group showed a relative increase in fractional anisotropy (FA) compared with controls. Further, a significant relationship between memory improvement and change in FA was found, suggesting a possible functional significance of the reported changes. The training effect on FA seemed to be driven by a relative decrease in radial diffusivity, which might indicate a role for myelin-related processes in WM plasticity. 相似文献
16.
Neural communication is facilitated by intricate networks of white matter (WM) comprised of both long and short range connections. The maturation of long range WM connections has been extensively characterized, with projection, commissural, and association tracts showing unique trajectories with age. There, however, remains a limited understanding of age‐related changes occurring within short range WM connections, or U‐fibers. These connections are important for local connectivity within lobes and facilitate regional cortical function and greater network economy. Recent studies have explored the maturation of U‐fibers primarily using cross‐sectional study designs. Here, we analyzed diffusion tensor imaging (DTI) data for healthy children and adolescents in both a cross‐sectional ( n = 78; mean age = 13.04 ± 3.27 years) and a primarily longitudinal ( n = 26; mean age = 10.78 ± 2.69 years) cohort. We found significant age‐related differences in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) across the frontal, parietal, and temporal lobes of participants within the cross‐sectional cohort. By contrast, we report significant age‐related differences in only FA for participants within the longitudinal cohort. Specifically, larger FA values were observed with age in frontal, parietal, and temporal lobes of the left hemisphere. Our results extend previous findings restricted to long range WM to demonstrate regional changes in the microstructure of short range WM during childhood and adolescence. These changes possibly reflect continued myelination and axonal organization of short range WM with increasing age in more anterior regions of the left hemisphere. Hum Brain Mapp 39:204–217, 2018. © 2017 Wiley Periodicals, Inc. 相似文献
17.
Characterizing and understanding the limitations of diffusion MRI fiber tractography is a prerequisite for methodological advances and innovations which will allow these techniques to accurately map the connections of the human brain. The so‐called “crossing fiber problem” has received tremendous attention and has continuously triggered the community to develop novel approaches for disentangling distinctly oriented fiber populations. Perhaps an even greater challenge occurs when multiple white matter bundles converge within a single voxel, or throughout a single brain region, and share the same parallel orientation, before diverging and continuing towards their final cortical or sub‐cortical terminations. These so‐called “bottleneck” regions contribute to the ill‐posed nature of the tractography process, and lead to both false positive and false negative estimated connections. Yet, as opposed to the extent of crossing fibers, a thorough characterization of bottleneck regions has not been performed. The aim of this study is to quantify the prevalence of bottleneck regions. To do this, we use diffusion tractography to segment known white matter bundles of the brain, and assign each bundle to voxels they pass through and to specific orientations within those voxels (i.e. fixels). We demonstrate that bottlenecks occur in greater than 50‐70% of fixels in the white matter of the human brain. We find that all projection, association, and commissural fibers contribute to, and are affected by, this phenomenon, and show that even regions traditionally considered “single fiber voxels” often contain multiple fiber populations. Together, this study shows that a majority of white matter presents bottlenecks for tractography which may lead to incorrect or erroneous estimates of brain connectivity or quantitative tractography (i.e., tractometry), and underscores the need for a paradigm shift in the process of tractography and bundle segmentation for studying the fiber pathways of the human brain. 相似文献
18.
Autism spectrum disorder (ASD) is typified as a brain connectivity disorder in which white matter abnormalities are already present early on in life. However, it is unknown if and to which extent these abnormalities are hard‐wired in (older) adults with ASD and how this interacts with age‐related white matter changes as observed in typical aging. The aim of this first cross‐sectional study in mid‐ and late‐aged adults with ASD was to characterize white matter microstructure and its relationship with age. We utilized diffusion tensor imaging with head motion control in 48 adults with ASD and 48 age‐matched controls (30–74 years), who also completed a Flanker task. Intra‐individual variability of reaction times (IIVRT) measures based on performance on the Flanker interference task were used to assess IIVRT‐white matter microstructure associations. We observed primarily higher mean and radial diffusivity in white matter microstructure in ASD, particularly in long‐range fibers, which persisted after taking head motion into account. Importantly, group‐by‐age interactions revealed higher age‐related mean and radial diffusivity in ASD, in projection and association fiber tracts. Subtle dissociations were observed in IIVRT‐white matter microstructure relations between groups, with the IIVRT‐white matter association pattern in ASD resembling observations in cognitive aging. The observed white matter microstructure differences are lending support to the structural underconnectivity hypothesis in ASD. These reductions seem to have behavioral percussions given the atypical relationship with IIVRT. Taken together, the current results may indicate different age‐related patterns of white matter microstructure in adults with ASD. Hum Brain Mapp 38:82–96, 2017. © 2016 Wiley Periodicals, Inc. 相似文献
19.
The Stroop interference task is a widely used paradigm to examine cognitive inhibition, which is a key component of goal‐directed behavior. With increasing age, reaction times in the Stroop interference task are usually slowed. However, to date it is still under debate if age‐related increases in reaction times are merely an artifact of general slowing. The current study was conducted to investigate the role of general slowing, as measured by Trail‐Making‐Test‐A, in age‐related alterations of Stroop interference. We applied Diffusion Tensor Imaging (DTI) to determine the topography of neuronal networks underlying Stroop interference under control of general slowing. On the behavioral level, linear regression analysis demonstrated that age accounted for significant variance on Stroop interference, whereas TMT‐A performance did not. Controlling for TMT‐A, DTI based white matter analyses demonstrated a strong association of Stroop interference with integrity measures of genu of corpus callosum, bilateral anterior corona radiata, and bilateral anterior limb of capsula interna. These pathways are associated with frontal brain regions by either connecting the bilateral dorsolateral prefrontal cortex or the anterior cingulate cortex with frontal and subcortical regions or by containing fibers which are part of cortico‐thalamic circuits that cross prefrontal regions. Importantly, results expand our knowledge of the neural basis of Stroop interference and emphasize the importance of white matter integrity of frontal pathways in the modulation of Stroop interference. Combining behavioral and DTI findings our results further suggest that cognitive inhibition, as measured by Stroop task, is a qualitatively distinct cognitive process that declines with age. Hum Brain Mapp 35:2448–2458, 2014. © 2013 Wiley Periodicals, Inc. 相似文献
20.
Prior research has demonstrated links among vascular health and the occurrence of stroke, mild cognitive decline, and dementia in older adults. However, little is known about whether normal variation in vascular indicators may be related to changes in neural tissue integrity. Even less is known about how the brain is affected by cholesterol levels in the normal to moderate risk range, leading up to overt disease pathology. This study examined associations between serum lipid levels and DTI indicators of white matter (WM) structural integrity in a sample of 125 generally healthy older adults aged 43–87 years. Whole‐brain voxelwise analysis, controlling for age and gender, revealed low density lipoprotein levels (LDL) as the most robust correlate of regional WM structural integrity of the measured lipids. Higher LDL was associated with decreased WM integrity in right frontal and temporal regions, the superior longitudinal fasciculus and internal/external capsules. Increasing LDL was associated with increased radial and axial diffusivity; however, more widespread statistical effects were found for radial diffusivity. These findings suggest that normal interindividual variation in lipid levels is associated with compromised regional WM integrity, even in individuals below clinical thresholds for hyperlipidemia. Given the prevalence of cholesterol‐associated sequelae in older adults, and mounting evidence suggesting a vascular role in the etiology of dementia, the current data suggest that understanding the relationship between cholesterol and brain tissue microstructure may have important clinical implications for early detection of vascular‐related cognitive disorders and optimal regulation of serum lipids to maintain neural health in older adults. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
|