共查询到20条相似文献,搜索用时 0 毫秒
1.
《Human brain mapping》2022,43(1):194
The ENIGMA‐DTI (diffusion tensor imaging) workgroup supports analyses that examine the effects of psychiatric, neurological, and developmental disorders on the white matter pathways of the human brain, as well as the effects of normal variation and its genetic associations. The seven ENIGMA disorder‐oriented working groups used the ENIGMA‐DTI workflow to derive patterns of deficits using coherent and coordinated analyses that model the disease effects across cohorts worldwide. This yielded the largest studies detailing patterns of white matter deficits in schizophrenia spectrum disorder (SSD), bipolar disorder (BD), major depressive disorder (MDD), obsessive–compulsive disorder (OCD), posttraumatic stress disorder (PTSD), traumatic brain injury (TBI), and 22q11 deletion syndrome. These deficit patterns are informative of the underlying neurobiology and reproducible in independent cohorts. We reviewed these findings, demonstrated their reproducibility in independent cohorts, and compared the deficit patterns across illnesses. We discussed translating ENIGMA‐defined deficit patterns on the level of individual subjects using a metric called the regional vulnerability index (RVI), a correlation of an individual''s brain metrics with the expected pattern for a disorder. We discussed the similarity in white matter deficit patterns among SSD, BD, MDD, and OCD and provided a rationale for using this index in cross‐diagnostic neuropsychiatric research. We also discussed the difference in deficit patterns between idiopathic schizophrenia and 22q11 deletion syndrome, which is used as a developmental and genetic model of schizophrenia. Together, these findings highlight the importance of collaborative large‐scale research to provide robust and reproducible effects that offer insights into individual vulnerability and cross‐diagnosis features. 相似文献
2.
Peter Kochunov Yizhou Ma Kathryn S. Hatch Si Gao Neda Jahanshad Paul M. Thompson Bhim M. Adhikari Heather Bruce Andrew Van der vaart Eric L. Goldwaser Aris Sotiras Mark D. Kvarta Tianzhou Ma Shuo Chen Thomas E. Nichols L. Elliot Hong 《Human brain mapping》2022,43(16):4970
Severe mental illnesses (SMI), including major depressive (MDD), bipolar (BD), and schizophrenia spectrum (SSD) disorders have multifactorial risk factors and capturing their complex etiopathophysiology in an individual remains challenging. Regional vulnerability index (RVI) was used to measure individual''s brain‐wide similarity to the expected SMI patterns derived from meta‐analytical studies. It is analogous to polygenic risk scores (PRS) that measure individual''s similarity to genome‐wide patterns in SMI. We hypothesized that RVI is an intermediary phenotype between genome and symptoms and is sensitive to both genetic and environmental risks for SMI. UK Biobank sample of N = 17,053/19,265 M/F (age = 64.8 ± 7.4 years) and an independent sample of SSD patients and controls (N = 115/111 M/F, age = 35.2 ± 13.4) were used to test this hypothesis. UKBB participants with MDD had significantly higher RVI‐MDD (Cohen''s d = 0.20, p = 1 × 10−23) and PRS‐MDD (d = 0.17, p = 1 × 10−15) than nonpsychiatric controls. UKBB participants with BD and SSD showed significant elevation in the respective RVIs (d = 0.65 and 0.60; p = 3 × 10−5 and .009, respectively) and PRS (d = 0.57 and 1.34; p = .002 and .002, respectively). Elevated RVI‐SSD were replicated in an independent sample (d = 0.53, p = 5 × 10−5). RVI‐MDD and RVI‐SSD but not RVI‐BD were associated with childhood adversity (p < .01). In nonpsychiatric controls, elevation in RVI and PRS were associated with lower cognitive performance (p < 10−5) in six out of seven domains and showed specificity with disorder‐associated deficits. In summary, the RVI is a novel brain index for SMI and shows similar or better specificity for SMI than PRS, and together they may complement each other in the efforts to characterize the genomic to brain level risks for SMI. 相似文献
3.
4.
Peter Kochunov Fengmei Fan Meghann C. Ryan Kathryn S. Hatch Shuping Tan Neda Jahanshad Paul M. Thompson Theo G. M. van Erp Jessica A. Turner Shuo Chen Xiaoming Du Bhim Adhikari Heather Bruce Stephanie Hare Eric Goldwaser Mark Kvarta Junchao Huang Jinghui Tong Yimin Cui Baopeng Cao Yunlong Tan L. Elliot Hong 《Human brain mapping》2022,43(1):566-575
Patients with schizophrenia have patterns of brain deficits including reduced cortical thickness, subcortical gray matter volumes, and cerebral white matter integrity. We proposed the regional vulnerability index (RVI) to translate the results of Enhancing Neuro Imaging Genetics Meta‐Analysis studies to the individual level. We calculated RVIs for cortical, subcortical, and white matter measurements and a multimodality RVI. We evaluated RVI as a measure sensitive to schizophrenia‐specific neuroanatomical deficits and symptoms and studied the timeline of deficit formations in: early (≤5 years since diagnosis, N = 45, age = 28.8 ± 8.5); intermediate (6–20 years, N = 30, age 43.3 ± 8.6); and chronic (21+ years, N = 44, age = 52.5 ± 5.2) patients and healthy controls (N = 76, age = 38.6 ± 12.4). All RVIs were significantly elevated in patients compared to controls, with the multimodal RVI showing the largest effect size, followed by cortical, white matter and subcortical RVIs (d = 1.57, 1.23, 1.09, and 0.61, all p < 10−6). Multimodal RVI was significantly correlated with multiple cognitive variables including measures of visual learning, working memory and the total score of the MATRICS consensus cognitive battery, and with negative symptoms. The multimodality and white matter RVIs were significantly elevated in the intermediate and chronic versus early diagnosis group, consistent with ongoing progression. Cortical RVI was stable in the three disease‐duration groups, suggesting neurodevelopmental origins of cortical deficits. In summary, neuroanatomical deficits in schizophrenia affect the entire brain; the heterochronicity of their appearance indicates both the neurodevelopmental and progressive nature of this illness. These deficit patterns may be useful for early diagnosis and as quantitative targets for more effective treatment strategies aiming to alter these neuroanatomical deficit patterns. 相似文献
5.
Paul M. Thompson Neda Jahanshad Lianne Schmaal Jessica A. Turner Anderson M. Winkler Sophia I. Thomopoulos Gary F. Egan Peter Kochunov 《Human brain mapping》2022,43(1):15-22
This Special Issue of Human Brain Mapping is dedicated to a 10-year anniversary of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium. It reports updates from a broad range of international neuroimaging projects that pool data from around the world to answer fundamental questions in neuroscience. Since ENIGMA was formed in December 2009, the initiative grew into a worldwide effort with over 2,000 participating scientists from 45 countries, and over 50 working groups leading large-scale studies of human brain disorders. Over the last decade, many lessons were learned on how best to pool brain data from diverse sources. Working groups were created to develop methods to analyze worldwide data from anatomical and diffusion magnetic resonance imaging (MRI), resting state and task-based functional MRI, electroencephalography (EEG), magnetoencephalography (MEG), and magnetic resonance spectroscopy (MRS). The quest to understand genetic effects on human brain development and disease also led to analyses of brain scans on an unprecedented scale. Genetic roadmaps of the human cortex were created by researchers worldwide who collaborated to perform statistically well-powered analyses of common and rare genetic variants on brain measures and rates of brain development and aging. Here, we summarize the 31 papers in this Special Issue, covering: (a) technical approaches to harmonize analysis of different types of brain imaging data, (b) reviews of the last decade of work by several of ENIGMA's clinical and technical working groups, and (c) new empirical papers reporting large-scale international brain mapping analyses in patients with substance use disorders, schizophrenia, bipolar disorders, major depression, posttraumatic stress disorder, obsessive compulsive disorder, epilepsy, and stroke. 相似文献
6.
7.
《International journal of psychiatry in clinical practice》2013,17(2):114-118
AbstractObjective. Schizophrenia is a severe psychiatric illness. Although magnetic resonance imaging has been widely used for detecting brain structural and functional abnormalities in patients with schizophrenia, the findings are highly inconsistent between reports. This study investigates structural changes in the brains of schizophrenic patients. Methods. The brains of fifty male adults with schizophrenia and fifty age- and gender-matched healthy controls were scanned by diffusion tensor imaging. The differences in fractional anisotropy (FA) values between schizophrenic patients and healthy controls were analyzed. Results. Schizophrenic patients exhibited significantly decreased FA values in the right middle frontal gyrus, right inferior frontal gyrus, right superior temporal gyrus, left sub-temporal gyrus, left middle temporal gyrus, left cingulate gyrus, and left precentral gyrus compared with the control group. We did not find any brain regions with higher FA values in the patient group than in the control group. Conclusion. This study suggested that structural abnormalities in the frontal region of gray matter and white matter are present at the same time in patients with schizophrenia. 相似文献
8.
Taylor Kuhn Yan Jin Chao Huang Yeun Kim Talia M. Nir Joseph M. Gullett Jacob D. Jones Phillip Sayegh Caroline Chung Bianca H. Dang Elyse J. Singer David W. Shattuck Neda Jahanshad Susan Y. Bookheimer Charles H. Hinkin Hongtu Zhu Paul M. Thompson April D. Thames 《Human brain mapping》2019,40(15):4370-4380
Recent evidence suggests the aging process is accelerated by HIV. Degradation of white matter (WM) has been independently associated with HIV and healthy aging. Thus, WM may be vulnerable to joint effects of HIV and aging. Diffusion‐weighted imaging (DWI) was conducted with HIV‐seropositive (n = 72) and HIV‐seronegative (n = 34) adults. DWI data underwent tractography, which was parcellated into 18 WM tracts of interest (TOIs). Functional Analysis of Diffusion Tensor Tract Statistics (FADTTS) regression was conducted assessing the joint effect of advanced age and HIV on fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) along TOI fibers. In addition to main effects of age and HIV on WM microstructure, the interactive effect of age and HIV was significantly related to lower FA and higher MD, AD, and RD across all TOIs. The location of findings was consistent with the clinical presentation of HIV‐associated neurocognitive disorders. While older age is related to poorer WM microstructure, its detrimental effect on WM is stronger among HIV+ relative to HIV? individuals. Loss of WM integrity in the context of advancing age may place HIV+ individuals at increased risk for brain and cognitive compromise. 相似文献
9.
Diego Garibay‐Pulido Leopoldo Cendejas‐Zaragoza Robert Dawe Marvin A. Rossi 《Hippocampus》2019,29(5):468-478
Parametric subtracted post‐ictal diffusion tensor imaging (pspiDTI) is a novel imaging technique developed at our center to visualize transient, patient‐specific, ictal‐associated water diffusion abnormalities in hippocampal‐associated axonal tissue. PspiDTI can elucidate putative connectivity patterns, tracing ictal propagation following a partial‐onset seizure without generalization secondarily. PspiDTI compares two DTI volumes acquired during the early post‐ictal period (<4 hr), and baseline inter‐ictal interval (>24 hr post‐seizure). This technique performs a voxel‐wise parametric test to identify statistically significant transient ictal‐associated changes in water diffusivity involving white matter (WM). Our technique was applied to six patients with refractory partial‐onset epilepsy who were candidates for direct cortical responsive neurostimulation (RNS) therapy. Global and region‐specific fractional anisotropy decreases, relative to baseline, were detected in all patients with a 17.01% (p < .01) relative mean decrement, while trace increases were found in 6/6 (100%) patients with a 13.30% (p < .01) relative global mean increment. Changes in diffusivity were anatomically compared with transient hyper‐perfusion as detected by subtracted ictal SPECT co‐registered to MRI (SISCOM). In 5/6 (83.33%) patients, alterations in WM diffusivity were detected adjacent to the SISCOM signal localized predominantly in gray matter. In 4/6 patients, post‐implant RNS electrocorticography revealed early ictal propagation between implanted RNS depth leads guided by pspiDTI, hence validating concordant abnormal diffusivity regions detected by our technique. PspiDTI can complement the conventional pre‐surgical evaluation to provide additional crucial information regarding WM ictal‐propagation pathways between predominantly gray matter ictal‐onset zones. When incorporated into a multi‐modality pre‐surgical workflow, pspiDTI can aid in defining critical nodes between ictogenic regions. This information can be used to strategically implant a limited set of two RNS depth leads for maximizing the extent to which direct cortical RNS can modulate a potentially extensive epileptogenic network. 相似文献
10.
Colin J. Mahoney Gerard R. Ridgway Ian B. Malone Laura E. Downey Jonathan Beck Kirsi M. Kinnunen Nicole Schmitz Hannah L. Golden Jonathan D. Rohrer Jonathan M. Schott Martin N. Rossor Sebastien Ourselin Simon Mead Nick C. Fox Jason D. Warren 《Human brain mapping》2014,35(8):4163-4179
Despite considerable interest in improving clinical and neurobiological characterisation of frontotemporal dementia and in defining the role of brain network disintegration in its pathogenesis, information about white matter pathway alterations in frontotemporal dementia remains limited. Here we investigated white matter tract damage using an unbiased, template‐based diffusion tensor imaging (DTI) protocol in a cohort of 27 patients with the behavioral variant of frontotemporal dementia (bvFTD) representing both major genetic and sporadic forms, in relation both to healthy individuals and to patients with Alzheimer's disease. Widespread white matter tract pathology was identified in the bvFTD group compared with both healthy controls and Alzheimer's disease group, with prominent involvement of uncinate fasciculus, cingulum bundle and corpus callosum. Relatively discrete and distinctive white matter profiles were associated with genetic subgroups of bvFTD associated with MAPT and C9ORF72 mutations. Comparing diffusivity metrics, optimal overall separation of the bvFTD group from the healthy control group was signalled using radial diffusivity, whereas optimal overall separation of the bvFTD group from the Alzheimer's disease group was signalled using fractional anisotropy. Comparing white matter changes with regional grey matter atrophy (delineated using voxel based morphometry) in the bvFTD cohort revealed co‐localisation between modalities particularly in the anterior temporal lobe, however white matter changes extended widely beyond the zones of grey matter atrophy. Our findings demonstrate a distributed signature of white matter alterations that is likely to be core to the pathophysiology of bvFTD and further suggest that this signature is modulated by underlying molecular pathologies. Hum Brain Mapp 35:4163–4179, 2014. © 2014 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc. 相似文献
11.
ABSTRACT
Objects
Post-stroke aphasia (PSA) often have non-linguistic cognitive impairment. We aimed to ascertain its characteristics of non-linguistic cognitive impairment and the corresponding changes in white matter microstructures. 相似文献12.
Judith S. Verhoeven Caroline A. Sage Alexander Leemans Wim Van Hecke Dorothe Callaert Ronald Peeters Paul De Cock Lieven Lagae Stefan Sunaert 《Human brain mapping》2010,31(3):470-486
Reconstruction of white matter (WM) fiber tracts based on diffusion tensor imaging (DTI) is increasingly being used in clinical and research settings to study normal and pathological WM tissue as well as the maturation of this WM tissue. Such fiber tracking (FT) methodology, however, is highly dependent on the manual delineation of anatomical landmarks and the algorithm settings, often rendering the reproducibility and reliability questionable. Predefining these regions of interest on a fractional anisotropy (FA) atlas in standard space has already been shown to improve the reliability of FT results. In this paper, we constructed a new DTI atlas, which contains the complete diffusion tensor information in ICBM152 coordinates. From this high‐dimensional DTI atlas, and using robust FT protocols, we reconstructed a large number of WM tracts. Subsequently, we created tract masks from these fiber tract bundles and evaluated the atlas framework by comparing the reproducibility of the results obtained from our standardized tract masks with regions‐of‐interest labels from the conventional FA‐based WM atlas. Finally, we assessed laterality and age‐related WM changes in 42 normal subjects aged 0 to 18 years using these tractography‐derived tract segmentations. In agreement with previous literature, we observed an FA increase with age, which was mainly due to the decrease of perpendicular diffusivity. In addition, major functional pathways in the language, motor, and limbic system, showed a significant asymmetry in terms of the observed diffusion metrics. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
13.
Malwina Molendowska Jacek Matuszewski Bartosz Kossowski ukasz Bola Anna Banaszkiewicz Magorzata Papliska Katarzyna Jednorg Bogdan Draganski Artur Marchewka 《The Journal of neuroscience》2021,41(33):7076
The white matter (WM) architecture of the human brain changes in response to training, though fine-grained temporal characteristics of training-induced white matter plasticity remain unexplored. We investigated white matter microstructural changes using diffusion tensor imaging at five different time points in 26 sighted female adults during 8 months of training on tactile braille reading. Our results show that training-induced white matter plasticity occurs both within and beyond the trained sensory modality, as reflected by fractional anisotropy (FA) increases in somatosensory and visual cortex, respectively. The observed changes followed distinct time courses, with gradual linear FA increase along the training in the somatosensory cortex and sudden visual cortex cross-modal plasticity occurring after braille input became linguistically meaningful. WM changes observed in these areas returned to baseline after the cessation of learning in line with the supply–demand model of plasticity. These results also indicate that the temporal dynamics of microstructural plasticity in different cortical regions might be modulated by the nature of computational demands. We provide additional evidence that observed FA training-induced changes are behaviorally relevant to tactile reading. Together, these results demonstrate that WM plasticity is a highly dynamic process modulated by the introduction of novel experiences.SIGNIFICANCE STATEMENT Throughout the lifetime the human brain is shaped by various experiences. Training-induced reorganization in white matter (WM) microstructure has been reported, but we know little about its temporal dynamics. To fill this gap, we scanned sighted subjects five times during tactile braille reading training. We observed different dynamics of WM plasticity in the somatosensory and visual cortices implicated in braille reading. The former showed a continuous increase in WM tissue anisotropy along with tactile training, while microstructural changes in the latter were observed only after the participants learned to read braille words. Our results confirm the supply–demand model of brain plasticity and provide evidence that WM reorganization depends on distinct computational demands and functional roles of regions involved in the trained skill. 相似文献
14.
White matter abnormalities observed in bipolar disorder: a diffusion tensor imaging study 总被引:2,自引:0,他引:2
OBJECTIVES: An increased incidence in white matter abnormalities is among the most frequently reported brain change in patients with bipolar disorder. The objective of the present study was to examine white matter tract integrity, using diffusion tensor imaging (DTI), in bipolar patients and healthy comparison subjects. METHODS: Eleven DSM-IV bipolar I patients and 10 healthy age- and sex-matched controls were studied. DTI data were acquired on a 1.5 Tesla scanner. Fractional anisotropy (FA) and diffusivity (trace) were determined from axial images using region of interest (ROI) analyses. The ROIs were manually placed in the midline and forward projecting arms of the genu (anterior) and the midline of the splenium (posterior) of the corpus callosum. RESULTS: Bipolar patients had significantly higher FA in the midline of the genu compared with healthy controls. Regional white matter differences were also observed, with significantly lower FA in the genu than forward projecting regions in both groups and lower FA in the genu than the splenium in controls. CONCLUSIONS: Diffusion tensor imaging revealed significant microstructural differences in the genu, as measured by elevated FA in bipolar patients compared with healthy controls. These preliminary findings further support the hypothesis that anomalous frontal brain mechanisms may be associated with bipolar disorder. 相似文献
15.
Frontal white matter microstructure, aggression, and impulsivity in men with schizophrenia: a preliminary study. 总被引:7,自引:0,他引:7
Matthew J Hoptman Jan Volavka Glyn Johnson Elisabeth Weiss Robert M Bilder Kelvin O Lim 《Neuropsychopharmacology》2002,52(1):9-14
BACKGROUND: Aggression and impulsivity may involve altered frontal white matter. METHODS: Axial diffusion tensor images were acquired in 14 men with schizophrenia using a pulsed gradient, double spin echo, echo planar imaging method. White matter microstructural measures (fractional anisotropy and trace) were calculated from these data. Regions of interest were placed in frontal white matter on four slices. Impulsivity was measured using the Motor Impulsiveness factor of the Barratt Impulsiveness Scale. Aggressiveness was measured using the Assaultiveness scale of the Buss Durkee Hostility Inventory and the Aggression scale of the Life History of Aggression. RESULTS: Lower fractional anisotropy in right inferior frontal white matter was associated with higher motor impulsiveness. Higher trace in these regions was associated with aggressiveness. CONCLUSIONS: Inferior frontal white matter microstructure was associated with impulsivity and aggression in men with schizophrenia. These results implicate frontal lobe dysfunction in aggression and certain aspects of impulsivity. 相似文献
16.
White matter structure in autism: preliminary evidence from diffusion tensor imaging. 总被引:38,自引:0,他引:38
Naama Barnea-Goraly Hower Kwon Vinod Menon Stephan Eliez Linda Lotspeich Allan L Reiss 《Neuropsychopharmacology》2004,55(3):323-326
BACKGROUND: Individuals with autism have severe difficulties in social communication and relationships. Prior studies have suggested that abnormal connections between brain regions important for social cognition may contribute to the social deficits seen in autism. METHODS: In this study, we used diffusion tensor imaging to investigate white matter structure in seven male children and adolescents with autism and nine age-, gender-, and IQ-matched control subjects. RESULTS: Reduced fractional anisotropy (FA) values were observed in white matter adjacent to the ventromedial prefrontal cortices and in the anterior cingulate gyri as well as in the temporoparietal junctions. Additional clusters of reduced FA values were seen adjacent to the superior temporal sulcus bilaterally, in the temporal lobes approaching the amygdala bilaterally, in occipitotemporal tracts, and in the corpus callosum. CONCLUSIONS: Disruption of white matter tracts between regions implicated in social functioning may contribute to impaired social cognition in autism. 相似文献
17.
Hedok Lee Feng Xu Xiaodan Liu Sunil Koundal Xiaoyue Zhu Judianne Davis David Yanez Joseph Schrader Aleksandra Stanisavljevic Douglas L Rothman Joanna Wardlaw William E Van Nostrand Helene Benveniste 《Journal of cerebral blood flow and metabolism》2021,41(5):1103
Diffuse white matter (WM) disease is highly prevalent in elderly with cerebral small vessel disease (cSVD). In humans, cSVD such as cerebral amyloid angiopathy (CAA) often coexists with Alzheimer’s disease imposing a significant impediment for characterizing their distinct effects on WM. Here we studied the burden of age-related CAA pathology on WM disease in a novel transgenic rat model of CAA type 1 (rTg-DI). A cohort of rTg-DI and wild-type rats was scanned longitudinally using MRI for characterization of morphometry, cerebral microbleeds (CMB) and WM integrity. In rTg-DI rats, a distinct pattern of WM loss was observed at 9 M and 11 M. MRI also revealed manifestation of small CMB in thalamus at 6 M, which preceded WM loss and progressively enlarged until the moribund disease stage. Histology revealed myelin loss in the corpus callosum and thalamic CMB in all rTg-DI rats, the latter of which manifested in close proximity to occluded and calcified microvessels. The quantitation of CAA load in rTg-DI rats revealed that the most extensive microvascular Aβ deposition occurred in the thalamus. For the first time using in vivo MRI, we show that CAA type 1 pathology alone is associated with a distinct pattern of WM loss. 相似文献
18.
Sushmita Purkayastha Otite Fadar Aujan Mehregan David H Salat Nicola Moscufo Dominik S Meier Charles RG Guttmann Naomi DL Fisher Lewis A Lipsitz Farzaneh A Sorond 《Journal of cerebral blood flow and metabolism》2014,34(2):228-234
White matter hyperintensities (WMH) in elderly individuals with vascular diseases are presumed to be due to ischemic small vessel diseases; however, their etiology is unknown. We examined the cross-sectional relationship between cerebrovascular hemodynamics and white matter structural integrity in elderly individuals with vascular risk factors. White matter hyperintensity volumes, fractional anisotropy (FA), and mean diffusivity (MD) were obtained from MRI in 48 subjects (75±7years). Pulsatility index (PI) and dynamic cerebral autoregulation (dCA) was assessed using transcranial Doppler ultrasound of the middle cerebral artery. Dynamic cerebral autoregulation was calculated from transfer function analysis (phase and gain) of spontaneous blood pressure and flow velocity oscillations in the low (LF, 0.03 to 0.15 Hz) and high (HF, 0.16 to 0.5 Hz) frequency ranges. Higher PI was associated with greater WMH (P<0.005). Higher phase across all frequency ranges was associated with greater FA and lower MD (P<0.005). Lower gain was associated with higher FA in the LF range (P=0.001). These relationships between phase and FA were significant in the territories limited to the middle cerebral artery as well as across the entire brain. Our results show a strong relationship between impaired cerebrovascular hemodynamics (PI and dCA) and loss of cerebral white matter structural integrity (WMH and DTI metrics) in elderly individuals. 相似文献
19.
Marinka M. G. Koenis Joke Durnez Amanda L. Rodrigue Samuel R. Mathias Aaron F. AlexanderBloch Jennifer A. Barrett Gaelle E. Doucet Sophia Frangou Emma E. M. Knowles Josephine Mollon Dominique Denbow Katrina Aberizk Molly Zatony Ronald J. Janssen Joanne E. Curran John Blangero Russell A. Poldrack Godfrey D. Pearlson David C. Glahn 《Human brain mapping》2021,42(6):1727
Although previous studies have highlighted associations of cannabis use with cognition and brain morphometry, critical questions remain with regard to the association between cannabis use and brain structural and functional connectivity. In a cross‐sectional community sample of 205 African Americans (age 18–70) we tested for associations of cannabis use disorder (CUD, n = 57) with multi‐domain cognitive measures and structural, diffusion, and resting state brain‐imaging phenotypes. Post hoc model evidence was computed with Bayes factors (BF) and posterior probabilities of association (PPA) to account for multiple testing. General cognitive functioning, verbal intelligence, verbal memory, working memory, and motor speed were lower in the CUD group compared with non‐users (p < .011; 1.9 < BF < 3,217). CUD was associated with altered functional connectivity in a network comprising the motor‐hand region in the superior parietal gyri and the anterior insula (p < .04). These differences were not explained by alcohol, other drug use, or education. No associations with CUD were observed in cortical thickness, cortical surface area, subcortical or cerebellar volumes (0.12 < BF < 1.5), or graph‐theoretical metrics of resting state connectivity (PPA < 0.01). In a large sample collected irrespective of cannabis used to minimize recruitment bias, we confirm the literature on poorer cognitive functioning in CUD, and an absence of volumetric brain differences between CUD and non‐CUD. We did not find evidence for or against a disruption of structural connectivity, whereas we did find localized resting state functional dysconnectivity in CUD. There was sufficient proof, however, that organization of functional connectivity as determined via graph metrics does not differ between CUD and non‐user group. 相似文献
20.
Yiwei Zhang Zhaoxi Liu Wanchen Dou Juan Wei Yuelei Lv Bo Hou Hui You Feng Feng 《Brain and Behavior》2023,13(4):e2919