首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Transforming growth factor (TGF) beta1 is a potent inducer of apoptosis in the liver. During TGF-beta1-induced apoptosis, 3 mitogen-activated protein (MAP) kinases (extracellular signal-regulated kinase [ERK], c-Jun N-terminal kinase [JNK], and p38 kinase) showed simultaneously sustained activation in FaO rat hepatoma cells. TGF-beta1-induced apoptosis was markedly enhanced when ERK activation was selectively inhibited by the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD98059. In contrast, both interfering with p38 activity by overexpression of the dominant negative (DN) MKK6 mutant and inhibition of the JNK pathway by overexpression of the DN SEK1 mutant resulted in suppression of mitochondrial cytochrome c release, abrogating TGF-beta1-induced apoptosis. In addition, antiapoptotic Bcl-2 blocked mitochondrial cytochrome c release, suppressing TGF-beta1-induced activation of JNK and p38. Inhibition of ERK activity enhanced TGF-beta1-induced p38 and JNK activation. However, inhibition of the JNK pathway suppressed p38 but induced transient ERK activation. Similarly, interfering with the p38 pathway also attenuated JNK activation but generated transient ERK activation in response to TGF-beta1. These results indicate that disrupting one MAP kinase pathway affects the TGF-beta1-induced activation of other MAP kinases, suggesting cross-talk among MAP kinase pathways. In conclusion, we propose that the balance and integration of MAP kinase signaling may regulate commitment to TGF-beta1-induced apoptosis modulating the release of cytochrome c from mitochondria.  相似文献   

3.
Phenotype transformation of vascular smooth muscle cells (VSMCs) is known to be modulated by mechanical strain. The present study was designed to investigate how different frequencies of mechanical strain affected VSMC phenotype. VSMCs were subjected to the strains of 10% elongation at 0, 0.5, 1 and 2 Hz for 24 h using a Flexercell strain unit. VSMC phenotype was assessed by cell morphology, measurement of two-dimensional cell area, Western blotting for protein and RT-PCR for mRNA expression of differentiation markers. Possible protein kinases involved were evaluated by Western blotting with their specific antibodies. The strains at certain frequencies could induce a contractile morphology in VSMC with almost perpendicular alignment to the strain direction. The strains also regulated protein and mRNA expression of several differentiation markers, as well as the activation of extracellular signal-regulated kinases (ERKs), p38 MAP kinase and protein kinase B (Akt) in a frequency-dependent manner. Furthermore, the inhibition of the p38 pathway could block the frequency-induced phenotype modulation of VSMCs, but not inhibition of ERK or Akt pathways. These results indicate that the frequency of cyclic strain can result in the differentiated phenotype of VSMCs, and it is mediated at least partly by the activation of the p38 pathway.  相似文献   

4.
Adipose tissue influences vascular function through adipocyte-derived factors, including components of the renin-angiotensin-aldosterone system. Molecular mechanisms underlying these phenomena are elusive. We investigated the role of adipocyte-derived factors on mitogen-activated protein kinases (MAPKs), proinflammatory status, apoptosis, and mitogenic signaling in vascular smooth muscle cells (VSMCs) and questioned whether these effects involve mineralocorticoid receptor (MR), glucocorticoid receptor (GR), and angiotensin II type 1 receptor (AT(1)R). Cultured mouse VSMCs were exposed to adipocyte-conditioned medium (ACM) from differentiated 3T3-L1 adipocytes. ACM induced phosphorylation of stress-activated protein kinase/c-Jun N-terminal kinase, p38MAPK, and extracellular signal-regulated kinase 1/2 and increased expression of proinflammatory and proliferative markers in VSMCs. Eplerenone (MR antagonist), mifepristone (GR antagonist), and candesartan (AT(1)R antagonist) inhibited ACM-induced effects on extracellular signal-regulated kinase 1/2, p38MAPK, and proliferating cell nuclear antigen, without influencing apoptosis (Bax, Bcl, and caspase 3). Stress-activated protein kinase/c-Jun N-terminal kinase phosphorylation was inhibited by mifepristone and candesartan but not by eplerenone. ACM-induced increase of fibronectin, vascular cell adhesion molecule 1, and plasminogen activator inhibitor 1 expression was blocked by MR and AT(1)R antagonism but not by GR inhibition. ACM has no effect on GR, MR, and AT(1)R expression. Our data show that adipocyte-derived factors influence MAPK signaling, leading to VSMC proinflammatory and profibrotic responses through distinct pathways. Although ACM stimulates p38MAPK and extracellular signal-regulated kinase 1/2 phosphorylation through MR, GR, and AT(1)R, activation of stress-activated protein kinase/c-Jun N-terminal kinase involves GR and AT(1)R. These findings suggest that adipocyte-derived factors regulate VSMC function through specific MAPKs linked to MR, GR, and AT(1)R, a posttranslational phenomenon, because ACM did not influence receptor expression. Such cross-talk between adipocytes and VSMCs may provide a potential molecular mechanism linking renin-angiotensin-aldosterone system, adipocytes, and vascular function.  相似文献   

5.
The aim of this experiment was to examine the regulation of p38 mitogen-activated protein (MAP) kinase by platelet-derived growth factor (PDGF)-BB and its biological effects on rat cultured vascular smooth muscle cells (VSMCs). VSMCs were obtained from aortae of male Wistar rats by the media explant technique. After being stimulated by PDGF-BB with or without the p38 MAP kinase-specific inhibitor, SB-203580, the cells were solubilized, and the levels of phosphorylated p38 MAP kinase were examined by immunoblot analysis. The amounts of DNA synthesis and content were measured by using [3H]-thymidine and Hoechst-33258 dye, respectively. The detection of apoptotic cells was evaluated by the TUNEL method. PDGF-BB could phosphorylate p38 MAP kinase dose-dependently, and the phosphorylation was specifically inhibited by SB-203580 in a dose-dependent manner. However, PDGF-BB did not affect the protein level of p38 MAP kinase. Both [3H]-thymidine incorporation and total cellular DNA content were increased by PDGF-BB, and these elevations were prevented by SB-203580. In contrast, PDGF-BB-stimulated VSMCs did not show apoptotic change in spite of the presence or absence of SB-203580. These results established that PDGF-BB activated p38 MAP kinase and subsequently regulated cell growth in VSMCs, providing a molecular mechanism by which p38 MAP kinase can cause the development of cardiovascular diseases, including atherosclerosis.  相似文献   

6.
Cigarette smoke, specifically the nicotine contained within, has been shown to cause ultrastructural changes in vascular endothelium resulting in the development of atherosclerosis. Our study examines the effects of nicotine on vascular smooth muscle cell (VSMC) migration and attempts to eludicidate the cellular mechanisms governing those effects. Bovine aortic VSMC were cultured in 10% fetal bovine serum (FBS) growth media and exposed to 10(-8) nicotine for varying periods of time. Boyden chamber chemotaxis assays and a scrape injury model using confluent cells were used to assess cell motility. Activation of the mitogen-activated protein kinases (MAPK), p38 and p44/42, was assessed using Western blotting methods. Nicotine, itself, did not cause significant VSMC migration. However, augmented migration was seen in nicotine-treated VSMCs (16.6+/-3-fold) and media (17.0+/-4-fold) with 10% FBS as chemoattractant. Inhibitors of p38 and p44/42 diminished this migration by 48.5+/-6% and 29.4+/-2%, respectively. Immunoblotting verified p38 and p44/42 activation with nicotine and inhibition with inhibitors of p38 and p44/42. Nicotine-treated endothelial cell (EC) conditioned media (CM) was shown to increase migration 20.3+/-l.l-fold. This chemotactic effect was diminished both with heat treatment and serial dilution. In conclusion, nicotine enhances the chemoatactiveness of VSMC. This migration is mediated via the MAPKs p38 and p44/42. Nicotine causes EC production of a chemoattractant molecule that enhances VSMC migration.  相似文献   

7.
Proliferation of vascular smooth muscle cells (VSMC) plays a major role as an initiating event of atherosclerosis. Although estrogen directly inhibits the proliferation of VSMC, the mechanism has not been firmly established. In addition, the effect of raloxifene on VSMC remains unknown. 17Beta-estradiol (E(2)) and raloxifene significantly inhibited the growth of VSMC under growth-stimulated conditions. Since mitogen-activated protein (MAP) kinases have been implicated in VSMC proliferation, the role of MAP kinases in both the E(2)- and raloxifene-induced growth inhibition of VSMC was studied. Both E(2) and raloxifene caused rapid, transient phosphorylation and activation of p38 that was not affected by actinomycin D and was blocked by ICI 182,780. In contrast with p38 phosphorylation, extracellular signal-regulated protein kinase (ERK) phosphorylation was significantly inhibited and c-Jun N-terminal kinase (JNK) phosphorylation was not changed by E(2). Because VSMC expressed both estrogen receptor (ER) alpha and ERbeta, it is not known which of them mediates the E(2)-induced phosphorylation of p38. Although E(2) did not affect the p38 phosphorylation in A10 smooth muscle cells, which express ERbeta but not ERalpha, transfection of ERalpha expression vector into A10 cells rendered them susceptible to induction of p38 phosphorylation by E(2). We then examined whether E(2) and raloxifene induce apoptosis through a p38 cascade. Both E(2) and raloxifene induced apoptosis under growth-stimulated conditions. The p38 inhibitor SB 203580 completely blocked the E(2)-induced apoptosis. Our findings suggest that both E(2)- and raloxifene-induced inhibition of VSMC growth is due to induction of apoptosis through a p38 cascade whose activation is mediated by ERalpha via a nongenomic mechanism.  相似文献   

8.
Insulin-like growth factors (IGFs) play an important role in regulating vascular smooth muscle cell (VSMC) proliferation and directed migration. IGFs exert these biological actions through the activation of the IGF-I receptor and its downstream signaling network. While the involvement of the IRS-PI3 kinase-Akt pathway in mediating the chemotactic and mitogenic actions of IGFs is clear, the role of the mitogen-activated protein kinase (MAPK) signaling pathway is still under debate. In this study, the role of ERK1 and 2 in mediating the chemotactic and mitogenic actions of IGF-I in cultured porcine VSMCs was investigated. IGF-I treatment caused a significant increase in the phosphorylation state, as well as the kinase activity, of ERK1 and 2. Compared to the strong and sustained MAPK activation induced by platelet-derived growth factor-BB, the IGF-I-induced MAPK activation was weaker and more transient. Specific inhibition of the MAPK activation by PD98059 or U0126, two selective MEK inhibitors, significantly inhibited IGF-I-stimulated cell proliferation, and reduced the number of cells that migrated towards IGF-I. The p38 MAPK inhibitor SB203580 had no such effect. Likewise, depletion of ERK1/2 using antisense oligonucleotides abolished the IGF-I-induced VSMC migration and proliferation. These results suggest that the chemotactic and mitogenic responses of VSMCs to IGF-I require the activation of ERK1 and 2.  相似文献   

9.
Guo X  Chen KH  Guo Y  Liao H  Tang J  Xiao RP 《Circulation research》2007,101(11):1113-1122
Previous studies have shown that mitofusin 2 (Mfn-2) (or hyperplasia suppressor gene [HSG]) inhibits vascular smooth muscle cell (VSMC) proliferation. Here, we demonstrate that Mfn-2 is a primary determinant of VSMC apoptosis. First, oxidative stress with H2O2, inhibition of protein kinase C with staurosporine, activation of protein kinase A with forskolin, and serum deprivation concurrently elevate Mfn-2 expression and induce VSMC apoptosis. Second, overexpression of Mfn-2 also triggers apoptosis of VSMCs in culture and in balloon-injured rat carotid arteries, thus contributing to Mfn-2-mediated prevention of neointima formation after angioplasty. Third, Mfn-2 silencing protects VSMCs against H2O2 or Mfn-2 overexpression-induced apoptosis, indicating that upregulation of Mfn-2 is necessary and sufficient for oxidative stress-mediated VSMC apoptosis. The Mfn-2 proapoptotic effect is independent of its role in mitochondrial fusion but mainly mediated by inhibition of Akt signaling and the resultant activation of the mitochondrial apoptotic pathway, as manifested by decreased Akt phosphorylation, increased mitochondrial Bax/Bcl-2 ratio, cytochrome c release, and activation of caspases-9 and caspase-3. Furthermore, Mfn-2-induced apoptosis was blocked by overexpression of an active phosphoinositide 3-kinase mutant or Bcl-xL or inhibition of caspase-9 but not caspases-8. Thus, in addition to its antiproliferative effects, Mfn-2 constitutes a primary determinant of VSMC apoptosis.  相似文献   

10.
目的研究基质细胞衍生因子-1(SDF-1)对氧化低密度脂蛋白(ox-LDL)诱导的血管平滑肌细胞(VSMC)增殖与凋亡的影响。方法选用体外培养的大鼠主动脉VSMC,并分为正常对照组、ox-LDL组[动脉粥样硬化(AS)模型]、SDF-1组(AS模型+SDF-1)、SDF-1+12G5组(AS模型+SDF-1+CXCR4单克隆抗体)和12G5组(AS模型+CXCR4单克隆抗体),应用MTT法测VSMC细胞增殖,TUNEL法测细胞凋亡率,RT-PCR法测凋亡基因bax、bcl-2mRNA的表达。结果ox-LDL组的增殖率0.38±0.01,明显高于正常对照组0.28±0.02(P<0.01),明显低于SDF-1组0.44±0.02(P<0.01),与SDF-1+12G5组和12G5组比较差异无显著性(P>0.05);ox-LDL组的凋亡率24.2±2.4,高于正常对照组19.8±2.7和SDF-1组20.7±2.8(P<0.05),而与SDF-1+12G5组和12G5组比较差异无显著性(P>0.05);ox-LDL组bcl-2和bax的比值明显低于正常对照组和SDF-1组(P<0.01),而与SDF-1+12G5组和12G5组差异无显著性(P>0.05)。结论SDF-1可明显促进ox-LDL诱导的VSMC增殖,并抑制细胞凋亡;SDF-1及其受体CXCR4构成的生物学轴可能通过bcl-2/bax途径影响VSMC凋亡。  相似文献   

11.
An early component of atherogenesis is abnormal vascular smooth muscle cell (VSMC) proliferation. The presence of Chlamydia pneumoniae in many atherosclerotic lesions raises the possibility that this organism plays a causal role in atherogenesis. In this study, C pneumoniae elementary bodies (EBs) rapidly activated p44/p42 mitogen-activated protein kinases (MAPKs) and stimulated proliferation of VSMCs in vitro. Exposure of VSMCs derived from human saphenous vein to C pneumoniae EBs (3x10(7) inclusion forming units/mL) enhanced bromodeoxyuridine (BrdU) incorporation 12+/-3-fold. UV- and heat-inactivated C pneumoniae EBs also stimulated VSMC proliferation, indicating a role of direct stimulation by chlamydial antigens. However, the mitogenic activity of C pneumoniae was heat-labile, thus excluding a role of lipopolysaccharide. Chlamydial hsp60 (25 microg/mL) replicated the effect of C pneumoniae, stimulating BrdU incorporation 7+/-3-fold. Exposure to C pneumoniae or chlamydial hsp60 rapidly activated p44/p42 MAPK, within 5 to 10 minutes of exposure. In addition, PD98059 and U0126, which are two distinct inhibitors of upstream MAPK kinase 1/2 (MEK1/2), abolished the mitogenic effect of C pneumoniae and chlamydial hsp60. Toll-like receptors (TLRs) act as sensors for microbial antigens and can signal via the p44/p42 MAPK pathway. Human VSMCs were shown to express TLR4 mRNA and protein, and a TLR4 antagonist abolished chlamydial hsp60-induced VSMC proliferation and attenuated C pneumoniae-induced MAPK activation and VSMC proliferation. Together these results indicate that C pneumoniae and chlamydial hsp60 are potent inducers of human VSMC proliferation and that these effects are mediated, at least in part, by rapid TLR4-mediated activation of p44/p42 MAPK.  相似文献   

12.
Increasing evidence indicates that aldosterone elicits vascular effects through nongenomic signaling pathways. We tested the hypothesis that aldosterone induces activation of vascular mitogen-activated protein (MAP) kinases and NADPH oxidase via c-Src-dependent mechanisms in vascular smooth muscle cells (VSMCs). Aldosterone effects on activation of c-Src, p38MAP kinase, and NADPH oxidase, and incorporation of [3H]proline, an index of collagen synthesis, were assessed in cultured rat VSMCs. Studies were performed in the absence and presence of eplerenone, a selective mineralocorticoid receptor blocker, PP2, a selective Src inhibitor, and SB212190, a selective p38MAPK inhibitor. Phosphorylation of c-Src was dose-dependently increased by aldosterone, with maximal responses obtained at 10(-7) mol/L. Aldosterone increased p38MAP kinase phosphorylation, NAD(P)H oxidase activation, and [3H]proline incorporation. These responses were abrogated by eplerenone and almost abolished by PP2. Aldosterone-stimulated incorporation of [3H]proline was significantly reduced by SB212190, indicating that p38MAP kinase plays a role in profibrotic actions of aldosterone. To unambiguously demonstrate the importance of aldosterone in c-Src signaling, VSMCs from c-Src+/+ and c-Src+/- mice were also studied. Aldosterone increased phosphorylation of c-Src, p38MAP kinase, and cortactin, a Src-specific substrate, in c-Src+/+ VSMCs, but not in c-Src-deficient cells. Taken together, our findings demonstrate that nongenomic signaling by aldosterone occurs through c-Src-dependent pathways. These processes may play an important role in profibrotic actions of aldosterone.  相似文献   

13.
Troglitazone (TRO) and rosiglitazone (RSG) belong to the thiazolidinedione class (insulin-sensitizing agents) and exert many of their metabolic effects as peroxisome proliferator-activated receptor gamma (PPARgamma) ligands. In the present study we examined the effects of TRO and RSG on LDL-induced VSMC growth. Pretreatment of VSMC with 1 microM TRO or 0.1 microM RSG completely blocked the LDL-induced cell proliferation as measured by [3H]thymidine incorporation into DNA and by determination of the cell number. We then examined with Western blotting whether these growth suppressing effects are mediated through the mitogen-activated protein kinase (MAPK) pathway, a common signaling pathway activated by growth factors. TRO and RSG had no effect on the LDL-induced stimulation of the MAP kinases ERK1/2, p38 and SAP/JNK. We conclude that thiazolidinediones are potent inhibitors of LDL-induced VSMC growth acting downstream of the cytoplasmic activation of MAPK.  相似文献   

14.
15.
BACKGROUND & AIMS: Clostridium difficile toxin A causes marked apoptosis of colonocytes in vivo and in vitro, which contributes to the formation of ulcers and pseudomembranes. We investigated the role of p53-dependent pathways and p38 mitogen-activated protein kinase (p38) in toxin A-induced colonocyte apoptosis. METHODS: The effects of the activation of p53 and p53-dependent pathways including p21(WAF1/CIP1) were assessed in nontransformed human colonic NCM460 epithelial cells exposed to toxin A. Phosphorylation of p53 protein by p38 was measured by in vitro kinase assay, whereas p21 induction by activated p53 was determined by gel shift assays and RNA silencing (small interfering RNA). The relationship between colonocyte apoptosis and p38/p53-dependent pathways was studied in intact mice. RESULTS: Toxin A stimulated p38 and p53 activation and induced cell cycle arrest (G(2)-M) with persistent expression of p21(WAF1/CIP1). Blockage of p38 by SB203580 inhibited p53 phosphorylation and induction of p21(WAF1/CIP1). In intact mice, p38 blockade suppressed toxin A-mediated destruction of intestinal villi, p21(WAF1/CIP1) expression, and enterocyte apoptosis. In addition, toxin A-mediated p21(WAF1/CIP1) and Bak induction, cytochrome c release, and caspase-3 activation were markedly attenuated in p53-silenced colonocytes, despite active p38. Overexpression of p21(WAF1/CIP1) triggered apoptosis and increased toxin A-associated colonocyte apoptosis. CONCLUSIONS: The signaling pathway for colonocyte apoptosis following toxin A exposure involves p38-dependent activation of p53 and subsequent induction of p21(WAF1/CIP1), resulting in cytochrome c release and caspase-3 activation through Bak induction.  相似文献   

16.
OBJECTIVE: Nitric oxide signaling pathways are of central importance in both the maintenance of vascular homeostasis and the progression of vascular disease. Since smooth muscle cell apoptosis is associated with numerous vascular disorders, the authors investigated whether YC-1, a soluble guanylyl cyclase (sGC) activator, regulates apoptosis in vascular smooth muscle cells (VSMC). METHODS AND RESULTS: Sodium nitroprusside (SNP) (1 mM) induced cGMP (guanosine 3':5'-cyclic monophosphate)-independent apoptosis in rat vascular smooth muscle cells using MTT assay and TUNEL-reaction techniques. Furthermore, sodium nitroprusside induced apoptosis via Bcl-2 down-regulation, cytochrome c release reaction, and caspase-3 activation by Western blotting analysis and enzymatic assay methods. YC-1 abolished these apoptotic signaling cascades and prevented apoptosis through a cGMP-involved pathway, and phosphatidylinositol (PI) 3-kinase behaved a downstream event in this pathway. CONCLUSIONS: These results suggest that YC-1 inhibits sodium nitroprusside-induced vascular smooth muscle cells apoptosis via a cGMP- and phosphatidylinositol 3-kinase-involved inhibition on Bcl-2 down-regulation/cytochrome c release/caspase-3 activation cascades. The ability of YC-1 to prevent smooth muscle cell apoptosis may play an important role in blocking lesion formation at sites of vascular injury.  相似文献   

17.
Our objective was to define the signaling mechanisms by which mitogens such as insulin-like growth factor-I (IGF-I) regulate vascular smooth muscle cell (VSMC) apoptosis. We confirmed that IGF-I inhibits serum withdrawal-induced apoptosis of cultured VSMCs in a dose-dependent and time-dependent fashion. To test the hypothesis that the phosphatidylinositol (PI) 3-kinase signaling pathway regulates VSMC survival, we examined the relationship between PI 3-kinase activity and cell fate. PI 3-kinase was elevated in viable VSMCs maintained in serum-containing medium, declined significantly in response to serum withdrawal, and increased in response to IGF-I-induced survival. Moreover, blockade of PI 3-kinase with 2 structurally dissimilar inhibitors (wortmannin or LY294002) abolished the capacity of IGF-I to maintain VSMC viability. Similarly, transient transfection of a dominant-negative Deltap85 PI 3-kinase mutant construct abrogated the capacity of IGF-I to prevent VSMC death. Thus, PI 3-kinase is a critical antiapoptotic signal in VSMCs. To define the distal element of the antiapoptotic cascade, we tested the hypothesis that IGF-I inhibits the influence of the proapoptotic gene Bad. Indeed, IGF-I stimulates increased expression of the inactive, phosphorylated form of Bad by a PI 3-kinase-dependent pathway. Moreover, the proapoptotic effect of Bad was attenuated by the stimulation of IGF-I. Thus, growth factors appear to prevent VSMC death by activating signal transduction pathways linked to apoptotic regulatory genes.  相似文献   

18.
唐梅  王翠英  李敏 《心脏杂志》2011,23(5):579-583
目的:研究老年大鼠血管平滑肌细胞(VSMCs)增殖和凋亡与p38信号转导通路的关系,明确以p38为靶向的信号转导在VSMCs中的分子调控机制。方法: 将p38特异性抑制剂SB203580(25 μmol/L)作用于大鼠VSMCs,运用MTT比色法检测细胞增殖状态,流式细胞术检测SB203580对细胞凋亡的影响,Western blot法检测药物作用前后p38通路相关蛋白p38α、MKK3、GADD153和c-myc的表达及相关蛋白磷酸化活性。结果: SB203580可以时间、剂量依赖的方式抑制VSMCs增殖促进其凋亡。加入SB203580的VSMCs中p-p38α、GADD153和c-myc表达的水平,随作用时间的延长而下降(P<0.01)。结论: 阻断p38信号转导通路可能通过下调其下游靶基因GADD153和C-myc的表达,抑制血管平滑肌细胞增殖,促进其凋亡。  相似文献   

19.
Thrombin has been implicated in the development of atherosclerosis and restenosis, in which migration of vascular smooth muscle cells (VSMC) is a crucial event. Thrombin-stimulated VSMC migration is associated with increased generation of reactive oxygen species (ROS), activation of mitogen-activated protein kinases (MAPKs), and production of growth factors and chemoattractants. In this study, we examined the interrelation of these signals to determine the pathway controlling thrombin-directed migration of human VSMC. Our results show that thrombin stimulated the production of ROS and activation of p38 MAPK. ROS were required for thrombin-induced VSMC migration since both generation of ROS and cell migration were significantly attenuated by inhibitors of NAD(P)H oxidase, diphenyleneiodonium (DPI) and apocynin (Apo.), and by the hydrogen peroxide scavenger, catalase (Cat.). Activation of p38 MAPK by thrombin was inhibited by DPI, Apo. and Cat., indicating ROS are used as messengers for activating this kinase. p38 MAPK is an important step since SB 203580, a selective inhibitor of p38 MAPK, suppressed the cell migration induced by thrombin. Furthermore, thrombin increased the expression of vascular endothelial growth factor (VEGF), a chemoattractant for VSMC, and this expression was inhibited by DPI, Apo., Cat. and SB 203580. Addition of anti-VEGF antibody significantly attenuated thrombin-induced migration. Collectively, the data presented here show that thrombin has stimulated VSMC migration and VEGF expression through an ROS-sensitive p38 MAPK pathway. VEGF synthesized and released by the cell served as a secondary mediator in thrombin-directed migration.  相似文献   

20.
c-Abl is a ubiquitously expressed protein tyrosine kinase activated by DNA damage and implicated in two responses: cell cycle arrest and apoptosis. The downstream pathways by which c-Abl induces these responses remain unclear. We examined the effect of overexpression of c-Abl on the activation of mitogen-activated protein kinase pathways and found that overexpression of c-Abl selectively stimulated p38, while having no effect on c-Jun N-terminal kinase or on extracellular signal-regulated kinase. c-Abl-induced p38 activation was primarily mediated by mitogen-activated protein kinase kinase (MKK)6. A C-terminal truncation mutant of c-Abl showed no activity for stimulating p38 and MKK6, while a kinase-deficient c-Abl mutant still retained a residual activity. We tested different forms of c-Abl for their ability to induce apoptosis and found that apoptosis induction correlated with the activation of the MKK6-p38 kinase pathway. Importantly, dominant-negative MKK6, but not dominant-negative MKK3 or p38, blocked c-Abl-induced apoptosis. Because overexpression of p38 blocks cell cycle G(1)/S transition, we also tested whether the MKK6-p38 pathway is required for c-Abl-induced cell cycle arrest, and we found that neither MKK6 nor p38 dominant-negative mutants could relieve c-Abl-induced cell cycle arrest. Finally, DNA damage-induced MKK6 and p38 activation was diminished in c-Abl null fibroblasts. Our study suggests that c-Abl is required for DNA damage-induced MKK6 and p38 activation, and that activation of MKK6 by c-Abl is required for c-Abl-induced apoptosis but not c-Abl-induced cell cycle arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号