首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption of Drosophila copper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses.SIGNIFICANCE STATEMENT Menkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.  相似文献   

3.
The mitochondrial respiratory chain function and the occurrence of mitochondrial respiratory chain dysfunction were determined in various neuromuscular diseases. The mitochondrial complexes I-V and citrate synthase in the skeletal muscle taken from 75 orthopaedic surgical patients excluding neuromuscular diseases (control subjects) and 26 patients with various neuromuscular diseases (7 patients with Duchenne muscular dystrophy, 3 patients with spinal muscular atrophy, 6 patients with mitochondrial diseases, 7 patients with type II fibre atrophy and 3 patients with neuropathy) were assayed. Of 26 patients, results of analysis of 3 patients (1 Duchenne muscular dystrophy, 1 spinal muscular atrophy and 1 type II fibre atrophy) were excluded because the citrate synthase activities in their muscle homogenate were less than third percentile of the normal controls. As compared to the control subjects by using Student's t-test, all studied groups of patients had significantly lower activities of more than one or two mitochondrial complexes (p<0.05). However, a significantly higher activity of mitochondrial complex I was observed in patients with mitochondrial diseases (p<0.05). These findings will require further study to elucidate the pathogenesis and role of secondary mitochondrial respiratory chain dysfunction in such neuromuscular diseases.  相似文献   

4.
OBJECTIVE: To investigate the correlation between biochemical and clinical phenotype in 6 patients from 3 unrelated families with different mutation loads (heteroplasmy) of the T8993G mitochondrial DNA mutation associated with neuropathy, ataxia, and retinitis pigmentosa-Leigh syndrome. METHODS: We studied adenosine triphosphate (ATP) synthase activity (synthesis and hydrolysis) in platelet-derived submitochondrial particles and assessed mutant loads both in platelets used for biochemical analysis and in other available tissues. Biochemical and molecular results were correlated with clinical features. RESULTS: The rate of ATP hydrolysis was normal, but ATP synthesis was severely impaired (30% to 4% of residual activity) in patients harboring 34% to 90% mutant mitochondrial DNA, without any evidence of a threshold for the expression of this defect. There was little variation in heteroplasmy among tissues from each patient, but wider variability was detected in 2 mothers. Correlation of heteroplasmy and clinical and biochemical features suggested that ATP synthesis is defective at mutant loads as low as 34% and is extremely reduced at mutant loads above 80% when the phenotype is neuropathy, ataxia, and retinitis pigmentosa-Leigh syndrome. CONCLUSIONS: This study indicates a close relationship between tissue heteroplasmy, expression of the biochemical defect in platelets, and clinical involvement. The biochemical defect was greater than previously reported, and we found no evidence of a biochemical threshold. The uniform distribution of high mutant loads among our patients' tissues suggests a differential tissue-specific reliance on mitochondrial ATP synthesis.  相似文献   

5.
Wilson disease (WD) is a hereditary disorder, with recessive transmission and genetic heterogeneity. Several mutations of ATP7B, the gene underlying WD, were reported in many ethnic groups. In this study, mutation screening in ATP7B of 56 Saudi Arabian WD patients was undertaken. The clinical data of all patients were recorded. The entire ATP7B coding sequence, including intron-exon boundaries were screened for mutation by the polymerase chain reaction (PCR)-based mutation detection technique and DNA sequencing. Thirty-nine patients were symptomatic at presentation and 17 subjects were pre-symptomatic siblings of affected patients. Fourteen patients had neurological, 11 patients had mixed (hepatic and neurological), and 14 patients had hepatic presentations. Family history suggestive of WD was present in 72% of cases and 68% had consanguineous parents. Genetic analysis showed disease-causing mutations in three exons (exons 8, 19 and 21) of the ATP7B gene in 28 patients (50%). Mutations in exons 21 (18 cases) and 19 (one case) were unique for Saudis. This large series of Saudi patients with WD has shown wide variability in the genomic substrate of WD. There is no correlation between genotype and clinical presentation.  相似文献   

6.
Mammalian complex V (F1F0-ATP synthase or ATPase) uses the proton gradient to generate ATP during oxidative phosphorylation and requires several helper proteins, including TMEM70, to form the holoenzyme in a stepwise process in which nuclear DNA is combined with mitochondrial DNA-encoded subunits. We report the clinical and molecular findings in three patients presenting lactic acidosis, 3-methylglutaconic aciduria, and hypertrophic cardiomyopathy. All three showed an isolated defect of fully assembled ATP synthase in association with a “common” (c.317-2A > G) and a new (c.628A > C/p.T210P) variant in TMEM70. Interestingly, one of the patients also showed nitric oxide-responsive pulmonary arterial hypertension, a finding never before associated with TMEM70 deficiency. In addition to widening the clinical and mutational spectrum of defective ATP synthase, our study also suggests that mutant TMEM70 associates in high molecular weight complexes (470–550?kDa) when expressed in Hela cells and exerts a direct action in ATP synthase biogenesis and assembly, mediating the incorporation of F1 moieties.  相似文献   

7.
The diagnosis of mitochondrial respiratory chain deficiency is usually made by analysis of mitochondrial respiratory chain activity in muscle biopsy. We describe 4 patients in whom the diagnosis was based on mitochondrial respiratory chain deficiency in liver alone. In 3 patients, liver complex IV activity was deficient, and the 4th patient had liver complex I deficiency (relative to citrate synthase and complex II activity). The enzyme activities in skeletal muscle biopsies from these patients were normal or equivocal. The age at presentation and the neurological symptoms differed from one patient to another. All 3 patients with complex IV deficiency had non-specific white matter changes on brain MRI. None of the patients had clinical or biochemical evidence of liver disease. These findings illustrate the wide variety of presentations associated with liver mitochondrial respiratory chain deficiency. They also demonstrate the importance of mitochondrial respiratory chain enzyme analysis in liver, in addition to muscle, even in cases where the primary clinical deficit is neurological and there is no liver disease.  相似文献   

8.
Perfluorooctanoic acid (PFOA) is an abundant per- and polyfluoroalkyl substance (PFAS) detected in both indoor and outdoor environments. While studies suggest exposure concerns for humans, studies investigating PFOA-induced neurotoxicity are lacking. To address this gap, we exposed differentiated human SH-SY5Y cells to PFOA (0.1 μM up to 500 μM) at different time points (4, 24, 48, and 72 h) and measured cell viability, Casp3/7 activity, ATP levels, ATP synthase enzyme activity, mitochondrial membrane potential, reactive oxygen species (ROS), oxygen consumption rates for mitochondrial stress test (XFe24 Flux analyzer), glucose utilization, and global metabolome profiles to assess the potential for PFOA-induced neurotoxicity. Treatment with 10 or 100 μM PFOA did not compromise cell viability nor induce cytotoxicity to SH-SY5Y cells over a 48-hour exposure period. However, >250 μM PFOA compromised cell viability, induced cytotoxicity, and induced caspase 3/7 activity at 48 h. ATP levels were reduced in cells treated with 400 μM PFOA for 24 and 48 h, and with 100 μM PFOA and higher at 72 h. ATP synthase activity was inhibited by 250 μM PFOA but was unchanged by PFOA treatment at 200 μM or less. Conversely, mitochondrial membrane potential was reduced by >10 μM PFOA after 24 h. Total ROS was increased with 100 μM PFOA and higher after 4 h of exposure. Several mitochondria-related endpoints (basal respiration, ATP production, maximum respiration) were negatively affected at 250 μM PFOA at both 24- and 48-hour exposure, but were unaltered at concentrations of 100 μM PFOA or less. One exception was mitochondrial spare capacity, which was reduced by 100 μM PFOA after 24-hour exposure. Similarly, glycolysis, glycolytic capacity, and glycolytic reserve of SH-SY5Y cells were not altered by 10 nor 100 μM PFOA. Nontargeted metabolomics was conducted in cells treated with either 10 or 100 μM PFOA for 48 h, as these two concentrations were not cytotoxic and 28 metabolites differed among treatments. Notable was that 10 μM PFOA had little effect on the SH-SY5Y metabolome, and the metabolic profile was not statistically different from media nor solvent controls. On the other hand, 100 μM PFOA shifted the metabolic signature of the neuronal cells, leading to reduced abundance of ATP-related metabolites (adenine, nicotinamide), neurotransmitter precursors (DL-tryptophan, l-tyrosine), and metabolites that protect mitochondria during oxidative stress (betaine, orotic acid, and l-acetyl carnitine). We hypothesize that this metabolic signature may be associated with the reduced mitochondrial membrane potential observed at lower PFOA concentrations. Metabolic shifts appear to precede compromised cell viability, cytotoxicity, and apoptosis. This study generates mechanistic knowledge regarding PFOA-induced neurotoxicity, focusing on mitochondrial oxidative respiration and the neuronal metabolome.  相似文献   

9.
In this work we studied the mitochondrial-associated metabolic pathways in Huntington's disease (HD) versus control (CTR) cybrids, a cell model in which the contribution of mitochondrial defects from patients is isolated. HD cybrids exhibited an interesting increase in ATP levels, when compared to CTR cybrids. Concomitantly, we observed increased glycolytic rate in HD cybrids, as revealed by increased lactate/pyruvate ratio, which was reverted after inhibition of glycolysis. A decrease in glucose-6-phosphate dehydrogenase activity in HD cybrids further indicated decreased rate of the pentose-phosphate pathway. ATP levels of HD cybrids were significantly decreased under glycolysis inhibition, which was accompanied by a decrease in phosphocreatine. Nevertheless, pyruvate supplementation could not recover HD cybrids' ATP or phosphocreatine levels, suggesting a dysfunction in mitochondrial use of that substrate. Oligomycin also caused a decrease in ATP levels, suggesting a partial support of ATP generation by the mitochondria. Nevertheless, mitochondrial NADH/NADt levels were decreased in HD cybrids, which was correlated with a decrease in pyruvate dehydrogenase activity and protein expression, suggesting decreased tricarboxylic acid cycle (TCA) input from glycolysis. Interestingly, the activity of alpha-ketoglutarate dehydrogenase, a critical enzyme complex that links the TCA to amino acid synthesis and degradation, was increased in HD cybrids. In accordance, mitochondrial levels of glutamate were increased and alanine was decreased, whereas aspartate and glutamine levels were unchanged in HD cybrids. Conversely, malate dehydrogenase activity from total cell extracts was unchanged in HD cybrids. Our results suggest that inherent dysfunction of mitochondria from HD patients affects cellular bioenergetics in an otherwise functional nuclear background.  相似文献   

10.
OBJECTIVE: Methods: We describe biochemically and clinically relevant aspects of mitochondrial ATP synthase, the enzyme that supplies most ATP for the cells energy demand. RESULTS: Analyzing human Rho zero cells we could identify three subcomplexes of ATP synthase: F1 catalytic domain, F1 domain with bound natural IF1 inhibitor protein, and F1-c subcomplex, an assembly of F1 domain and a ring of F(O)-subunits c. Large amounts of F1 subcomplexes accumulated also in mitochondria of patients with specific mitochondrial disorders. By quantifying the F1 subcomplexes and other oxidative phosphorylation complexes in parallel, we were able to discriminate three classes of defects in mitochondrial biosynthesis, namely, mitochondrial DNA depletion, mitochondrial transfer RNA (tRNA) mutations, and mutations in the mitochondrial ATP6 gene. INTERPRETATION: The relatively simple electrophoretic assay used here is a straightforward approach to differentiate between various types of genetic alterations affecting the biosynthesis of oxidative phosphorylation complexes and will be useful to guide molecular genetic diagnostics in the field of mitochondrial neuromuscular disorders.  相似文献   

11.
The mitochondrial cytopathies are genetically and phenotypically heterogeneous group of disorders caused by structural and functional abnormalities in mitochondria. To the best of our knowledge, there are very few studies published from India till date. Selected and confirmed fourteen cases of neurological mitochondrial cytopathies with different clinical syndromes admitted between 1997 and 2000 are being reported. There were 8 male and 6 female patients. The mean age was 24.42+/-11.18 years (range 4-40 years). Twelve patients could be categorized into well-defined syndromes, while two belonged to undefined group. In the defined syndrome categories, three patients had MELAS (mitochondrial encephalopathy, lactic acidosis and stroke like episodes), three had MERRF (myoclonic epilepsy and ragged red fibre myopathy), three cases had KSS (Kearns-Sayre Syndrome) and three were diagnosed to be suffering from mitochondrial myopathy. In the uncategorized group, one case presented with paroxysmal kinesogenic dystonia and the other manifested with generalized chorea alone. Serum lactic acid level was significantly increased in all the patients (fasting 28.96+/-4.59 mg%, post exercise 41.02+/-4.93 mg%). Muscle biopsy was done in all cases. Succinic dehydrogenase staining of muscle tissue showed subsarcolemmal accumulation of mitochondria in 12 cases. Mitochondrial DNA study could be performed in one case only and it did not reveal any mutation at nucleotides 3243 and 8344. MRI brain showed multiple infarcts in MELAS, hyperintensities in putaminal areas in chorea and bilateral cerebellar atrophy in MERRF.  相似文献   

12.
The role of mitochondrial energy metabolism in glutamate mediated neurotoxicity was studied in rat neurones in primary culture. A brief (15 min) exposure of the neurones to glutamate caused a dose-dependent (0.01–1 mM) increase in cyclic GMP levels together with delayed (24 h) neurotoxicity and ATP depletion. These effects were prevented by either the nitric oxide (·NO) synthase (NOS) inhibitor Nω-nitro- -arginine methyl ester (NAME; 1 mM) or by the N-methyl- -aspartate (NMDA) glutamate-subtype receptor antagonist -(−)-2-amino-5-phosphonopentanoate (APV; 0.1 mM). Glutamate exposure (0.1 mM and 1 mM) followed by 24 h of incubation caused the inhibition of succinate–cytochrome c reductase (20–25%) and cytochrome c oxidase (31%) activities in the surviving neurones, without affecting NADH–coenzyme-Q1 reductase activity. The rate of oxygen consumption was impaired in neurones exposed to 1 mM glutamate, either with glucose (by 26%) or succinate (by 39%) as substrates. These effects on the mitochondrial respiratory chain and neuronal respiration, together with the observed glutathione depletion (20%) by glutamate exposure were completely prevented by NAME or APV. Our results suggest that mitochondrial dysfunction and impairment of antioxidant status may account for glutamate-mediated neurotoxicity via a mechanism involving ·NO biosynthesis.  相似文献   

13.
Introduction: Neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) is caused by m.8993T>G/C mutations in the mitochondrial adenosine triphosphate synthase subunit 6 gene (MT‐ATP6). Traditionally, heteroplasmy levels between 70% and 90% lead to NARP, and >90% result in Leigh syndrome. Methods: In this study we report a 30‐year‐old man with NARP and m.8993T>G in MT‐ATP6. Results: Although the patient carried the mutation in homoplasmic state in blood with similarly high levels in urine (94%) and buccal swab (92%), he presented with NARP and not the expected, more severe Leigh phenotype. The mutation could not be detected in any of the 3 analyzed tissues of the mother, indicating a large genetic shift between mother and offspring. Nerve biopsy revealed peculiar endoneurial Schwann cell nuclear accumulations, clusters of concentrically arranged Schwann cells devoid of myelinated axons, and degenerated mitochondria. Conclusions: We emphasize the phenotypic variability of the m.8993T>G MT‐ATP6 mutation and the need for caution in predictive counseling in such patients. Muscle Nerve 54 : 328–333, 2016  相似文献   

14.
Several neuromuscular disorders are associated with reductions in intramuscular adenosine triphosphate (ATP) and/or phosphocreatine (PCr). These alterations have been primarily characterized using (31)P-magnetic resonance spectroscopy ((31)P-MRS). We prospectively measured total creatine, PCr, and ATP in muscle biopsies from 81 patients: normal controls (n = 33), mitochondrial cytopathy (n = 8), neuropathic (n = 3), dystrophy/congenital myopathies (n = 7), inflammatory myopathy (n = 12), and miscellaneous myopathies (n = 18) using direct biochemical analysis. Intramuscular concentrations of PCr and ATP were lower for the dystrophy/congenital myopathy, inflammatory myopathy, and mitochondrial disease patients with ragged red fiber (RRF) as compared with normal controls (P < 0.05). Total creatine was lower for the dystrophy/congenital myopathy group as compared with the normal control group (P < 0.05). These values compare favorably to results from other studies using (31)P-MRS and provide external validation for the values obtained using that method. Given the reductions in high-energy phosphate compounds in these patients, there is the potential for therapeutic intervention with creatine monohydrate supplementation.  相似文献   

15.
Aim Our aim was to study the clinical presentation, mode of diagnosis, and epidemiology of mitochondrial disorders in children from the UK who have progressive intellectual and neurological deterioration (PIND). Method Since April 1997, we have identified patients aged 16 years or younger with suspected PIND through the monthly notification card sent to all UK consultant paediatricians by the British Paediatric Surveillance Unit. Clinical details obtained from reporting paediatricians are classified by an Expert Group. Results By July 2008, 2493 cases of PIND had been reported, among which there were 112 children (69 males, 43 females) with mitochondrial diseases presenting between birth and 14 years 7 months (median 12mo), divided into 13 subgroups. In some instances, clinical features were characteristic of mitochondrial disease, but many children presented non‐specifically with combinations of developmental delay, hypotonia, failure to thrive, and seizures; 16 children had multisystem disease at presentation. Mortality was high: 40 children had died. Blood and/or cerebrospinal fluid lactate measurements were abnormal in 87 children, and 47 of 78 brain magnetic resonance images showed increased basal ganglia signal. Definite diagnoses were usually made by muscle enzyme or genetic studies. Interpretation This is a unique population‐based study of the mitochondrial disorders that cause childhood neurodegenerative disease. It provides detailed information about the clinical presentation and investigation of these complex cases.  相似文献   

16.
Macrophagic myofasciitis is a novel, "inflammatory myopathy" described after a variety of vaccinations, almost exclusively in adults. We examined the relevance of histological findings of this myopathy to the clinical presentation in pediatric patients. Muscle biopsies from 8 children (7 months to 6 years old) with histological features of macrophagic myofasciitis were reviewed and correlated with the clinical manifestations. Patients underwent quadriceps muscle biopsy for suspected mitochondrial disease (4 patients), spinal muscular atrophy (2 patients), myoglobinuria (1 patient), and hypotonia with motor delay (1 patient). All biopsies showed identical granulomas composed of periodic acid-Schiff-positive and CD68-positive macrophages. Characteristic aluminum hydroxide crystals were identified by electron microscopy in 2 cases. The biopsy established diagnoses other than macrophagic myofasciitis in 5 patients: spinal muscular atrophy (2), Duchenne muscular dystrophy (1), phospho-glycerate kinase deficiency (1), and cytochrome c oxidase deficiency (1). Three children with manifestations and/or a family history of mitochondrial disease had otherwise morphologically normal muscle. All children had routine vaccinations between 2 months and 1 year before the biopsy, with up to 11 intramuscular injections, including the biopsy sites. There was no correlation between histological findings of macrophagic myofasciitis in biopsies and the clinical symptoms. We believe that macrophagic myofasciitis represents a localized histological hallmark of previous immunization with the aluminum hydroxide adjuvants contained in vaccines, rather than a primary or distinct inflammatory muscle disease.  相似文献   

17.
Following the association of hereditary spastic paraparesis (HSP) with mutation in the paraplegin gene (SPG7) and mitochondrial dysfunction, we wished to investigate whether mitochondrial dysfunction might be associated with other forms of HSP. Five cases of HSP caused by mutation in the spastin gene (SPG4) and nine cases with HSP with mutation in the spastin and paraplegin genes excluded (non-SPG4/SPG7), were investigated for mitochondrial dysfunction. Muscle tissue from the HSP groups and a control group was analysed histochemically and spectrophotometrically for mitochondrial dysfunction. A significant decrease in mitochondrial respiratory chain complexes I and IV was demonstrated in the non-SPG4/SPG7 group. No abnormality was detected in the SPG4 group. We therefore conclude that there is evidence for mitochondrial dysfunction in non-SPG4/SPG7 HSP. There is no evidence for mitochondrial dysfunction in the pathogenesis of spastin-related HSP.  相似文献   

18.
Bal-Price A  Moneer Z  Brown GC 《Glia》2002,40(3):312-323
Nitric oxide (NO; 1 microM) or an NO donor (500 microM diethylenetriamine-nitric oxide, DETA-NONOate) caused rapid glutamate and ATP release from cultured rat cortical astrocytes. NO-induced glutamate release was prevented by calcium chelators (EGTA or BAPTA-AM) and an inhibitor of vesicular exocytosis (botulinum neurotoxin C, BoTx-C), but not by a glutamate transport inhibitor, L-trans-pyrrolidine-2,4-dicarboxylate (t-PDC), a cyclooxygenase inhibitor (indomethacin), or an inhibitor of soluble guanylate cyclase 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), and was not induced by mitochondrial respiratory inhibitors (myxothiazol or azide). Similarly to glutamate, NO-induced ATP release was also completely blocked by BAPTA-AM and BoTx-C, suggesting again a vesicular, calcium-dependent mechanism of release. Addition of DETA-NONOate (500 microM) to fura-2-loaded astrocytes induced a rapid, transient increase in intracellular calcium levels followed by a lower, sustained level of calcium entry. The latter was blocked by gadolinium (1 microM), an inhibitor of capacitative Ca(2+) entry. Thus, NO appears to cause rapid exocytosis of vesicular glutamate and ATP from astrocytes by raising intracellular calcium levels. Astrocytes activated by lipopolysaccharide/endotoxin and interferon-gamma to express inducible NO synthase (iNOS) maintained substantially higher extracellular glutamate levels than nonactivated cells or activated cells treated with an iNOS inhibitor (1400W), but the rate of glutamate uptake by these cells was similar. This suggests that NO from inflammatory-activated astrocytes causes release of astrocytic glutamate. NO-induced release of astrocytic glutamate and ATP may be important in physiological or pathological communication between astrocytes and neurons.  相似文献   

19.
Charcot–Marie–Tooth type 2A disease (CMT2A), a dominantly inherited peripheral neuropathy, is caused by mutations in MFN2, a mitochondrial fusion protein. Having previously demonstrated a mitochondrial coupling defect in CMT2A patients’ fibroblasts, we here investigate mitochondrial oxygen consumption and the expression of adenine nucleotide translocase (ANT) and uncoupling proteins from eight other patients with the disease. The mitochondrial uncoupling was associated with a higher respiratory rate, essentially involving complex II proteins. Furthermore, a twofold increase in the expression of ANT led to the reduced efficiency of oxidative phosphorylation in CMT2A cells, suggesting that MFN2 plays a role in controlling ATP/ADP exchanges.  相似文献   

20.
It was recently shown that, in progressively depolarizing mitochondria, the F(0) -F(1) ATP synthase and the adenine nucleotide translocase (ANT) may change directionality independently from each other (Chinopoulos et al. [2010] FASEB J. 24:2405). When the membrane potentials at which these two molecular entities reverse directionality, termed reversal potential (Erev), are plotted as a function of matrix ATP/ADP ratio, an area of the plot is bracketed by the Erev_ATPase and the Erev_ANT, which we call "B space". Both reversal potentials are dynamic, in that they depend on the fluctuating values of the participating reactants; however, Erev_ATPase is almost always more negative than Erev_ANT. Here we review the conditions that define the boundaries of the "B space". Emphasis is placed on the role of matrix substrate-level phosphorylation, because during metabolic compromise this mechanism could maintain mitochondrial membrane potential and prevent the influx of cytosolic ATP destined for hydrolysis by the reversed F(0) -F(1) ATP synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号