首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rad6-Rad18 ubiquitin-conjugating enzyme complex promotes replication through DNA lesions by means of at least three different pathways: the DNA polymerase (Pol) eta- and zeta-dependent translesion DNA synthesis (TLS) and a Rad5-Mms2-Ubc13-dependent pathway. In DNA-damaged yeast cells proliferating cell nuclear antigen (PCNA) becomes monoubiquitylated at the K164 residue, and genetic studies in yeast have indicated a requirement for this modification in TLS mediated by Poleta and Polzeta. To be able to decipher the role of PCNA monoubiquitylation in the TLS process, we have reconstituted this PCNA modification in vitro from purified yeast proteins. We show that, in addition to the requirement for Rad6-Rad18, the reaction depends on the loading of the PCNA homotrimeric ring onto the DNA by replication factor C and that all three PCNA monomers become efficiently ubiquitylated. The availability of PCNA monoubiquitylated on all of its three monomers has enabled us to examine the effects of this PCNA modification on DNA synthesis by Pols delta, eta, zeta, and Rev1. Contrary to the prevailing ideas that presume a role for PCNA ubiquitylation in the disruption of Poldelta's binding to PCNA or in the enhancement of the binding affinity of the TLS Pols for PCNA, we find that PCNA ubiquitylation does not affect any of these processes. These observations lead us to suggest a role for PCNA monoubiquitylation in disrupting the PCNA binding of a protein(s) that otherwise is inhibitory to the binding of PCNA by TLS Pols.  相似文献   

2.
The Saccharomyces cerevisiae Rad24 and Rad17 checkpoint proteins are part of an early response to DNA damage in a signal transduction pathway leading to cell cycle arrest. Rad24 interacts with the four small subunits of replication factor C (RFC) to form the RFC-Rad24 complex. Rad17 forms a complex with Mec3 and Ddc1 (Rad1731) and shows structural similarities with the replication clamp PCNA. This parallelism with a clamp-clamp loader system that functions in DNA replication has led to the hypothesis that a similar clamp-clamp loader relationship exists for the DNA damage response system. We have purified the putative checkpoint clamp loader RFC-Rad24 and the putative clamp Rad1731 from a yeast overexpression system. Here, we provide experimental evidence that, indeed, the RFC-Rad24 clamp loader loads the Rad1731 clamp around partial duplex DNA in an ATP-dependent process. Furthermore, upon ATP hydrolysis, the Rad1731 clamp is released from the clamp loader and can slide across more than 1 kb of duplex DNA, a process which may be well suited for a search for damage. Rad1731 showed no detectable exonuclease activity.  相似文献   

3.
4.
Treatment of yeast and human cells with DNA-damaging agents elicits Rad6–Rad18-mediated monoubiquitination of proliferating cell nuclear antigen (PCNA) at its Lys-164 residue [ubiquitin (Ub)-PCNA], and this PCNA modification is indispensable for promoting the access of translesion synthesis (TLS) polymerases (Pols) to PCNA. However, the means by which K164-linked Ub modulates the proficiency of TLS Pols to bind PCNA and take over synthesis from the replicative Pol has remained unclear. One model that has gained considerable credence is that the TLS Pols bind PCNA at 2 sites, to the interdomain connector loop via their PCNA-interacting protein (PIP) domain and to the K164-linked Ub moiety via their Ub-binding domain (UBD). Specifically, this model postulates that the UBD-mediated binding of TLS Pols to the Ub moiety on PCNA is necessary for TLS. To test the validity of this model, we examine the contributions that the PIP and Ub-binding zinc finger (UBZ) domains of human Polη make to its functional interaction with PCNA, its colocalization with PCNA in replication foci, and its role in TLS in vivo. We conclude from these studies that the binding to PCNA via its PIP domain is a prerequisite for Polη''s ability to function in TLS in human cells and that the direct binding of the Ub moiety on PCNA via its UBZ domain is not required. We discuss the possible role of the Ub moiety on PCNA in TLS.  相似文献   

5.
Proliferating cell nuclear antigen (PCNA), the processivity factor (sliding clamp) of DNA polymerases (Pols), plays essential roles in DNA metabolism. In this report, we examined the functional role of the C-terminal region of Schizosaccaromyces pombe PCNA both in vitro and in vivo. The deletion or Ala substitution of the last 9 aa (252-260A), as well as Ala replacement of only 4 aa (252-255A) at the C terminus, failed to substitute for the wild-type PCNA protein for cell growth in S. pombe. Two other PCNA mutant proteins, A251V and K253E, exhibited cold-sensitive phenotypes. Several yeast strains harboring mutations, including those at the acidic C-terminal region, showed elevated sensitivity to DNA damage. The ability of the mutant PCNA proteins to stimulate DNA synthesis by Poldelta and Polepsilon also was studied in vitro. The mutant proteins that did not support cell growth and a mutant protein containing a single amino acid substitution at position 252, where Pro is replaced by Ala, stimulated Poldelta and Polepsilon activities poorly. All mutant PCNA proteins, however, were assembled around DNA by the clamp loader, replication factor C, efficiently. Thus, the C-terminal region of PCNA is important for interactions with both Poldelta and Polepsilon and for cell survival after DNA damage. The C terminus of sliding clamps from other organisms has been shown to be important for clamp loading as well as polymerase interactions. The relationship between the conserved sequence in this region in different organisms is discussed.  相似文献   

6.
After exposure to DNA-damaging agents that block the progress of the replication fork, monoubiquitination of proliferating cell nuclear antigen (PCNA) mediates the switch from replicative to translesion synthesis DNA polymerases. We show that in human cells, PCNA is monoubiquitinated in response to methyl methanesulfonate and mitomycin C, as well as UV light, albeit with different kinetics, but not in response to bleomycin or camptothecin. Cyclobutane pyrimidine dimers are responsible for most of the PCNA ubiquitination events after UV-irradiation. Failure to ubiquitinate PCNA results in substantial sensitivity to UV and methyl methanesulfonate, but not to camptothecin or bleomycin. PCNA ubiquitination depends on Replication Protein A (RPA), but is independent of ATR-mediated checkpoint activation. After UV-irradiation, there is a temporal correlation between the disappearance of the deubiquitinating enzyme USP1 and the presence of PCNA ubiquitination, but this correlation was not found after chemical mutagen treatment. By using cells expressing photolyases, we are able to remove the UV lesions, and we show that PCNA ubiquitination persists for many hours after the damage has been removed. We present a model of translesion synthesis behind the replication fork to explain the persistence of ubiquitinated PCNA.  相似文献   

7.
The human DNA damage sensors, Rad17-replication factor C (Rad17-RFC) and the Rad9-Rad1-Hus1 (9-1-1) checkpoint complex, are thought to be involved in the early steps of the DNA damage checkpoint response. Rad17-RFC and the 9-1-1 complex have been shown to be structurally similar to the replication factors, RFC clamp loader and proliferating cell nuclear antigen polymerase clamp, respectively. Here, we demonstrate functional similarities between the replication and checkpoint clamp loader/DNA clamp pairs. When all eight subunits of the two checkpoint complexes are coexpressed in insect cells, a stable Rad17-RFC/9-1-1 checkpoint supercomplex forms in vivo and is readily purified. The two individually purified checkpoint complexes also form a supercomplex in vitro, which depends on ATP and is mediated by interactions between Rad17 and Rad9. Rad17-RFC binds to nicked circular, gapped, and primed DNA and recruits the 9-1-1 complex in an ATP-dependent manner. Electron microscopic analyses of the reaction products indicate that the 9-1-1 ring is clamped around the DNA.  相似文献   

8.
DNA polymerase δ (Polδ) plays an essential role in replication from yeast to humans. Polδ in Saccharomyces cerevisiae is comprised of three subunits, the catalytic subunit Pol3 and the accessory subunits Pol31 and Pol32. Yeast Polδ exhibits a very high processivity in synthesizing DNA with the proliferating cell nuclear antigen (PCNA) sliding clamp; however, it has remained unclear how Polδ binds PCNA to achieve its high processivity. Here we show that PCNA interacting protein (PIP) motifs in all three subunits contribute to PCNA-stimulated DNA synthesis by Polδ, and mutational inactivation of all three PIP motifs abrogates its ability to synthesize DNA with PCNA. Genetic analyses of mutations in these PIPs have revealed that in the absence of functional Pol32 PIP domain, PCNA binding by both the Pol3 and Pol31 subunits becomes essential for cell viability. Based on our biochemical and genetic studies we infer that yeast Polδ can simultaneously utilize all three PIP motifs during PCNA-dependent DNA synthesis, and suggest that Polδ binds the PCNA homotrimer via its three subunits. We consider the implications of these observations for Polδ's role in DNA replication.  相似文献   

9.
The proliferating cell nuclear antigen (PCNA) acts as a processivity factor for replicative DNA polymerases and is essential for DNA replication. In vitro studies have suggested a role for PCNA-in the repair synthesis step of nucleotide excision repair, and PCNA interacts with the cyclin-dependent kinase inhibitor p21. However, because of the lack of genetic evidence, it is not clear which of the DNA repair processes are in fact affected by PCNA in vivo. Here, we describe a PCNA mutation, pol30-46, that confers ultraviolet (UV) sensitivity but has no effect on growth or cell cycle progression, and the mutant pcna interacts normally with DNA polymerase delta and epsilon. Genetic studies indicate that the pol30-46 mutation is specifically defective in RAD6-dependent postreplicational repair of UV damaged DNA, and this mutation impairs the error-free mode of bypass repair. These results implicate a role for PCNA as an intermediary between DNA replication and postreplicational DNA repair.  相似文献   

10.
The proliferating-cell nuclear antigen (PCNA) and the replication factors A and C (RF-A and RF-C) are cellular proteins essential for complete elongation of DNA during synthesis from the simian virus 40 origin of DNA replication in vitro. All three cooperate to stimulate processive DNA synthesis by DNA polymerase delta on a primed single-stranded M13 template DNA and as such can be categorized as DNA polymerase accessory proteins. Biochemical analyses with highly purified RF-C and PCNA have demonstrated functions that are completely analogous to the functions of bacteriophage T4 DNA polymerase accessory proteins. A primer-template-specific DNA binding activity and a DNA-dependent ATPase activity copurified with the multisubunit protein RF-C and are similar to the functions of the phage T4 gene 44/62 protein complex. Furthermore, PCNA stimulated the RF-C ATPase activity and is, therefore, analogous to the phage T4 gene 45 protein, which stimulates the ATPase function of the gene 44/62 protein complex. Indeed, some primary sequence similarities between human PCNA and the phage T4 gene 45 protein could be detected. These results demonstrate a striking conservation of the DNA replication apparatus in human cells and bacteriophage T4.  相似文献   

11.
Ring-shaped sliding clamps and clamp loader ATPases are essential factors for rapid and accurate DNA replication. The clamp ring is opened and resealed at the primer-template junctions by the ATP-fueled clamp loader function. The processivity of the DNA polymerase is conferred by its attachment to the clamp loaded onto the DNA. In eukarya and archaea, the replication factor C (RFC) and the proliferating cell nuclear antigen (PCNA) play crucial roles as the clamp loader and the clamp, respectively. Here, we report the electron microscopic structure of an archaeal RFC-PCNA-DNA complex at 12-A resolution. This complex exhibits excellent fitting of each atomic structure of RFC, PCNA, and the primed DNA. The PCNA ring retains an open conformation by extensive interactions with RFC, with a distorted spring washer-like conformation. The complex appears to represent the intermediate, where the PCNA ring is kept open before ATP hydrolysis by RFC.  相似文献   

12.
p37 and p40 are two cloned gene products of the five-subunit human cellular DNA replication factor activator 1 (A1) protein complex (also called replication factor C). Here, we describe the solubilization, purification, and characterization of these two proteins that were overproduced in Escherichia coli. Using a nitrocellulose filter binding assay, we demonstrated that the purified A1 p37 protein associated with DNA preferentially at the primer terminus, a property resembling that of the A1 complex. We also show that in the presence of relatively high levels of salt, the recombinant p37 protein alone activated DNA polymerase epsilon but not polymerase delta in catalyzing the elongation of DNA chains. The p40 protein specifically associated with cellular p37 and proliferating-cell nuclear antigen (PCNA) present in HeLa cell cytosolic extract. The addition of purified p40 protein abolished the in vitro polymerase delta-catalyzed DNA elongation reaction dependent on both PCNA and A1. However, this inhibition was reversed by excess polymerase delta, suggesting a specific interaction between the polymerase and the p40 protein. Thus, while p37 binds DNA at the primer end and has a specific affinity for pol epsilon, p40, which binds ATP, interacts with PCNA and pol delta. These activities are essential for the DNA elongation reactions that lead to the synthesis of leading-strand DNA and the maturation of Okazaki fragments.  相似文献   

13.
In ensemble and single-molecule experiments using the yeast proliferating cell nuclear antigen (PCNA, clamp) and replication factor C (RFC, clamp loader), we have examined the assembly of the RFC·PCNA·DNA complex and its progression to holoenzyme upon addition of polymerase δ (polδ). We obtained data that indicate (i) PCNA loading on DNA proceeds through multiple conformational intermediates and is successful after several failed attempts; (ii) RFC does not act catalytically on a primed 45-mer templated fork; (iii) the RFC·PCNA·DNA complex formed in the presence of ATP is derived from at least two kinetically distinguishable species; (iv) these species disassemble through either unloading of RFC·PCNA from DNA or dissociation of PCNA into its component subunits; and (v) in the presence of polδ only one species converts to the RFC·PCNA·DNA·polδ holoenzyme. These findings redefine and deepen our understanding of the clamp-loading process and reveal that it is surprisingly one of trial and error to arrive at a heuristic solution.  相似文献   

14.
Insig-1 and Insig-2 are closely related proteins of the endoplasmic reticulum that play crucial roles in cholesterol homeostasis by inhibiting excessive cholesterol synthesis and uptake. In sterol-depleted cells Insig-1 is degraded at least 15 times more rapidly than Insig-2, owing to ubiquitination of Lys-156 and Lys-158 in Insig-1. In this study, we use domain-swapping methods to localize amino acid residues responsible for this differential degradation. In the case of Insig-2, Glu-214 stabilizes the protein by preventing ubiquitination. When Glu-214 is changed to alanine, Insig-2 becomes ubiquitinated, but it is still not degraded as rapidly as ubiquitinated Insig-1. The difference in the degradation rates is traced to two amino acids: Ser-149 in Insig-1 and Ser-106 in Insig-2. Ser-149, which lies NH(2)-terminal to the ubiquitination sites, accelerates the degradation of ubiquitinated Insig-1. Ser-106, which is COOH-terminal to the ubiquitination sites, retards the degradation of ubiquitinated Insig-2. The current studies indicate that the degradation of ubiquitinated Insigs is controlled by serine residues flanking the sites of ubiquitination.  相似文献   

15.
Chronic stalling of DNA replication forks caused by DNA damage can lead to genomic instability. Cells have evolved lesion bypass pathways such as postreplication repair (PRR) to resolve these arrested forks. In yeast, one branch of PRR involves proliferating cell nuclear antigen (PCNA) polyubiquitination mediated by the Rad5-Ubc13-Mms2 complex that allows bypass of DNA lesion by a template-switching mechanism. Previously, we identified human SHPRH as a functional homologue of yeast Rad5 and revealed the existence of RAD5-like pathway in human cells. Here we report the identification of HLTF as a second RAD5 homologue in human cells. HLTF, like SHPRH, shares a unique domain architecture with Rad5 and promotes lysine 63-linked polyubiquitination of PCNA. Similar to yeast Rad5, HLTF is able to interact with UBC13 and PCNA, as well as SHPRH; and the reduction of either SHPRH or HLTF expression enhances spontaneous mutagenesis. Moreover, Hltf-deficient mouse embryonic fibroblasts show elevated chromosome breaks and fusions after methyl methane sulfonate treatment. Our results suggest that HLTF and SHPRH are functional homologues of yeast Rad5 that cooperatively mediate PCNA polyubiquitination and maintain genomic stability.  相似文献   

16.
The toroidal damage checkpoint complex Rad9-Rad1-Hus1 (9-1-1) has been characterized as a sensor of DNA damage. Flap endonuclease 1 (FEN1) is a structure-specific nuclease involved both in removing initiator RNA from Okazaki fragments and in DNA repair pathways. FEN1 activity is stimulated by proliferating cell nuclear antigen (PCNA), a toroidal sliding clamp that acts as a platform for DNA replication and repair complexes. We show that 9-1-1 also binds and stimulates FEN1. Stimulation is observed on a variety of flap, nick, and gapped substrates simulating repair intermediates. Blocking 9-1-1 entry to the double strands prevents a portion of the stimulation. Like PCNA stimulation, 9-1-1 stimulation cannot circumvent the tracking mechanism by which FEN1 enters the substrate; however, 9-1-1 does not substitute for PCNA in the stimulation of DNA polymerase beta. This suggests that 9-1-1 is a damage-specific activator of FEN1.  相似文献   

17.
To ensure efficient and timely replication of genomic DNA, organisms in all three kingdoms of life possess specialized translesion DNA synthesis (TLS) polymerases (Pols) that tolerate various types of DNA lesions. It has been proposed that an exchange between the replicative DNA Pol and the TLS Pol at the site of DNA damage enables lesion bypass to occur. However, to date the molecular mechanism underlying this process is not fully understood. In this study, we demonstrated in a reconstituted system that the exchange of Saccharomyces cerevisiae Poldelta with Poleta requires both the stalling of the holoenzyme and the monoubiquitination of proliferating cell nuclear antigen (PCNA). A moving Poldelta holoenzyme is refractory to the incoming Poleta. Furthermore, we showed that the Poleta C-terminal PCNA-interacting protein motif is required for the exchange process. We also demonstrated that the second exchange step to bring back Poldelta is prohibited when Lys-164 of PCNA is monoubiquitinated. Thus the removal of the ubiquitin moiety from PCNA is likely required for the reverse exchange step after the lesion bypass synthesis by Poleta.  相似文献   

18.
The eukaryotic intra-S-phase checkpoint, which slows DNA synthesis in response to DNA damage, is poorly understood. Is DNA damage recognized directly, or indirectly through its effects on replication forks? Is the slowing of S phase in part because of competition between DNA synthesis and recombination/repair processes? The results of our genetic analyses of the intra-S-phase checkpoint in the fission yeast, Schizosaccharomyces pombe, suggest that the slowing of S phase depends weakly on the helicases Rqh1 and Srs2 but not on other recombination/repair pathways. The slowing of S phase depends strongly on the six checkpoint-Rad proteins, on Cds1, and on Rad4/Cut5 (similar to budding yeast Dpb11, which interacts with DNA polymerase epsilon) but not on Rhp9 (similar to budding yeast Rad9, necessary for direct damage recognition). These results suggest that, in fission yeast, the signal activating the intra-S-phase checkpoint is generated only when replication forks encounter DNA damage.  相似文献   

19.
The eukaryotic DNA sliding clamp that keeps DNA polymerase engaged at a replication fork, called proliferating cell nuclear antigen (PCNA), is loaded onto the 3' ends of primer DNA through its interaction with a heteropentameric protein complex called replication factor C (RFC). The ATPase activity of RFC is necessary for formation of a functional PCNA clamp. In the present study, the sensitivity of RFC to partial proteolysis is used to show that addition of ATP, ATPgammaS, or ADP induces different structural changes in RFC. Direct observation by electron microscopy reveals that RFC has a closed two-finger structure called the U form in the absence of ATP. This is converted into a more open C form on addition of ATP. In contrast, the structural changes induced by ATPgammaS or ADP are limited. These results suggest that RFC adapts on opened configuration intermediately after ATP hydrolysis. We further observe that PCNA is held between the two fingers of RFC and propose that the RFC structure change we observe during ATP hydrolysis causes the attached PCNA to form its active ring-like clamp on DNA.  相似文献   

20.
DNA replication in archaea and eukaryotes is executed by family B DNA polymerases, which exhibit full activity when complexed with the DNA clamp, proliferating cell nuclear antigen (PCNA). This replication enzyme consists of the polymerase and exonuclease moieties responsible for DNA synthesis and editing (proofreading), respectively. Because of the editing activity, this enzyme ensures the high fidelity of DNA replication. However, it remains unclear how the PCNA-complexed enzyme temporally switches between the polymerizing and editing modes. Here, we present the three-dimensional structure of the Pyrococcus furiosus DNA polymerase B-PCNA-DNA ternary complex, which is the core component of the replisome, determined by single particle electron microscopy of negatively stained samples. This structural view, representing the complex in the editing mode, revealed the whole domain configuration of the trimeric PCNA ring and the DNA polymerase, including protein-protein and protein-DNA contacts. Notably, besides the authentic DNA polymerase-PCNA interaction through a PCNA-interacting protein (PIP) box, a novel contact was found between DNA polymerase and the PCNA subunit adjacent to that with the PIP contact. This contact appears to be responsible for the configuration of the complex specific for the editing mode. The DNA was located almost at the center of PCNA and exhibited a substantial and particular tilt angle against the PCNA ring plane. The obtained molecular architecture of the complex, including the new contact found in this work, provides clearer insights into the switching mechanism between the two distinct modes, thus highlighting the functional significance of PCNA in the replication process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号